
Why is the law of the iterated logarithm in Banach space

at the origin of the development of new concentration inequalities

for independent random variables

The classical law of the iterated logarithm (LIL in the following) is, with the law of large

numbers and the central limit theorem, one of the main asymptotic statements in probability

theory. The LIL is however almost no longer being taught in standard probability courses today

(2020).

Going back to works by A. Khinchin [1] and A. Kolmogorov [2] in the 1920s (before actually

the foundations of probability theory were laid by the latter!), the tools behind the LIL, namely

exponential inequalities for sums of independent random variables, are perhaps more important

than the asymptotic result itself. This observation has to be put in perspective with the

nowadays strong interest into concentration inequalities, classical exponential inequalities for

sums of independent random variables being a specific instance. In this regard, it might be

worthwhile emphasizing why and how the study, in the decade 1975–1985, of the LIL for Banach

space valued random variables motivated the elaboration and discovery, by M. Talagrand, of

new concentration principles for product measures and independent random variables, major

tools of modern probability theory.

The discussion of the classical limit theorems in probability theory is restricted here to

the simple instance of independent and identically distributed summands. Let X be a random

variable on some probability space (Ω,A,P) with values in (R,B(R)), and denote by Xn, n ≥ 1,

a sequence of independent copies of X. Set Sn = X1 + · · ·+Xn, n ≥ 1.

Kolmogorov’s law of large numbers expresses that the sequence Sn

n
, n ≥ 1, converges almost

surely to E(X) if and only if E(|X|) <∞ (the converse has to be understood as: if the sequence
Sn

n
, n ≥ 1, is almost surely bounded, then E(|X|) <∞).

The classical central limit theorem states that if E(X) = 0 and E(X2) < ∞, then the

sequence Sn√
n
, n ≥ 1, converges weakly to a centered Gaussian random variable G with variance

σ2 = E(X2). The converse, somewhat less popular, is that whenever the sequence Sn√
n
, n ≥ 1,

1



is uniformly tight, that is, for every ε > 0, there exists M > 0 such that

sup
n≥1

P
(∣∣∣∣ Sn√n

∣∣∣∣ > M

)
≤ ε,

then E(X2) < ∞, and E(X) = 0 (the standard argument makes use of the Fourier transform,

and one 0 < ε < 1 is actually enough).

The law of the iterated logarithm (LIL) is the statement, due in this form to P. Hartman

and A. Wintner [3], strongly relying on [2], that, whenever E(X) = 0 and E(X2) = σ2 < ∞,

then

lim sup
n→∞

Sn√
2n log log n

= σ

almost surely. Hence, under a second moment, the sequence
√

2n log log n, n ≥ 3, is the smallest

one stabilizing almost surely the sums Sn. There is a more precise result, due to V. Strassen

[4], emphasizing the interval [−σ,+σ] as the almost sure limiting points and cluster set of the

sequence Sn√
2n log logn

, n ≥ 3. As for the central limit theorem, there is a converse implication ex-

pressing that if the sequence Sn√
2n log logn

, n ≥ 3, is almost surely bounded, then E(X2) <∞, and

E(X) = 0. As aforementioned, exponential inequalities for sums of independent random vari-

ables are at the root of this asymptotic result. A classical example of such exponential bounds

is the Bennett inequality [5] which indicates that for real random variables Y1, . . . , Yn with a

finite second moment such that Yi ≤ 1, i = 1, . . . , n, almost surely, letting S = Y1 + · · ·+ Yn,

for any t ≥ 0,

P
(
S ≥ E(S) + t

)
≤ exp

(
− (t+ σ2) log

(
1 +

t

σ2

)
− t
)

where σ2 =
∑n

i=1 E(Y 2
i ). This evolved form is part of a series of exponential inequalities for

sums of independent random variables extensively developed in the first half of the 20th century

by numerous authors, including S. Bernstein, A. Kolmogorov, Y. Prokhorov, H. Chernoff,

W. Hoeffding and others. The Bennett inequality suitably captures the respective Gaussian,

when t << σ2, and Poisson, when t >> σ2, tails of sums of independent random variables. Only

Gaussian tails are necessary towards the LIL.

The notation X, Xn, Sn are similar for vector valued random variables. In the following, it

will be implicitly assumed, in the context of the central limit theorem and the LIL, that the

given random variable X is centered, avoiding elementary additional statements in this regard.

In particular, for real valued random variables, the existence of the second moment E(X2) <∞
is necessary and sufficient for the central limit theorem and the LIL to hold.

If X is a random vector in Rd, the preceding characterizations hold similarly, the conditions

E(|X|) < ∞ and E(X2) < ∞ being replaced by E(‖X‖) < ∞ and E(‖X‖2) < ∞ for an

arbitrary norm ‖·‖ on Rd. The limiting (centered) Gaussian vector in the central limit theorem

has the covariance structure of X, whereas the cluster set of the sequence Sn√
2n log logn

, n ≥ 3, in

the LIL is given by the unit ball of the Euclidean structure induced by the covariance of X.
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What is now the picture when X takes its values in a (real separable) infinite dimensional

Banach space B with norm ‖ · ‖?

The law of large numbers holds similarly if and only if E(‖X‖) <∞ [6] (cf. [8, Chapter 7]).

For the central limit theorem, the picture is radically different, and, in a general Banach

space, the moment condition E(‖X‖2) < ∞ (actually even almost surely boundedness) is not

sufficient anymore to ensure weak convergence of the sequence Sn√
n
, n ≥ 1, and is neither

necessary. If however B is a Hilbert space, it has been shown by S. Varadhan [7] that the

moment condition E(‖X‖2) < ∞ is necessary and sufficient for the central limit theorem, but

Hilbert spaces are essentially the only infinite dimensional spaces with this property (see [8,

Chapter 10] for an extensive discussion).

To discuss the LIL, let us agree that X satisfies (a bounded form of) the LIL if

lim sup
n→∞

‖Sn‖√
2n log log n

< ∞

almost surely (there is a compact form including the description of the limiting set but it

will not be necessary to go into this more precise statement, cf. [8, Chapter 8] for details).

As for the central limit theorem, the moment condition E(‖X‖2) < ∞ is no more sufficient

for the (bounded) LIL to hold true in general, and neither necessary. But one of the first

striking statements, obtained by V. Goodman, J. Kuebs and J. Zinn in [9], is that in a (infinite

dimensional) Hilbert space H, the necessary and sufficient conditions for the LIL to be satisfied

are that

E
(

‖X‖2

log log(‖X‖+ 3)

)
< ∞,

a level of integrability therefore just below E(‖X‖2) < ∞, equivalent actually to the almost

sure boundedness of the sequence Xn√
2n log logn

, n ≥ 3, and

E
(
〈y,X〉2

)
< ∞ for all y ∈ H,

that is, the one-dimensional LIL holds true for the real random variables 〈y,X〉, y ∈ H. The

classical (second) moment condition therefore splits into a strong one concerning the norm and

a weak one along linear functionals. The characterization extends to the class of type 2 Banach

spaces, covering for example Lp, p ≥ 2, spaces. Type 2 Banach spaces are actually those for

which the second moment condition E(‖X‖2) <∞ is sufficient for the central limit theorem to

be satisfied (cf. [8, Chapter 10]).

While moment conditions are not sufficient in general to ensure the validity of the LIL, on

the basis of the Hilbert space example, there is actually a full characterization in an arbitrary

Banach space (B, ‖ · ‖) which reduces the almost sure boundedness statement of the LIL to a

boundedness in probability (somehow similar to the central limit theorem) [10]. Namely, the

(bounded) LIL holds true for a random variable X with values in a Banach space (B, ‖ ·‖) with

dual space B∗ if and only if

E
(

‖X‖2

log log(‖X‖+ 3)

)
< ∞,

3



E
(
〈y,X〉2

)
< ∞ for all y ∈ B∗

and
Sn√

2n log log n
, n ≥ 3, is stochastically bounded,

meaning that for each ε > 0, there is M > 0 such that

sup
n≥3

P
(∥∥∥∥ Sn√

2n log log n

∥∥∥∥ > M

)
≤ ε

(equivalently supn≥3 E
( ‖Sn‖√

2n log logn

)
<∞, see [10], [8, Chapter 8]).

It is not difficult to see that in a Hilbert space (or more generally a type 2 Banach space),

the stochastic boundedness of the sequence Sn√
2n log logn

, n ≥ 3, is a consequence of the strong

moment condition E
( ‖X‖2
log log(‖X‖+3)

)
< ∞. It is furthermore an interesting corollary that if X

satisfies the central limit theorem, then the LIL holds true if and only if E
( ‖X‖2
log log(‖X‖+3)

)
< ∞

(see [8, Chapter 8]).

The fundamental relevance of weak moments in the description of the LIL in infinite di-

mensional Hilbert and Banach spaces reflects the basic concentration property of Gaussian

distributions, expressed in the tail bound

P
(∣∣‖G‖ − E(‖G‖)

∣∣ ≥ t
)
≤ 2 e−t

2/2σ2

, t ≥ 0,

for a (centered) Gaussian vector G with values in (B, ‖ · ‖), where σ2 = sup‖y‖≤1 E(〈y,G〉2),
y ranging over the unit ball of the dual space B∗ of B [11, 12, 13] (see [8, Chapter 3]). The

essential feature of such tail inequalities lies in the fact that the strong moment E(‖G‖) occurs

as an additive parameter while the weak moment σ2 regulates the exponential decay. The

proof of the characterization of the LIL in Banach space in [10] is actually based on a Gaussian

randomisation procedure making use of the preceding concentration bound (the boundedness in

probability of Sn√
2n log logn

, n ≥ 3, reflecting the deviation by E(‖G‖) in the Gaussian inequality,

while the action of the weak moments corresponds to σ2).

These results and phenomena prompted the study, and discovery, by M. Talagrand, of more

general concentration inequalities for independent random variables and vectors extending the

Gaussian example, and emphasizing the respective roles of strong means and weak variances.

A first major contribution in this regard [14] is the analogue of Gaussian concentration for

series Z =
∑

i εixi, with εi independent ±1 symmetric Bernoulli random variables, xi elements

of a Banach space B, in the form of

P
(∣∣‖Z‖ − E(‖Z‖)

∣∣ ≥ t
)
≤ 4 e−t

2/16σ2

, t ≥ 0,

with the same meaning for σ2 = sup‖y‖≤1 E(〈y, Z〉2). The essential feature here is the in-

dependence in the bound on the number of variables. Note furthermore, for the matter of

comparison, that any (centered) Gaussian vector may be represented in distribution as a series∑
i gixi, where the gi’s are independent standard normal random variables.
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The concentration inequality for series
∑

i εixi was extended in [15] to arbitrary independent

uniformly bounded random variables εi, then elaborated in [16] as a general convexity principle

based on induction on the dimension (number of coordinates), in a form which has taken the

name of “Talagrand’s convex distance inequality”.

At the same time, M. Talagrand introduced another family of abstract inequalities for

product measures, called “control by a finite number of points”, relying on rearrangements

methods and induction on the number of coordinates, with which he was able to tackle the

issue of Poisson integrability of series of independent bounded vector valued random variables

[17]. It is as a combination of this tool and of the concentration property of Bernoulli series

that a direct, concise proof of the LIL is presented in [8, Chapter 8].

After these landmarks contributions, the Talagrand concentration inequalities for product

measures and independent random variables have been deepened and synthesized in the cel-

ebrated publications [18] and [19], with a wide range of illustrations and applications. In a

further refinement, involving mass transportation ideas, M. Talagrand established in [20] a

sharp concentration inequality for the supremum of empirical processes. In the context of this

note, the latter expresses that if Y1, . . . , Yn are independent random vectors in a Banach space

(B, ‖ · ‖) with ‖Yi‖ ≤ 1, i = 1, . . . , n, almost surely, letting S = Y1 + · · ·+ Yn, for any t ≥ 0,

P
(∣∣‖S‖ − E(‖S‖)

∣∣ ≥ t
)
≤ C exp

(
− t

C
log
(

1 +
t

Σ2

))
where Σ2 = E

(
sup‖y‖≤1

∑n
i=1〈y, Yi〉2

)
and C > 0 is a numerical constant. The comparison

with the real Bennett inequality clearly puts forward the role of the deviation from the mean

E(‖S‖) and the exponential rate quantified by weak moments (it may be shown when the Yi’s

are centered, E(Σ2) ≤ E(‖S‖)+8 sup‖y‖≤1
∑n

i=1 E(〈y, Yi〉2) [8, Chapter 6]). This inequality may

then also be used to recover the LIL in Banach space.
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