
The Herbst argument

In the seminal 1975 contribution [5], L. Gross emphasized a logarithmic form of the

classical Sobolev inequality for Gaussian measures.

Let γ = γn be the standard Gaussian probability distribution on Rn, with density
1

(2π)
n
2
e−

1
2
|x|2 , x ∈ Rn, with respect to the Lebesgue measure. The logarithmic Sobolev

inequality (for γ) expresses that, for every smooth (locally Lipschitz) function f : Rn → R
such that

∫
Rn f

2dγ <∞,∫
Rn

f 2 log f 2 dγ −
∫
Rn

f 2 dγ log

(∫
Rn

f 2 dγ

)
≤ 2

∫
Rn

|∇f |2dγ. (1)

L. Gross

By elementary convexity, the inequality expresses at a qualitative level that whenever∫
Rn |∇f |2dγ < ∞, then f belongs to the Orlicz space L2 log L(γ), thus part of the Sobolev
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inequalities. After a simple, equivalent change of functions, the Gaussian logarithmic Sobolev

inequality is expressed equivalently with respect to the Lebesgue measure λn as∫
Rn

f 2 log f 2dλn −
∫
Rn

f 2 dλn log

(∫
Rn

f 2 dλn

)
≤ n

2

∫
Rn

f 2 dλn log

(
2

nπe

∫
Rn |∇f |2dλn∫
Rn f 2 dλn

) (2)

for every smooth function f : Rn → R such that
∫
Rn f

2dλn <∞.

It is however an important feature that the inequality (1) with respect to γ = γn and

the constants therein do not depend on the dimension of the underlying state space. By

the specific sub-additivity property of the entropy functional
∫
Rn f

2 log f 2dγ, the inequality

actually tensorizes and reduces to the one-dimensional case. By affine transformations,

the logarithmic Sobolev inequality (1) may be formulated for arbitrary Gaussian measures.

Due to its dimension-free character, infinite dimensional Gaussian measures may also be

considered. It is a simple matter to check that the inequality is sharp on the exponential

functions f(x) = e〈a,x〉−|a|
2
, x ∈ Rn, where a ∈ Rn.

As already investigated by L. Gross, the logarithmic Sobolev inequality may also be

considered for arbitrary probability measures µ on the Borel sets of Rn, asking whether there

exists a (finite) constant C > 0 such that, for every for every smooth function f : Rn → R
with

∫
Rn f

2dµ <∞,∫
Rn

f 2 log f 2 dµ−
∫
Rn

f 2 dµ log

(∫
Rn

f 2 dµ

)
≤ 2C

∫
Rn

|∇f |2dµ. (3)

More general contexts may be considered as well, and since their discovery and promotion

by L. Gross in the seventies, logarithmic Sobolev inequalities have become a central object

of interest and study, in various contexts, information theory, Dirichlet spaces, finite and

infinite dimensional diffusion operators, statistical mechanics, optimal transport and partial

differential equations, convex geometry, Markov chains etc., where they prove as a most useful

tool and property, with numerous applications and illustrations. An account on logarithmic

Sobolev inequalities and their applications is the monograph [2].

For a given measure µ, a natural issue is to try to determine conditions under which

it satisfies such a logarithmic Sobolev inequality (3), or to express necessary conditions for

the inequality to hold true. To the latter question raised by L. Gross, I. Herbst showed, in

an unpublished letter to L. Gross attached at the end of this note (courtesy of Professor

Gross), that if a probability measure µ on the real line satisfies (3), then it must be strongly

integrable as Gaussians, namely there exists α > 0 (depending on C) such that∫
R
eαx

2

dµ < ∞. (4)
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The argument outlined by I. Herbst in his letter amounts to apply the logarithmic Sobolev

inequality to a (truncated) exponential eλx
2

to deduce a differential inequality on
∫
R e

λx2dµ

in λ > 0 which may be suitably integrated to yield the result.

I. Herbst

1 The Herbst argument

The argument sketched by I. Herbst was taken up again following the same steps by E. Davies

and B. Simon [4] in the context of Schrödinger operators and Dirichlet Laplacians. In the

landmark contribution [1], S. Aida, T. Masuda, I. Shigekawa broaden the investigation to

Lipschitz functions on Dirichlet spaces, and reached in particular the following neat state-

ment.

Assume that µ satisfies the logarithmic Sobolev inequality (3). Whenever F : Rn → R is

Lipschitz with Lipschitz coefficient ‖F‖Lip, then
∫
Rn F

2dµ <∞ and for every α < 1
2C‖F‖2Lip

,∫
Rn

eαF
2

dµ ≤ exp

(
α

1− 2αC‖F‖2Lip

∫
Rn

F 2dµ

)
. (5)

The condition α < 1
2C‖F‖2Lip

is sharp on the example of F (x) = x on the real line with respect

to the standard Gaussian measure γ.

The proof, following the early intuition by I. Herbst, amounts to apply the logarithmic

Sobolev inequality to eλF
2

to derive a differential inequality on
∫
Rn e

λF 2
dµ as a function of λ.

At a technical level, the proof should take care of the prior existence of the various integrals
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after a suitable smooth truncation of F , carefully discussed in [1] (basically, work first with

a smooth regularization of min(max(F,−k), k), k ≥ 1). Set then u(λ) =
∫
Rn e

λF 2
dµ, λ ∈ R,

and apply the logarithmic Sobolev inequality (3) to f 2 = eλF
2

so to get that

λ

∫
Rn

F 2 eλF
2

dµ− u(λ) log u(λ) ≤ 2Cλ2
∫
Rn

|∇F |2F 2eλFdµ

≤ 2Cλ2‖F‖2Lip
∫
Rn

F 2 eλF
2

dµ

since |∇F | ≤ ‖F‖Lip (whenever F is smooth). Now
∫
Rn F

2 eλFdµ = u′(λ), so that the latter

yields the first order differential inequality

λ
(
1− 2Cλ‖F‖2Lip

)
u′(λ) ≤ u(λ) log u(λ), λ ∈ R,

which, after some care, may be integrated to produce the announced claim (5).

2 The Herbst argument on Laplace transforms

It turns out that applying the preceding strategy to rather eλF yields a more simple calculus

on the Laplace transform
∫
Rn e

λFdµ, λ ∈ R, of F , with derivations of sharp bounds [6]. Let

indeed v(λ) =
∫
Rn e

λFdµ, λ ∈ R (considering first, as before, a smooth truncation of F in

order for all the integrals to be well-defined). Applying the logarithmic Sobolev inequality

(3) to f 2 = eλF , it holds true that

λ

∫
Rn

F eλFdµ− v(λ) log v(λ) ≤ Cλ2

2

∫
Rn

|∇F |2eλFdµ ≤ Cλ2

2
‖F‖2Lip v(λ).

Now
∫
Rn F e

λFdµ = v′(λ) resulting into the simple first order differential inequality

λ v′(λ) ≤ v(λ) log v(λ) +
Cλ2

2
‖F‖2Lip v(λ)

in λ ∈ R. This inequality is easily integrated. Indeed, setting for example w(λ) = 1
λ

log v(λ),

λ ∈ R, w(0) =
∫
Rn Fdµ, the preceding simply expresses that

w′(λ) ≤ C

2
‖F‖2Lip, λ ∈ R.

Hence log v(λ) ≤ λw(0) + C
2
‖F‖2Lipλ2, that is

v(λ) =

∫
Rn

eλFdµ ≤ eλ
∫
Rn Fdµ+

C
2
‖F‖2Lipλ

2

, λ ∈ R (6)
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(with the prior observation that F is integrable). This conclusion is fully optimal as the

function F (x) = x on the real line achieves equality under the standard Gaussian measure

γ1.

The Laplace bounds (6) may be compared to the conclusion (5) from [1]. To this task,

assume (for simplicity) that
∫
Rn Fdµ = 0, and write

eαF
2

=

∫
R
et
√
2αFdγ1(t)

so that, by Fubini’s theorem and the application of (6),∫
Rn

eαF
2

dµ =

∫
R

(∫
Rn

et
√
2αFdµ

)
dγ1(t)

≤
∫
R
eCα‖F‖

2
Lipt

2

dγ(t)

=
1√

1− 2Cα‖F‖2Lip

(7)

provided that α < 1
2C‖F‖2Lip

, a condition which coincides with the one in (5). For a more

precise comparison with the latter, by the Poincaré inequality (consequence itself of the

logarithmic Sobolev inequality, cf. [2]), if
∫
Rn Fdµ = 0,∫

Rn

F 2dµ ≤ C

∫
Rn

|∇F |2dµ ≤ C‖F‖2Lip.

Therefore (5) yields ∫
Rn

eαF
2

dµ ≤ exp

(
αC‖F‖2Lip

1− 2αC‖F‖2Lip

)
,

a weaker bound than (7).

3 Logarithmic Sobolev inequalities and concentration

of measure

The Laplace bounds (6), achieved under the logarithmic Sobolev inequality (3), are a pro-

totypical illustration of (Gaussian) concentration inequalities. Namely, for a given Lipschitz

function F : Rn → R, under the logarithmic Sobolev inequality (3), F is integrable with

respect to µ and (6) reads∫
Rn

eλ(F−
∫
Rn Fdµ)dµ ≤ e

C
2
‖F‖2Lipλ

2

, λ ∈ R.
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Hence, by Markov’s inequality, for every λ, t > 0,

µ
(
F −

∫
Rn Fdµ ≥ t

)
≤ e−λt+

C
2
‖F‖2Lipλ

2

which, after optimization in λ (λ = t
C‖F‖2Lip

) yields

µ
(
F −

∫
Rn Fdµ ≥ t

)
≤ e

− t2

2C‖F‖2
Lip (8)

for every t ≥ 0.

Together with the same inequality for −F and the union bound, the deviation inequality

(8) yields the concentration inequality1

µ
(∣∣F − ∫Rn Fdµ

∣∣ ≥ t
)
≤ 2 e

− t2

2C‖F‖2
Lip , t ≥ 0. (9)

Again, these exponential bounds are sharp on the Gaussian model.

These deviation and concentration inequalities derived from a logarithmic Sobolev in-

equality are the illustration of a general principle, labelled as “the Herbst argument” or the

“entropy method”, from which numerous concentration inequalities may be achieved, dis-

covered, or re-proved with elementary and more direct arguments, from logarithmic Sobolev

inequalities or sub-additivity of entropy. An important feature of the approach is the pro-

duction of dimension free concentration inequalities, a most attractive property in the study

of high-dimensional systems and models. A (non-exhaustive) selection of applications and

illustrations of these methods is presented in the course and monographs [7, 8, 3] (and the

references therein), and more is still going on.
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