
The Gaussian Blog

Some geometric inequalities

for Gaussian measures

Gaussian measures share some surprising geometric inequalities. The isoperimetric in-

equality, already discussed in [1], is one of them, and some others are presented here. Among

them, the Gaussian correlation inequality has aroused great interest over the last 60 years.

Let, as usual, γn be the standard Gaussian measure on the Borel sets of Rn, with density
1

(2π)
n
2
e−

1
2
|x|2 , x ∈ Rn, with respect to the Lebesgue measure. The Gaussian correlation

inequality states that for any symmetric convex sets A,B in Rn,

γn(A ∩B) ≥ γn(A) γn(B). (1)

The same result holds true for any centered Gaussian measure on a Banach space E, and

symmetric convex sets in E.

A detailed history of the problem can be found in [5]. In dimension 2, the result goes

back to L. Pitt [18]. When one of the sets A or B is a symmetric strip, the inequality was

proved independently by C. Khatri [12] and Z. Šidák [20]. It was extended to the case when

one of the sets is a symmetric ellipsoid by G. Hargé [11]. The final step was achieved in a

striking short contribution by T. Royen in 2014 [19].

The note emphasizes a number of related inequalities on the Gaussian measure of geo-

metric flavour. Its pattern is modeled on the 2002 review article [15] by R. Lata la, with the

remarkable feature that all the conjectures exposed therein have now been solved.
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1 The Gaussian isoperimetric inequality

The Gaussian isoperimetric inequality is extensively discussed in the corresponding chapter

of this blog [1], with a number of various proofs.

Recall the distribution function

Φ(t) =
1√
2π

∫ ∞
−t

e−
1
2
x2dx, t ∈ R,

of the standard normal law on the real line (with the convention Φ(−∞) = 0, Φ(+∞) = 1).

The Gaussian isoperimetric profile is defined by

I(s) = ϕ1 ◦ Φ−1(s), s ∈ [0, 1]. (2)

The function I is symmetric along the vertical line s = 1
2
, and such that I(0) = I(1) = 0.

Given r > 0, Ar = {x ∈ Rn; infa∈A |x− a| ≤ r} is the (closed) r-neighborhood of a set A

in Rn. The (Gaussian) outer Minkowski content of Borel set A is defined as

γ+(A) = lim inf
r→0

1

r

[
γ(Ar)− γ(A)

]
.

Theorem 1 (The Gaussian isoperimetric inequality). For any Borel set A in Rn,

γ+(A) ≥ I
(
γ(A)

)
. (3)

Equality is achieved on the half-spaces H = {x ∈ Rn; 〈x, u〉 ≤ h} where u is a unit vector

and h ∈ R.
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The measure of a half-space is computed in dimension one as γ(H) = Φ(h), and its

boundary measure is

γ+(H) = lim inf
r→0

1

r

[
Φ(h+ r)− Φ(h)

]
= ϕ1(h).

The Gaussian isoperimetric inequality thus expresses equivalently that, if H is a half-space

such that Φ(h) = γ(H) = γ(A), then

γ+(A) ≥ γ+(H), (4)

and half-spaces are the extremal sets of the Gaussian isoperimetric problem.

Integrating along the neighborhoods, (4) is equivalently formulated as

γ(Ar) ≥ γ(Hr), r > 0, (5)

provided that γ(A) = (≥) γ(H), or

Φ−1
(
γ(Ar)

)
≥ Φ−1

(
γ(A)

)
+ r, r > 0 (6)

(since γ(Hr) = Φ(h+ r)).

Linear (affine) transformations yield the isoperimetric statement for any Gaussian mea-

sure. The dimension-free character allows furthermore for an infinite-dimensional formula-

tion on an abstract Wiener space (E,H, µ) as, for example,

Φ−1
(
µ(A+ rK)

)
≥ Φ−1

(
µ(A)

)
+ r, r ≥ 0,

where K is the unit ball of the reproducing kernel Hilbert space H (cf. [2]), and

A+ rK = {a+ rh ; a ∈ A, h ∈ K}.

(Due to the linear structure, on the Euclidean space Rn, Ar = A+ rB(0, 1) where B(0, 1) is

the (closed) Euclidean unit ball.)

2 The Ehrhard inequality

The classical Brunn-Minkowski inequality in Euclidean space states that for any Borel sets

A and B in Rn,

voln
(
θA+ (1− θ)B

)
≥ θ voln(A) + (1− θ) voln(B), θ ∈ [0, 1]. (7)

(If A and B are subsets of Rn, A + B = {a + b ; a ∈ A, b ∈ B}.) This remarkable and

powerful geometric inequality, with numerous consequences and applications, may be used
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in particular to recover the standard isoperimetric inequality in Rn. The task is to show

that, for fixed volume, balls are the extremal sets of the isoperimetric problem. That is, in

the integrated form, whenever voln(A) = (≥) voln(B) where B is some ball,

voln
(
A+B(0, r)

)
≥ voln

(
B +B(0, r)

)
for every r > 0. If B = B(0, r0) for some r0, the choice in (7) of B = B(0, θr

1−θ ) such that

θ = r0
r0+r
∈ (0, 1), yields on the left-hand side θn voln(A + B(0, r)) while, by the choice of θ,

the right-hand side is equal to

θ voln
(
B(0, r0)

)
+ (1− θ) voln

(
B
(

0,
θr

1− θ

))
= θ rn0 voln

(
B(0, 1)

)
+ (1− θ) θnrn

(1− θ)n
voln

(
B(0, 1)

)
= θn(r0 + r)n voln

(
B(0, 1)

)
= θn voln

(
B(0, r0 + r)

)
= θn voln

(
B(0, r0) +B(0, r)

)
,

which is therefore the result.

Gaussian measures satisfy a similar property, in the form of the log-concavity inequality

log γn
(
θA+ (1− θ)B

)
≥ θ log γn(A) + (1− θ) log γn(B), θ ∈ [0, 1]. (8)

This inequality extends to any Gaussian measure µ on a separable Banach space E, and any

Borel sets A and B in E (cf. [5]). However, the log-concavity of the measure does not imply

the Gaussian isoperimetry.

In 1983, A. Ehrhard [10] emphasized an improved form of log-concavity of Gaussian

measures through the inverse Φ−1 of the distribution function Φ the standard normal distri-

bution.

Theorem 2 (The Ehrhard inequality). For any Borel sets A,B in Rn, and any θ ∈ [0, 1],

Φ−1
(
γn(θA+ (1− θ)B)

)
≥ θΦ−1

(
γn(A)

)
+ (1− θ) Φ−1

(
γn(B)

)
.

Theorem 2 extends to any Gaussian measure on a separable Banach space.

It is not difficult to see how Ehrhard’s inequality includes isoperimetry. Indeed, applying

it to 1
θ
A and to B = r

1−θB(0, 1), r > 0, θ ∈ (0, 1), where B(0, 1) is the (closed) Euclidean

unit ball, yields

Φ−1
(
γn(A+ (1− θ)−1rB(0, 1))

)
≥ θΦ−1

(
γn(θ−1A)

)
+ (1− θ) Φ−1

(
γn
(
(1− θ)−1rB(0, 1)

))
.

4



As θ → 1,

Φ−1
(
γn(A+ rB(0, 1))

)
≥ Φ−1

(
γn(A)

)
+ r,

which is one form of Gaussian isoperimetry (6).

Theorem 2 was established for convex sets by A. Ehrhard [10] using Gaussian symmetriza-

tion techniques. It was extended to the case of only one of the sets A, B to be convex (good

enough to recover isoperimetry) in [13]. C. Borell [8] finally proved the full result using pde

tools on the functional version, in the form of the following Prékopa-Leindler-type inequality.

If f, g, h : Rn → [0, 1] are measurable, and θ ∈ [0, 1], are such that

Φ−1
(
h(θx+ (1− θ)y)

)
≥ θΦ−1

(
f(x)

)
+ (1− θ) Φ−1

(
g(y)

)
,

for all x, y ∈ Rn, then

Φ−1
(∫

Rn

hdγn

)
≥ θΦ−1

(∫
Rn

fdγn

)
+ (1− θ)Φ−1

(∫
Rn

gdγn

)
.

Applied to f = 1A and g = 1B yields the statement in Theorem 2 (and this functional form

is actually equivalent to it when considering the level sets of functions defined on Rn+1).

The proof in [8] is based on a parabolic maximum principle applied to the second order

differential operator on Rn × Rn,

E = ∆x + ∆y + 2
n∑
i=1

∂xi∂yi

and the functional

C(t, x, y) = Uh
(
t, θx+ (1− θ)y

)
− θ Uf (t, x)− (1− θ)Ug(t, y),

t ≥ 0, x, y ∈ Rn, where, for q = h, f, g, Uq = Φ−1(uq) and

uq(t, x) =

∫
Rn

q
(
x+
√
t z
)
dγn(z).

Alternate proofs have been presented in [21] or [17].

3 The S-inequality

The S inequality is a type of isoperimetric inequality with respect to homotheties, with strips

as extremal sets.
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Theorem 3 (The S-inequality). Let A be a symmetric closed convex set in Rn, and let

S = {x ∈ Rn; |x1| ≤ s}, s ≥ 0, be a strip such that γn(A) = γn(S). Then

γn(tA) ≥ γn(tS) for t ≥ 1,

and

γn(tA) ≤ γn(tS) for 0 ≤ t ≤ 1.

This theorem has been established by R. Lata la and K. Oleszkiewicz [14], relying on

technical arguments and some clever real-line inequalities. It was observed from the S-

inequality by S. Szarek (cf. [14], that the moment comparison of Gaussian random vectors

(cf. [2]) are the same as in the real case. That is, if X is a centered Gaussian random vector

on a separable Banach space E with norm ‖ · ‖, then(
E(‖X‖q)

)1/q(
E(|g|q)

)1/q ≤
(
E(‖X‖p)

)1/p(
E(|g|p)

)1/p
for any 0 ≤ p ≤ q, where g has distribution N (0, 1) on R.

4 The B-inequality

The B-inequality for Gaussian measure is another statement about convex sets.

Theorem 4 (The B-inequality). Let A be a symmetric closed convex set in Rn. For every

α, β > 0,

γn
(√

αβA
)
≥
√
γn(αA) γn(βA). (9)

In an equivalent formulation, the map t 7→ γn(etA) is log-concave on R.

TheB-inequality has been established by D. Cordero-Erausquin, M. Fradelizi and B. Mau-

rey in [9]. A interesting feature of the proof is that it is connected to (but lies much deeper

than) the Gaussian Poincaré inequality for functions f which are orthogonal to constants

and linear functions, for which the constant is improved as

Varγn(f) ≤ 1

2

∫
Rn

|∇f |2dγn.

This is in particular clear on the Hermite expansion proof of the Gaussian Poincaré inequality

[3].
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