A short proof of Schilder’s
large deviation theorem

Abstract

The note presents the short proof by S. Chevet [3] of Schilder’s large deviation
theorem for the Wiener measure [10]. The argument covers more generally the case of
arbitrary Gaussian measures on a Banach space.

On some probability space (2, 4,P), let W = (W(t))te[o,l] be a standard Brownian
motion or Wiener process with law the Wiener measure p on the Banach space E = C(]0, 1])
of real continuous functions on [0, 1] and reproducing kernel Hilbert space H identified as the
subspace of E = C([0, 1]) consisting of the absolutely continuous functions A : [0,1] — R,
with almost everywhere derivative A’ in L*([0,1]) (for the Lebesgue measure).

By, = ( / 1h’<t>2dt) -

the rate function Z : E — [0, 400] which will govern the large deviation properties of eW as

¢ — 0 is defined as
1,02
= f reH,
T(x) = § 2 17 (1)
+oo if z ¢ H.

Setting for h € H,

In the large deviation language ([11, 5, 4]), this rate function is a good rate function in the
sense that its level sets {Z < a}, a > 0, are compact in F (due to the compactness of the
H-balls in E).

The following theorem, going back to the work of M. Schilder [10], presents the large
deviation behavior of the law of eWW as ¢ — 0. For a subset A of F, let

Z(A) = inf Z(z).
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Theorem 1 (Schilder’s large deviation theorem). For any closed set F in E,

limsupe®logP(eW € F) < —I(F).

e—0

For any open set O in E,

lim iélf e?logP(eW € O) > —Z(0).
E—

The purpose of this note is to present a short proof of this result in the general context of
a Gaussian measure on a Banach space as emphasized by S. Chevet [3], relying on the Gaus-
sian isoperimetric inequality, actually milder Gaussian concentration properties. General
references on (Gaussian) large deviations include [11, 5, 4, 9, 2] etc.

1 The Gaussian large deviation principle

Let X be a centered Gaussian random vector on some probability space (€2, A, P) with values
in a real separable Banach space E equipped with its Borel o-algebra B, and with norm || -||.
The law g of X on the Borel sets of E gives rise to an abstract Wiener space structure
(E,H, ), in which the Hilbert space H C E, with scalar product (-,-),,, is the reproducing
kernel Hilbert space associated to the covariance structure of p (cf. [7, 5, 8, 2]...). In case of
the Wiener measure on £ = C(]0, 1]), H is identified with the subspace of E consisting of the
absolutely continuous functions with almost everywhere derivative in L?([0,1]) as described
above.

Large deviations for general Gaussian measures go back to M. Donsker and S. Varadhan
[6]. The study of [6] actually addresses the large deviation principle for sums of independent
Banach space valued random variables, the Gaussian case being a particular case.

Consider as before the rate function Z as defined in (1), and for a subset A of E, set
similarly Z(A) = inf,ca Z(x).

Theorem 2 (The Gaussian large deviation principle). For any closed set F in E,

limsupe®logP(eX € F) < —Z(F). (2)
e—0
For any open set O in E,
limiglf52 logP(eX € O) > —Z(0). (3)
e—

Applied to complements of balls, this theorem easily produces the limit
1

. 2 _
tli}g)t logP(||X|| > t) = 52

2



where

o’ = sup E((S,X>2)
EeExI€lI<1

together with the observation that o = supy,;, <1 [|A/]-

2 Proof of the upper-bound (2)

The proof by S. Chevet [3] of the upper-bound (2) in Theorem 2 relies on isoperimetric and
concentration inequalities which provide a very convenient tool.

Let F be closed in E, and take r such that 0 < r < Z(F'). By the very definition of Z(F),
FNv2rk =0,

where K is the (closed) unit ball in H. Since F' is closed and K is compact in F, there exists
1 > 0 such that it still holds true that

Fn[V2rK+ Bg(0,n)] = 0
where Bg(0,7) is the ball with center the origin and radius n for the norm || - || in E. Clearly
: . 7y
limP(eX € Bp(0,7)) = imP(X € B(0, 1)) = L

The Gaussian isoperimetric inequality for the law of X (cf. [9, 8, 2]) expresses that,

whenever P(X € A) > ®(a) = %ﬂ . e~2%dx for some a € R,

PXe€eA+sK) > P(a+s)

for every s > 0. For € > 0 small enough, P(X € Bg(0,%)) >

]P(EX S F) S P(EX ¢ \/Z’C—FBE(O,’I])) S 1—(I)<ﬁ> S 6_7"/52.

Therefore
limsupe?logP(eX € F) < —,

e—0

which is the result since r < Z(F') is arbitrary.

As mentioned above, the full strength of the Gaussian isoperimetric inequality is not
really needed, and weaker concentration inequalities are enough to achieve the conclusion.
For example, as emphasized in [8], the latter easily produce that

P(X € A+sK) > 1— e 2 H0uA)s

for every s > 0, where 6(u(A)) — 0 as u(A) — 1, so that the proof may be developed
similarly.



3 Proof of the lower-bound (3)

The lower-bound (3) in Theorem 2 classically relies on the Cameron-Martin translation
formula which formulates, in the present general setting, that, for any h in H, the shifted
probability measure u(- + h) is absolutely continuous with respect to p, with density given
by the formula

w(B+h) = e‘éhﬁi/ e‘ﬁd,u (4)
B

for every Borel set B in E, where h : E — R is (centered) Gaussian under y with variance |h|3,
[9, 8, 2]. In case of Brownian motion W = (W(t)),cp, on £ = C([0,1]) h = fol R (t)dW (),
so that the shifted measure p(- + h) has density

mp(—%A%ﬁfﬁ—[TM@ﬂV@>

Let then h € ONH. Since O is open, there exists > 0 such that h+ Bg(0,7) C O, and
thus

with respect to p.

P(eX € O) > P(eX € h+ Bg(0,7n)).

The Cameron-Martin translation formula (4) therefore yields that

P(eX € h+ Bp(0,n)) = n(%+ Br(0,1))

2 h 5
:exp(—%)/ exp(—ﬁ)d,u. )
2¢% ) Jpo.n) €

h du

h
exp| — — |du > p(Bg(0, 2 exp(—/ —-—).
/BE(O,Z) ( 5) : ,u( st )) Bgp(0,2) € 1(Bg(0,2))

. _ . 1/2
/ hdu < / |hldp < </ h2du> = |hln.
Bg(0,2) E E

For every € > 0 small enough, u(Bg(0,%)) > 3 (for example). As a consequence of the

h 1 2
/ exp(—ﬁ>du2§exp(—ﬂ).
Bg(0,2) € &

Implementing into (5), for € > 0 small enough,

P(eX > = S ¥ A i 15
(eX € 0) 5 exp ( 922 5

By Jensen’s inequality,

Now

preceding,



from which it follows that
1
limi51f52 logP(eX € O) > —5 \h|3, = —Z(h).
E—r

This result for any h € O NH yields the announced lower-bound (3).

The preceding combined upper and lower arguments actually produce a measurable ver-
sion of the large deviation principle, without referring to any topology associated to the
underlying abstract Wiener space (cf. [1, §]).
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