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Hermite polynomials

Let γn be the standard Gaussian measure

dγn(x) =
1

(2π)
n
2

e−
1
2
|x|2dλn(x)

on the Borel sets of Rn. There is a natural orthonormal basis of the Hilbert space L2(γn)

of the square-integrable functions with respect to γn given by the so-called Hermite, or

Hermite-Weber, polynomials. In dimension n = 1, they may be introduced in various ways,

for example via the Rodrigues formula

h̃k(x) = (−1)k e
1
2
x2 d

k

dxk
(
e−

1
2
x2
)
, x ∈ R, k ∈ N. (1)

The Hermite polynomials share a number of basic properties related to the Gaussian

measure. The post briefly exposes some basic facts and results, which are available in the

standard textbooks on the subject.

Table of contents

1. Generating function

2. Recurrence formula

3. Multi-dimensional Hermite polynomials

Drafted by M. L. v1 January 2024

1



4. Eigenvectors of the Ornstein-Uhlenbeck operator

5. Brownian martingales

6. A proof of the Gaussian Poincaré inequality
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1 Generating function

For every λ ∈ R, the expansion in x ∈ R,

eλx−
1
2
λ2 =

∞∑
k=0

λk√
k!
hk(x) (2)

defines polynomials hk, k ∈ R, called the Hermite polynomials. The function eλx−
1
2
λ2 is called

the generating function of the Hermite polynomials. For every k ∈ N, hk is a polynomial of

degree k. For example

h0(x) = 1, h1(x) = x, h2(x) =
1√
2

(x2 − 1).

There is the explicit expression, k ∈ N, x ∈ R,

hk(x) =

bk/2c∑
`=0

(−1)`
√
k!

2``!(k − 2`)!
xk−2`

although not always very tractable. A more useful formula is

hk(x) =
1√
k!

E
(
(x+ iG)k

)
where G is a standard normal random variable (consequence of the fact that E(eλ(x+iG)) =

eλx−
1
2
λ2).

The normalization by
√
k! in the series expansion (2) ensures that the polynomials hk

are normalized in L2(γ1), that is∫
R
h2k dγ1 = 1 for every k ∈ N,

but other normalizations are possible, and used in the literature, as in the Rodrigues formula

from (1) (for which h̃k =
√
k!hk, k ∈ N).
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The Hermite polynomials are moreover orthogonal in L2(γ1),∫
R
hkh` dγ1 = δk`, k, ` ∈ N,

as a consequence of

∞∑
j=0

λ2j

j!
= eλ

2

=

∫
R

(
eλx−

1
2
λ2
)2
dγ1 =

∞∑
k,`=0

λk+`√
k!
√
`!

∫
R
hkh` dγ1.

The complete system hk, k ∈ N, therefore defines an orthonormal basis of L2(γ1).

2 Recurrence formula

In the present normalization, it may be checked, by differentiation in x of the series expansion

(2), that

h′k =
√
k hk−1, k ≥ 1. (3)

Taking the derivative in λ of the generating function

(x− λ) eλx−
1
2
λ2 =

∞∑
k=1

kλk−1√
k!

hk(x) =
∞∑
k=0

√
k + 1

λk√
k!
hk+1(x)

yields the three term recurrence formula

xhk =
√
k + 1hk+1 +

√
k hk−1, k ≥ 1. (4)

These two relationships actually connects (1) and (2) since, from (1) with the normaliza-

tion by
√
k!,

√
k hk−1 = h′k =

1√
k!
h̃′k =

1√
k!

(
xh̃k + (−1)k e

1
2
x2 d

k+1

dxk+1

(
e−

1
2
x2
))

= xhk −
1√
k!
h̃k+1

= xhk −
√
k + 1hk+1.

3 Multi-dimensional Hermite polynomials

Multi-dimensional Hermite polynomials on Rn are defined as products of one-dimensional

polynomials with multi-index. Namely, for k = (k1, . . . , kn) ∈ Nn and x = (x1, . . . , xn) ∈ Rn,

Hk(x) = hk1(x1) · · ·hkn(xn).
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Equivalently, an expansion of the multi-dimensional generating function, for x ∈ Rn, λ =

(λ1, . . . , λn) ∈ Rn, yields

eλ·x−
1
2
|λ|2 =

∑
k∈Nn

λk11 · · ·λknn√
k1! · · ·

√
kn!

Hk(x).

In the same way as in the real case, the family Hk, k ∈ Nn, defines an orthonormal basis

of the Hilbert space L2(γn). The so-called chaos decomposition (Fourier-Hermite expansion)

of a function in L2(γn) takes the form

f =
∑
k∈Nn

fkHk =
∞∑
k=0

(∑
|k|=k

fkHk

)
where the fk’s are real numbers, and |k| = k1+· · ·+kn. The sums under parentheses actually

represents the so-called homogeneous Wiener chaos of order k, which may be considered more

generally.

Such Hilbert space decomposition may indeed be achieved similarly in infinite-dimension

in the context of abstract Wiener spaces. Namely, in the notation of [1], let (E,H, µ) be an

abstract Wiener space, and let (ξk)k∈N ⊂ E∗ be any fixed orthonormal basis of E∗2 , the closure

of E∗ in L2(µ) (take any weak-star dense sequence of the unit ball of E∗ and orthonormalize

it with respect to µ using the Gram-Schmidt procedure). If α = (α0, α1, . . .) ∈ N(N), i.e.

|α| = α0 + α1 + · · · <∞, set

Hα =
√
α!
∏
i

hαi
◦ ξi

(where α! = α0!α1! · · · ). Then the family (Hα) constitutes an orthonormal basis of L2(µ).

In addtion, for each integer k ≥ 1, set

W(k)(µ) =
{
F ∈ L2(µ); 〈F,Hα〉 =

∫
E
FHαdµ = 0 for all α such that |α| 6= k

}
.

Then, any function F in L2(µ) (i.e.
∫
E
‖F‖2dµ < ∞) may be developed as F =

∑∞
k=0 Ψk

where

Ψk =
∑
|α|=k

〈Ψ, Hα〉Hα

is an element of W(k)(µ), k ≥ 1 (Ψ0 =
∫
E
Fdµ).

4 Eigenvectors of the Ornstein-Uhlenbeck operator

Recall ([2]) the Ornstein-Uhlenbeck operator L acting on smooth functions f : Rn → R as

Lf = ∆f − x · ∇f.
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The Ornstein-Uhlenbeck operator L is the infinitesimal generator of the Ornstein-Uhlenbeck

operator semigroup (Pt)t≥0 which admits the Mehler representation

Ptf(x) =

∫
Rn

f
(
e−tx+

√
1− e−2t y

)
dγn(y), t ≥ 0, x ∈ Rn.

The spectrum of the operator L is N, with eigenfunctions given by the Hermite polyno-

mials

LHk = −k Hk (5)

with k = k1 + · · · + kn. This may be checked in various ways, for example by the action of

the operators Pt, t ≥ 0, on the generating function

Pt
(
eλ·x−

1
2
|λ|2) = eλe

−t·x− 1
2
|λ|2e−2t

.

Hence PtHk = e−ktHk, from which (5) follows.

As a consequence of (5), for any (smooth) function f : Rn → R, and any k ∈ Nn,

k

∫
Rn

f Hk dγn = −
∫
Rn

f LHk dγn =

∫
Rn

∇f · ∇Hk dγn,

which is a generalized form of the basic integration by parts formula∫
Rn

xf dγn =

∫
Rn

∇f dγn

(as vector integrals).

5 Brownian martingales

The definition of the Hermite polynomials via the generating series (2) may be extended to

include a time parameter t ≥ 0 in the form

eλx−
1
2
λ2t =

∞∑
k=0

λk√
k!
hk(x, t), λ ∈ R, x ∈ R. (6)

A remarkable property expresses that, for every k ≥ 1, (hk(Bt, t))t≥0 is a martingale, with

respect to the filtration (Ft)t≥0 of a Brownian motion (Bt)t≥0 (defined on some probability

space (Ω,A,P)). When k = 1, this is the martingale property of Brownian motion itself, for

k = 2, it expresses that (B2
t − t)t≥0 is a martingale.

For a quick proof, it may be noticed that, for every λ ∈ R,

eλBt− 1
2
λ2t, t ≥ 0,
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is a martingale since, for s < t,

E
(
eλBt | Fs

)
= eλBs E

(
eλ(Bt−Bs) | Fs

)
= eλBs+

1
2
λ2(t−s)

as Bt −Bs is independent from Fs with law N (0, t− s). But then, for every λ ∈ R,

∞∑
k=0

λk√
k!

E
(
hk(Bt, t) | Fs

)
=

∞∑
k=0

λk√
k!
hk(Bs, s)

from which the claim follows.

6 A proof of the Gaussian Poincaré inequality

Fourier-Hermite expansions provide a simple argument towards Poincaré inequalities, in the

spirit of the Wirtinger inequality for the uniform measure on the sphere. This section briefly

exposes the argument in the Gaussian case. The Gaussian Poincaré inequality is developed

in the post [3].

Theorem 1 (The Gaussian Poincaré inequality). For any locally Lipschitz function f : Rn → R
in L2(γn),

Varγn(f) ≤
∫
Rn

|∇f |2dγn. (7)

Theorem 1 may be given a simple proof by a series expansion in Hermite polynomials.

Namely, in dimension one to start with,

f −
∫
R
f dγ1 =

∞∑
k≥1

fkhk

where fk are real coefficient. Starting if necessary from a finite sum, by (3)

f ′ =
∞∑
k≥1

fk
√
k hk−1.

Since the Hermite polynomials form an orthonormal basis of L2(γ1),∫
R

∣∣f − ∫R fdγ1∣∣2dγ1 =
∑

k≥1 f
2
k

while ∫
R
f ′

2
dγ1 = =

∑
k≥1

k f 2
k
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from which the inequality immediately follows. A density argument may then be used to

complete the picture.

The same proof applies in Rn. It may actually also be observed, by the product property

of the Gaussian measure γn = γ1⊗ · · · ⊗ γ1, that the Poincaré inequality easily tensorizes so

that it is enough to establish it in dimension one (cf. [3]).
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