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Gaussian comparison inequalities

The law of a centered Gaussian random vector X = (X1, . . . , Xn), on some probability

space (Ω,A,P), with values in Rn, is uniquely determined by its covariance matrix ΣX with

entries

ΣX
k` = E(XkX`), k, ` = 1, . . . , n.

Given then two such Gaussian vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) such

that the respective covariance matrices ΣX and ΣY may be compared in some way, it is

expected that some statistics of the samples (X1, . . . , Xn) and (Y1, . . . , Yn) may also be also

be compared.

A famous result in this regard is the Slepian inequality [24] (see also [23, 25, 12, 16])

which expresses that, provided

ΣX
k` = E(XkX`) ≤ E(YkY`) = ΣY

k` for all k, ` = 1, . . . , n,

with equality on the diagonal k = `, then, for every u1, . . . , un ∈ R,

P
( n⋃
k=1

{Yk > uk}
)
≤ P

( n⋃
k=1

{Xk > uk}
)
. (1)

In particular, by integration by parts,

E
(

max
1≤≤n

Yk
)
≤ E

(
max
1≤k≤n

Xk

)
.

This result is part of the comparison properties between Gaussian vectors. The post

illustrates some of them, including the Anderson inequality, the Sudakov-Chevet-Fernique
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inequality, and the Gordon min-max inequality. General references on the topic include

[11, 8, 13, 28, 5, 20, 21, 14, 9, 22] etc.
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1 Anderson’s inequality

Anderson’s inequality [7] is a useful comparison property which holds true under the stronger

hypothesis that the matrix ΣY − ΣX is positive-definite.

Theorem 1 (Anderson’s inequality). Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two

centered Gaussian random vectors in Rn such that

E
(
〈c,X〉2

)
≤ E

(
〈c, Y 〉2

)
for any c ∈ Rn. Then, for any convex symmetric set C in Rn,

P(Y ∈ C) ≤ P(X ∈ C). (2)

Proof. Let Z be centered Gaussian with covariance ΣY − ΣX , which is positive-definite by

the hypothesis, and independent from X. By construction, Y has the same law as X + Z.

By Fubini’s theorem

P(Y ∈ C) = P(X + Z ∈ C) =

∫
Rn

P(X + z ∈ C)dPZ(z)

with PZ the law of Z. The log-concavity property of Gaussian measures (cf. [1]) implies

that, for every z ∈ Rn,

logP(X ∈ C) = logP
(
X ∈ 1

2
(C + z) + 1

2
(C − z)

)
≥ 1

2
logP(X ∈ C + z) +

1

2
logP(X ∈ C − z).

Therefore, by symmetry of C (and of X), P(X ∈ C) ≥ P(X + z ∈ C), and the conclusion

follows.

2



It should be noticed that, without the symmetry assumption on C, it still holds true that

P(X /∈ C) ≤ 2P(Y /∈ C).

Indeed, by convexity of C,

P(X /∈ C) = P
(
1
2

(X + Z) + 1
2

(X − Z) /∈ C
)

≤ P
(
{X + Z /∈ C} ∪ {X − Z /∈ C}

)
≤ P(X + Z /∈ C) + P(X − Z /∈ C),

and the claim follows since Y has the same law as X + Z as well as X − Z.

2 The Sudakov-Chevet-Fernique inequality

Slepian’s inequality from the introduction is a most useful tool in applications, but however

requires equality on the diagonal of the covariance matrices, which might be inconvenient.

Another version of the Slepian inequality compares rather the respective L2-moments of

the increments. This formulation, going back to V. Sudakov, S. Chevet and X. Fernique

[26, 8, 13, 6], is in particular most efficient in the study of lower-bounds on suprema of

Gaussian processes (cf. [2]).

Theorem 2 (The Sudakov-Chevet-Fernique inequality). Let X = (X1, . . . , Xn) and Y =

(Y1, . . . , Yn) be two centered Gaussian random vectors in Rn such that

E
(
[Yk − Y`]2

)
≤ E

(
[Xk −X`]

2
)

for all k, ` = 1, . . . , n.

Then

E
(

max
1≤k≤n

Yk
)
≤ E

(
max
1≤k≤n

Xk

)
.

This theorem has been extended in various directions. It is shown for example in [13]

that, under the same hypotheses, for any positive convex increasing function f on R+,

E
(
f
(

max
1≤k,`≤n

[Yk − Y`]
))
≤ E

(
f
(

max
1≤k,`≤n

[Xk −X`]
))
.

The proof of Theorem 2, as well as of the Slepian inequality (1), relies on a basic in-

terpolation scheme, in the spirit of the Ornstein-Uhlenbeck semigroup [3]. At a technical

level, it requires a suitable smoothing of the maximum function, which has been addressed

in various ways in the literature. While the early proofs involved the use of derivative in

the distributional sense, alternate arguments have been produced later. The proof displayed

below uses ideas from statistical mechanics emphasized in [10]. The centering hypothesis is

lifted by the condition E(X) = E(Y ) in [29].
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Proof. It may be assumed that X and Y are independent. For any t ∈ [0, 1], set

Zt =
√
tX +

√
1− t Y

(which thus linearly interpolates between X and Y ). For any β > 0, let

Fβ(x) =
1

β
log

( n∑
k=1

eβxk
)
, x = (x1, . . . , xn) ∈ Rn.

The goal will be to show that the function

φ(t) = E
(
Fβ(Zt)

)
, t ∈ [0, 1],

is increasing. The function φ is differentiable on (0, 1) with

φ′(t) =
1

2

n∑
k=1

E
((

Xk√
t
− Yk√

1− t

)
∂kFβ(Zt)

)
.

Now, by the integration by parts formula for Gaussian vectors (cf. [4]), for every k = 1, . . . , n,

E
(
Xk ∂kFβ(Zt)

)
=
√
t

n∑
`=1

ΣX
k` E
(
∂k`Fβ(Zt)

)
and similarly for E(Yk ∂kFβ(Zt)). Combining the two,

φ′(t) =
1

2

n∑
k,`=1

(ΣX
k` − ΣY

k`)E
(
∂k`Fβ(Zt)

)
. (3)

Next, at every x ∈ Rn,

∂kFβ(x) = pk(x) =
eβxk∑n
`=1 e

βx`
, k = 1, . . . , n,

and

∂k`Fβ(x) =

{
β(pk(x)− pk(x)2) if k = `,

−β pk(x)p`(x) if k 6= `.

Hence

n∑
k,`=1

(ΣX
k` − ΣY

k`) ∂k`Fβ(x) = β

n∑
k=1

(ΣX
kk − ΣY

kk) pk(x)− β
n∑

k,`=1

(ΣX
k` − ΣY

k`) pk(x)p`(x)

which can be rewritten, using that
∑n

k=1 pk(x) = 1, as

n∑
k,`=1

(ΣX
k` − ΣY

k`) ∂k`Fβ(x) =
β

2

n∑
k,`=1

(
E
(
[Xk −X`]

2
)
− E

(
[Yk − Y`]2

))
pk(x)p`(x).
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Therefore, by the hypothesis and (3), φ′(t) ≥ 0 from which

E
(
Fβ(Y )

)
= φ(0) ≤ φ(1) = E

(
Fβ(X)

)
.

It remains to observe that limβ→∞ Fβ(x) = max1≤k≤n xk, x = (x1, . . . , xn) ∈ Rn.

3 The Gordon min-max inequalities

The Gordon min-max inequality [15] is an extension of Slepian’s inequality to arrays of

(jointly) Gaussian random variables. Further developments appear in [18, 17].

Theorem 3 (The Gordon min-max inequality I). Let X = (Xij)1≤i≤n,1≤j≤m and Y =

(Yij)1≤i≤n,1≤j≤m be two centered Gaussian random vectors in Rnm such that
E(XijXik) ≤ E(YijYik) for all i, j, k,

E(XijX`k) ≥ E(YijY`k) for all i 6= ` and all j, k

E(X2
ij) = E(Y 2

ij) for all i, j.

Then, for every family (uij)1≤i≤n,1≤j≤m of real numbers,

P
( n⋂
i=1

m⋃
j=1

{Yij > uij}
)
≤ P

( n⋂
i=1

m⋃
j=1

{Xij > uij}
)
.

In particular,

E
(

min
1≤i≤n

max
1≤j≤m

Yij
)
≤ E

(
min
1≤i≤n

max
1≤j≤m

Xij

)
.

There is a similar version in terms of L2-distances.

Theorem 4 (The Gordon min-max inequality II). Let X = (Xij)1≤i≤n,1≤j≤m and Y =

(Yij)1≤i≤n,1≤j≤m be two centered Gaussian random vectors in Rnm such that{
E
(
|Yij − Yik|2

)
≤ E

(
|Xij −Xik|2

)
for all i, j, k,

E
(
|Yij − Y`k|2

)
≥ E

(
|Xij −X`k|2

)
for all i 6= ` and all j, k.

Then

E
(

min
1≤i≤n

max
1≤j≤m

Yij
)
≤ E

(
min
1≤i≤n

max
1≤j≤m

Xij

)
.
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