
The Gaussian Blog

Brownian motion and Wiener measure

Brownian motion, or Wiener process, is a fundamental Gaussian process, both describing

the random motion of a particule in a fluid and introducing a basic continuous-time stochastic

process whose law, the Wiener measure, defines a Gaussian measure or vector on the infinite-

dimensional space of continuous functions.

The wealth of properties, results, studies on Brownian motion and the Wiener measure,

and related processes, would require a specific blog. The purpose here is only to emphasize

a few specific features related to their Gaussian structure. Basic textbooks on Brownian

motion, such as the renowned [7, 4, 6], or the more recent [5], easily cover the brief material

exposed here.
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1 Brownian motion

A random process X = (Xt)t≥0, indexed by [0,∞) defined on some probability space

(Ω,A,P), is said to be Gaussian if, for every t1, . . . , tn ≥ 0, the vector (Xt1 , . . . , Xtn) is Gaus-

sian in Rn. It is assumed below that X = (Xt)t≥0 is centered in the sense that E(Xt) = 0

for every t ≥ 0. Following the characterization of Gaussian vectors, the finite-dimensional

distributions of the process X = (Xt)t≥0 are fully determined by the covariance function

Σ(s, t) = E(XsXt), s, t ≥ 0.

There are many examples of Gaussian covariance functions in this context. One of them

is of most interest and given by

Σ(s, t) = E(XsXt) = min(s, t), s, t ≥ 0. (1)

It is easily seen that it is indeed a covariance function. A few properties of this covariance

function are worthwhile emphasizing. First, for each s < t, the law of Xt −Xs is Gaussian

with lawN (0, t−s) (X0 = 0 almost surely). Then, the increments of the process X = (Xt)t≥0
are independent: for 0 ≤ t0 < t1 < · · · < tn, the random variables

Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are independent (with respective laws N (0, t1−t0), N (0, t2−t1), . . . ,N (0, tn−tn−1)). Equiv-

alently, the vector
(Xk−Xk−1√

tk−tk−1

)
1≤k≤n is of law N (0, Id) in Rn.

These properties actually characterize the (finite-dimensional) distribution of the so-

called Brownian motion, a process describing the stochastic and without memory motion of a
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particle in a fluid, typically denoted by B = (Bt)t≥0, a notation adopted below. A Brownian

motion B = (Bt)t∈[0,T ] indexed on some interval [0, T ], T > 0, is of course constructed

similarly.

From a functional point of view, since

E
(
|Bs −Bt|2

)
= |s− t|, s, t ≥ 0,

Kolmogorov’s continuity theorem (cf. [1]) ensures that there is a version of the process B

(denoted in the same way) with almost surely continuous trajectories t ∈ [0,∞) 7→ Bt. They

may be even shown almost surely α-Hölder continuous for every α < 1
2
. However, the paths

are almost surely nowhere differentiable.

2 Series expansions

An alternate viewpoint on the construction and continuity of the Brownian paths is provided

by uniform convergence of series. This aspect is developed in more generality in the study of

abstract Wiener spaces [2], but the specific model of Brownian motion allows for an explicit

study.

Let (ek)k∈N be an orthonormal basis of the Hilbert space L2([0, 1]) with respect to the

Lebesgue measure λ1. Introduce the so-called Schauder functions

hk(t) =

∫
[0,t]

ek dλ1 = 〈1[0,t], ek〉L2([0,1])
, k ∈ N,
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which define an orthonormal basis of a Hilbert space known as the Cameron-Martin repro-

ducing kernel Hilbert space H associated to the covariance structure Σ. The Hilbertian

structure of H is indeed induced by L2([0, 1]) via the scalar product

〈hk, h`〉H =

∫
[0,1]

h′k h
′
` dλ1 =

∫
[0,1]

ek e` dλ1

for k, ` ∈ N.

On some probability space (Ω,A,P), consider a sequence (gk)k∈N of independent standard

normal variables, and set, for each n ≥ 0,

Bn
t =

n∑
k=0

gk hk(t), t ∈ [0, 1].

It is immediate to check that, for every t ∈ [0, 1], Bn
t converges as n→∞, almost surely and

in L2(P), to a random variable Bt with law N (0, t), and that moreover E(BsBt) = min(s, t)

for every s, t ∈ [0, 1]. Indeed,

E
(
Bn

sB
n
t

)
=

n∑
k=0

hk(s)hk(t) =
n∑

k=0

〈1[0,s], ek〉L2([0,1])
〈1[0,t], ek〉L2([0,1])

which converges, by Parseval’s identity, to

〈1[0,s],1[0,t]〉L2([0,1])
=

∫
[0,1]

1[0,s] 1[0,t] dλ1 = min(s, t).

The finite-dimensional distributions thus coincide with the definition of a Brownian motion

B = (Bt)t∈[0,1] on [0, 1].

It may actually be shown that the sequence (Bn)n∈N converges, almost surely and in

L2(P), in C([0, 1]) (for the uniform norm), ensuring therefore the continuity of the Brownian

paths B = (Bt)t∈[0,1], and representing B as the series B =
∑

k∈N gkhk. This series expansion

holds true for any orthonormal basis (ek)k∈N of L2([0, 1]) (cf. [2]), but specific choices are of

more interest, and provide a simplified treatment of the uniform convergence.

For example, the Haar basis, labeled as e
(n)
` , n ∈ N, ` ∈ I(n), I(n) being the set of odd

integers between 0 and 2n, is defined by

e
(n)
` = 2(n−1)/2(

1[ `−1
2n

, `
2n

) − 1[ `
2n

, `+1
2n

)

)
(with e

(0)
1 = 1[0,1]). For h

(n)
` , n ∈ N, ` ∈ I(n), the associated Schauder sequence, and g

(n)
` ,

n ∈ N, ` ∈ I(n), a sequence of independent standard normal random variables, the sequence

of functions

Bn
t =

n∑
m=0

∑
`∈I(m)

g
(m)
` h

(m)
` (t), t ∈ [0, 1],
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may easily be shown to converge uniformly almost surely. Namely, for every m ∈ N,

P
(

max
`∈I(m)

∣∣g(m)
`

∣∣ ≥ m
)
≤

∑
`∈I(m)

P
(∣∣g(m)

`

∣∣ ≥ m
)
≤ 2m e−

1
2
m2

.

Hence, by the Borel-Cantelli lemma, there exists a measurable set Ω0 with P(Ω0) = 1 such

that, for every ω ∈ Ω0, there exists m0(ω) with max`∈I(m) |g(m)
` (ω)| ≤ m for every m ≥ m0(ω).

Now, at the level m, the Schauder functions h
(m)
` , ` ∈ I(m), have disjoint supports and

maximal height 2−(m+1)/2, so that, uniformly in t ∈ [0, 1],∑
m≥m0(ω)

∑
`∈I(m)

∣∣g(m)
` (ω)

∣∣∣∣h(m)
` (t)

∣∣ ≤ ∑
m≥m0(ω)

m 2−(m+1)/2 < ∞.

Therefore Bn, n ∈ N, converges almost surely in C([0, 1]), and its limit B = (Bt)t∈[0,1] is a

Brownian motion (on [0, 1]), represented by the expansion

Bt =
∑
n∈N

∑
`∈I(n)

g` h
(n)
` , t ∈ [0, 1]. (2)

Another classical series representation stems for the trigonometric basis of L2([0, 1]) lead-

ing, for example, to the expansion

Bt = g0 t+
√

2
∞∑
k=1

gk
sin(πkt)

πk
, t ∈ [0, 1]. (3)

While the preceding series representations define a Brownian motion on [0, 1], it is easily

extended to a process (Bt)t≥0 indexed on [0,∞). For example, consider a sequence (bnt )t∈[0,1],

n ≥ 1, of independent Brownian motions on [0, 1], and set

Bt = b11 + · · ·+ bn1 + bn+1
t−n , t ∈ [n, n+ 1), n ≥ 0

(with the convention b01 = 0). It is clear that the process (Bt)t≥0 thus defined fulfills all the

axioms of the Brownian motion as described by its finite-dimensional distributions in the

first section, and is almost surely continuous.

It is also possible to consider a standard Brownian motion with values in Rn as

Bt = (b1t , . . . , b
n
t ), t ≥ 0,

where b1, . . . , bn are independent one-dimensional Brownian motions.

5



3 Invariance principle

Another view on the construction of Brownian motion is provided by a limit of random

walks, describing thus Brownian motion as a kind of infinitesimal random walk.

Given a sequence (Yn)n≥1 of independent identically distributed real random variables on

a probability space (Ω,A,P), with mean zero and variance one, the classical Central Limit

Theorem (cf. [3]) expresses that the sequence

1√
n

n∑
k=1

Yk, n ≥ 1,

converges in distribution to a random variable with law N (0, 1).

Consider now the sequence of continuous functions on [0, 1],

1√
n

bntc∑
k=1

(
Yk + (nt− bntc)Ybntc+1

)
, t ∈ [0, 1], n ≥ 1,

where b·c is the integer part function, and with the convention
∑0

k=1 = 0, interpolating

linearly between the values 1√
n

∑k
`=1 Y` at points k

n
, k = 0, 1, . . . , n. It is a main achievement,

known as Donsker’s invariance principle, that this sequence converges almost surely, in the

uniform topology, to a Brownian motion on [0, 1].

While providing at the same time another approach to the Brownian paths, this result

also consecrates the latter as the universal limiting Gaussian process as limit of random

walks.

4 Wiener measure

The process B = (Bt)t∈[0,1] with covariance (1) constructed in the preceding sections, in

particular explicitly as a uniformly convergent series, may therefore also be considered as

a Gaussian random vector with values in the space E = C([0, 1]) of continuous functions

on [0, 1] equipped with the uniform norm. The law of this Gaussian vector B defines a

probability distribution µ on the Borel sets of C([0, 1]), called the Wiener measure. Under

the Wiener measure on C([0, 1]), the coordinate maps x ∈ C([0, 1]) 7→ x(t), t ∈ [0, 1], such

that x(0) = 0, follow the Brownian motion distribution, also called Wiener process, with the

traditional notation W : [0, 1] 7→ W (t) = Wt (used in this section).

In the language of [2], the Wiener measure thus induces an abstract Wiener space struc-

ture (E,H, µ) where the reproducing kernel Hilbert space H is identified with the Cameron-

Martin Hilbert space of absolutely continuous function h with (almost everywhere) derivative
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h′ in L2([0, 1]) (with respect to the Lebesgue measure). The Wiener measure may be con-

structed in the more general framework of abstract Wiener spaces, but the combined defini-

tion of classical Brownian motion and Wiener measure on the space of continuous functions

is a privileged example.

In particular, it might be useful to recall (from e.g. [2]) the Cameron-Martin translation

formula in this context, expressing that for h ∈ H, the shifted measure µ(·+ h) has density

exp

(
− 1

2

∫ 1

0

h′(t)2 dt−
∫ 1

0

h′(t)dW (t)

)
(4)

with respect to µ.

In this formula, the Wiener integral
∫
[0,1]

f(t) dW (t) =
∫
[0,1]

ft dBt of a function f = ft =

f(t), t ∈ [0, 1], in L2([0, 1]) is a simplified (prior) version of the Itô integral. Whenever

f =
∑n

i=1 ci1[ti−1,ti), c1, . . . , cn ∈ R, 0 ≤ t0 < t1 < · · · < tn ≤ 1, is a step function,∫
[0,1]

ft dWt =
n∑

i=1

ci(Wti −Wti−1
).

By independence and normal distributions of the increments Wti −Wti−1
, i = 1, . . . , n,

E
(∣∣∣∣ ∫

[0,1]

ft dWt

∣∣∣∣2) =
n∑

i=1

c2i (ti − ti−1) =

∫
[0,1]

f 2
t dλ1(t).

On the basis of this identity, a density argument in the Hilbert space L2([0, 1]) allows for

the definition of
∫
[0,1]

ft dWt, for any measurable function f = ft, t ∈ [0, 1], such that∫
[0,1]

f 2
t dλ1(t) <∞, as a random variable with law N (0, σ2), σ2 =

∫
[0,1]

f 2
t dλ1(t).

5 Scaling, time reversal, and reflection principle

Some remarkable properties of the Brownian process B = (Bt)t≥0 may be recorded.

For any α > 0, the process

αB t
α2
, t ≥ 0,

is again a Brownian motion (check the covariances). Brownian motion is said to be stable

of index 2.

Next, the process

t B 1
t
, t > 0

(vanishing at t = 0) is also a Brownian motion. Brownian motion is said to be invariant by

time reversal.
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Finally, the famous reflection principle expresses that for any t ≥ 0 and a ≥ 0,

P
(

sup
0≤s≤t

Bs ≥ a
)

= 2P(Bt ≥ a) = P
(
|Bt| ≥ a

)
. (5)

6 Martingale and strong Markov properties

Given a Brownian motion B = (Bt)t≥0 on a probability space (Ω,A,P), consider, for every

t ≥ 0, Ft the σ-field generated by Bs, s ≤ t. Clearly F0 is the trivial field, and (Ft)t≥0 forms

an increasing sequence of σ-fields, called a filtration.

The adapted family (Bt,Ft)t≥0 is a martingale, that is, for every s ≤ t,

E
(
Bt | Fs

)
= Bs. (6)

This is rather immediate since Bt − Bs is independent from Fs by the independence of

the increments of Brownian motion (and the fact that Fs is also generated by Bu − Bv,

v < u ≤ s).

As a second result, the adapted family (B2
t − t,Ft)t≥0 is also a martingale, which may

be expressed, for every s ≤ t, by

E
(
B2

t −B2
s | Fs

)
= t− s (7)

For the proof, since E(BsBt | Fs) = Bs E(Bt | Fs) = B2
s by (6),

E
(
B2

t −B2
s | Fs

)
= E

(
(Bt −Bs)

2 | Fs

)
= E

(
(Bt −Bs)

2
)

= t− s

using again that Bt −Bs is independent from Fs.

It is a famous result by P. Lévy that Brownian motion is the only continuous martingale

(Xt,Ft)t≥0 such that (X2
t − t,Ft)t≥0 is also a martingale.

Brownian motion enjoys the strong Markov property: for any stopping time T of the

filtration (Ft)t≥0, conditionally on {T < ∞}, the process (BT+t −BT )t≥0 is a Brownian

motion independent of the process (Bt)t∈[0,T ].
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