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Abstract

The note presents the short proof by S. Chevet [3] of Schilder’s large deviation

theorem for the Wiener measure [10]. The argument covers more generally the case of

arbitrary Gaussian measures on a Banach space.

On some probability space (Ω,A,P), let W = (W (t))t∈[0,1] be a standard Brownian

motion or Wiener process with law the Wiener measure µ on the Banach space E = C([0, 1])

of real continuous functions on [0, 1] and reproducing kernel Hilbert space H identified as the

subspace of E = C([0, 1]) consisting of the absolutely continuous functions h : [0, 1] → R,

with almost everywhere derivative h′ in L2([0, 1]) (for the Lebesgue measure).

Setting for h ∈ H,

|h|H =

(∫ 1

0

h′(t)2 dt

)1/2

,

the rate function I : E → [0,+∞] which will govern the large deviation properties of εW as

ε→ 0 is defined as

I(x) =

{
1
2
|x|2H if x ∈ H,

+∞ if x /∈ H.
(1)

In the large deviation language ([11, 5, 4]), this rate function is a good rate function in the

sense that its level sets {I ≤ a}, a ≥ 0, are compact in E (due to the compactness of the

H-balls in E).

The following theorem, going back to the work of M. Schilder [10], presents the large

deviation behavior of the law of εW as ε→ 0. For a subset A of E, let

I(A) = inf
x∈A
I(x).

1



Theorem 1 (Schilder’s large deviation theorem). For any closed set F in E,

lim sup
ε→0

ε2 logP(εW ∈ F ) ≤ −I(F ).

For any open set O in E,

lim inf
ε→0

ε2 logP(εW ∈ O) ≥ −I(O).

The purpose of this note is to present a short proof of this result in the general context of

a Gaussian measure on a Banach space as emphasized by S. Chevet [3], relying on the Gaus-

sian isoperimetric inequality, actually milder Gaussian concentration properties. General

references on (Gaussian) large deviations include [11, 5, 4, 9, 2] etc.

1 The Gaussian large deviation principle

Let X be a centered Gaussian random vector on some probability space (Ω,A,P) with values

in a real separable Banach space E equipped with its Borel σ-algebra B, and with norm ‖ ·‖.
The law µ of X on the Borel sets of E gives rise to an abstract Wiener space structure

(E,H, µ), in which the Hilbert space H ⊂ E, with scalar product 〈·, ·〉H, is the reproducing

kernel Hilbert space associated to the covariance structure of µ (cf. [7, 5, 8, 2]...). In case of

the Wiener measure on E = C([0, 1]), H is identified with the subspace of E consisting of the

absolutely continuous functions with almost everywhere derivative in L2([0, 1]) as described

above.

Large deviations for general Gaussian measures go back to M. Donsker and S. Varadhan

[6]. The study of [6] actually addresses the large deviation principle for sums of independent

Banach space valued random variables, the Gaussian case being a particular case.

Consider as before the rate function I as defined in (1), and for a subset A of E, set

similarly I(A) = infx∈A I(x).

Theorem 2 (The Gaussian large deviation principle). For any closed set F in E,

lim sup
ε→0

ε2 logP(εX ∈ F ) ≤ −I(F ). (2)

For any open set O in E,

lim inf
ε→0

ε2 logP(εX ∈ O) ≥ −I(O). (3)

Applied to complements of balls, this theorem easily produces the limit

lim
t→∞

t2 logP
(
‖X‖ ≥ t

)
= − 1

2σ2
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where

σ2 = sup
ξ∈E∗,‖ξ‖≤1

E
(
〈ξ,X〉2

)
together with the observation that σ = sup|h|H≤1 ‖h‖.

2 Proof of the upper-bound (2)

The proof by S. Chevet [3] of the upper-bound (2) in Theorem 2 relies on isoperimetric and

concentration inequalities which provide a very convenient tool.

Let F be closed in E, and take r such that 0 < r < I(F ). By the very definition of I(F ),

F ∩
√

2rK = ∅,

where K is the (closed) unit ball in H. Since F is closed and K is compact in E, there exists

η > 0 such that it still holds true that

F ∩
[√

2rK +BE(0, η)
]

= ∅

where BE(0, η) is the ball with center the origin and radius η for the norm ‖ · ‖ in E. Clearly

lim
ε→0

P
(
εX ∈ BE(0, η)

)
= lim

ε→0
P
(
X ∈ BE(0, η

ε
)
)

= 1.

The Gaussian isoperimetric inequality for the law of X (cf. [9, 8, 2]) expresses that,

whenever P(X ∈ A) ≥ Φ(a) = 1√
2π

∫ a
−∞ e

− 1
2
x2dx for some a ∈ R,

P(X ∈ A+ sK) ≥ Φ(a+ s)

for every s ≥ 0. For ε > 0 small enough, P(X ∈ BE(0, η
ε
)) ≥ 1

2
= Φ(0). Hence,

P(εX ∈ F ) ≤ P
(
εX /∈

√
2rK +BE(0, η)

)
≤ 1− Φ

(√
2r

ε

)
≤ e−r/ε

2

.

Therefore

lim sup
ε→0

ε2 logP(εX ∈ F ) ≤ −r,

which is the result since r < I(F ) is arbitrary.

As mentioned above, the full strength of the Gaussian isoperimetric inequality is not

really needed, and weaker concentration inequalities are enough to achieve the conclusion.

For example, as emphasized in [8], the latter easily produce that

P(X ∈ A+ sK) ≥ 1− e−
1
2
s2+δ(µ(A))s

for every s ≥ 0, where δ(µ(A)) → 0 as µ(A) → 1, so that the proof may be developed

similarly.
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3 Proof of the lower-bound (3)

The lower-bound (3) in Theorem 2 classically relies on the Cameron-Martin translation

formula which formulates, in the present general setting, that, for any h in H, the shifted

probability measure µ(· + h) is absolutely continuous with respect to µ, with density given

by the formula

µ(B + h) = e−
1
2
h|2H

∫
B

e−h̃dµ (4)

for every Borel setB in E, where h̃ : E → R is (centered) Gaussian under µ with variance |h|2H
[9, 8, 2]. In case of Brownian motion W = (W (t))t∈[0,1] on E = C([0, 1]) h̃ =

∫ 1

0
h′(t)dW (t),

so that the shifted measure µ(·+ h) has density

exp

(
− 1

2

∫ 1

0

h′(t)2 dt−
∫ 1

0

h′(t)dW (t)

)
with respect to µ.

Let then h ∈ O∩H. Since O is open, there exists η > 0 such that h+BE(0, η) ⊂ O, and

thus

P(εX ∈ O) ≥ P
(
εX ∈ h+BE(0, η)

)
.

The Cameron-Martin translation formula (4) therefore yields that

P
(
εX ∈ h+BE(0, η)

)
= µ

(
h
ε

+BE(0, η
ε
)
)

= exp

(
− |h|

2
H

2ε2

)∫
BE(0,

η
ε
)

exp

(
− h̃

ε

)
dµ.

(5)

By Jensen’s inequality,∫
BE(0,

η
ε
)

exp

(
− h̃

ε

)
dµ ≥ µ

(
BE(0, η

ε
)
)

exp

(
−
∫
BE(0,

η
ε
)

h̃

ε
· dµ

µ(BE(0, η
ε
))

)
.

Now ∫
BE(0,

η
ε
)

h̃ dµ ≤
∫
E

|h̃|dµ ≤
(∫

E

h̃2dµ

)1/2

= |h|H.

For every ε > 0 small enough, µ(BE(0, η
ε
)) ≥ 1

2
(for example). As a consequence of the

preceding, ∫
BE(0,

η
ε
)

exp

(
− h̃

ε

)
dµ ≥ 1

2
exp

(
− 2|h|H

ε

)
.

Implementing into (5), for ε > 0 small enough,

P(εX ∈ O) ≥ 1

2
exp

(
− |h|

2
H

2ε2
− 2|h|H

ε

)
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from which it follows that

lim inf
ε→0

ε2 logP(εX ∈ O) ≥ −1

2
|h|2H = −I(h).

This result for any h ∈ O ∩H yields the announced lower-bound (3).

The preceding combined upper and lower arguments actually produce a measurable ver-

sion of the large deviation principle, without referring to any topology associated to the

underlying abstract Wiener space (cf. [1, 8]).
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