Admissible shift, reproducing kernel Hilbert space, and abstract Wiener space

The standard Gaussian measure γ_n , with density $\frac{1}{(2\pi)^{\frac{n}{2}}}e^{-\frac{1}{2}|x|^2}$, $x \in \mathbb{R}^n$ with respect to the Lebesgue measure on \mathbb{R}^n , is not translation invariant. Shifted measures are described by

$$\gamma_n(B+h) = e^{-\frac{1}{2}|h|^2} \int_{\mathcal{P}} e^{-\langle h, x \rangle} d\gamma_n \tag{1}$$

where $B + h = \{x + h; x \in B\}$, B Borel set in \mathbb{R}^n and $h \in \mathbb{R}^n$. In other words, the shifted measure $\gamma_n(\cdot + h)$ by an element $h \in \mathbb{R}^n$ is absolutely continuous with respect to γ_n , with density $e^{-\frac{1}{2}|h|^2 - \langle h, \cdot \rangle}$.

Let now μ be the Wiener measure on the Borel sets of the Banach space C([0,1]) of real continuous functions on [0,1], law of a standard Brownian motion or Wiener process $W = (W(t))_{t \in [0,1]}$. It is not entirely clear to give a meaning to the preceding translation formula in this infinite-dimensional context, and in particular to make sense of $|h|^2$ and $\langle h, \cdot \rangle$. An early result of H. Cameron and W. Martin [7] answers this question in the following form. If (and only if) $h: [0,1] \to \mathbb{R}$ is absolutely continuous on [0,1], with almost everywhere derivative h' in $L^2([0,1])$ (for the Lebesgue measure), the shifted measure $\mu(\cdot + h)$ is absolutely continuous with respect to μ , with density

$$\exp\bigg(-\frac{1}{2}\int_{0}^{1}h'(t)^{2}\,dt - \int_{0}^{1}h'(t)dW(t)\bigg),$$

where $\int_0^1 h'(t)dW(t)$ is understood as a Wiener (-Itô) integral.

Drafted by M. L. v1 November 2023

This translation formula actually entails some basic features associated to the Wiener measure, namely the so-called Cameron-Martin Hilbert space of absolutely continuous functions on [0,1] with almost everywhere derivative h' in $L^2([0,1])$, and the Wiener integral $\int_0^1 h'(t)dW(t)$. These objects are in fact only generated by the covariance function of W, $\mathbb{E}(W(s)W(t)) = s \wedge t$, $s,t \in [0,1]$, and give rise to the specific structure consisting of the space C([0,1]), with its topology, the Cameron-Martin, or reproducing kernel, Hilbert space, and the Wiener measure.

This structure, called abstract Wiener space, may be built for any Gaussian measure (on a Banach space for example), and the text below develops the construction in a rather general setting. While the exposition might appear somewhat abstract, it only relies on some standard functional analysis and is not any longer or difficult than it would be for a specific model like the Wiener space. It covers besides, in a most instructive way, several examples of interest, even finite-dimensional. In addition, it naturally puts forward series representations in orthonormal bases of the reproducing kernel Hilbert space (like the trigonometric or Haar expansions of Brownian motion), a most useful property to transfer, in applications, dimension-free statements from finite to infinite-dimensional Gaussian measures and vectors.

The note is mainly extracted from [12]. Some main expositions on Gaussian measures, vectors, processes, in infinite-dimensional spaces are [16, 4, 11, 13, 14, 8, 10, 5, 18, 19, 15]...

Table of contents

- 1. Gaussian measure and random vector
- 2. Wiener space factorization
- 3. Reproducing kernel Hilbert space
- 4. Gaussian process
- 5. Abstract Wiener space
- 6. Series representation
- 7. Cameron-Martin translation formula

References

1 Gaussian measure and random vector

It is classical that the Lebesgue measure λ_n does not extend to an infinite-dimensional setting. However, Gaussian measures, due in particular to their dimension-free features, may easily be considered in infinite-dimensional spaces. A prototype, and central, example is the Wiener measure, with associated Brownian or Wiener process, on the Banach space C([0,1]) of continuous functions on the interval [0,1].

A Gaussian measure μ on a real separable Banach space E equipped with its Borel σ -algebra \mathcal{B} , and with norm $\|\cdot\|$, is a Borel probability measure on (E,\mathcal{B}) such that the law of each continuous linear functional on E is Gaussian. Equivalently, a random variable, or vector, X on some probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with values in (E, \mathcal{B}) is Gaussian if its law, on the Borel sets of E, is Gaussian, that is, for every element ξ of the dual space E^* of E, $\langle \xi, X \rangle$ is a real Gaussian variable.

By separability of \mathcal{B} , the distribution of X may also be described by the finite-dimensional distributions of the random process $\langle \xi, X \rangle$, $\xi \in E^*$, and therefore by the covariance operator

$$\mathbb{E}(\langle \xi, X \rangle \langle \zeta, X \rangle) = \int_{E} \langle \xi, x \rangle \langle \zeta, x \rangle d\mu(x), \quad \xi, \zeta \in E^*$$

(for μ the law of X). As such, all the standard properties of finite-dimensional Gaussian random vectors extend to this infinite-dimensional setting.

The infinite dimensional setting may be extended to locally convex vector spaces [6], but for simplicity, the exposition here is limited to Banach spaces.

Throughout the note, only centered Gaussian measures and vectors are considered, without further notice.

2 Wiener space factorization

Let μ be a Gaussian measure on (E, \mathcal{B}) . As E is separable, μ is a Radon measure in the sense that, for every $B \in \mathcal{B}$,

$$\mu(B) = \sup \{\mu(K); K \subset B, K \text{ compact in } E\}.$$

It is known from the integrability properties of norms of Gaussian random vectors (cf. [1]), that

$$\sigma = \sup_{\xi \in E^*, \|\xi\| \le 1} \left(\int_E \langle \xi, x \rangle^2 d\mu(x) \right)^{1/2} < \infty, \tag{2}$$

and actually

$$\int_{E} ||x||^{p} d\mu(x) < \infty \quad \text{for every } p > 0.$$
 (3)

The abstract Wiener space factorization of the Gaussian measure μ on (E, \mathcal{B}) is given by

$$E^* \stackrel{j}{\longrightarrow} L^2(\mu) \stackrel{j^*}{\longrightarrow} E,$$

where j is the injection map from E^* into $L^2(\mu) = L^2(E, \mathcal{B}, \mu; \mathbb{R})$ (i.e. $j(\xi) = \langle \xi, \cdot \rangle \in L^2(\mu)$), the dual map j^* of j mapping $L^2(\mu)$ into E (rather than the bi-dual). Indeed, by the integrability property (3), for any element φ of $L^2(\mu)$, the integral $\int_E x \varphi(x) d\mu(x)$ is defined, as an element of E, in the strong sense since

$$\int_{E} ||x|| ||\varphi(x)| d\mu(x) \le \left(\int_{E} ||x||^{2} d\mu(x) \right)^{1/2} \left(\int_{E} |\varphi|^{2} d\mu \right)^{1/2} < \infty.$$

Now, for every $\xi \in E^*$,

$$\langle j(\xi), \varphi \rangle_{\mathrm{L}^{2}(\mu)} = \int_{E} \langle \xi, x \rangle \varphi(x) d\mu(x) = \left\langle \xi, \int_{E} x \varphi(x) d\mu(x) \right\rangle$$

so that $j^*(\varphi) = \int_E x \varphi(x) d\mu(x) \in E$.

3 Reproducing kernel Hilbert space

The reproducing kernel Hilbert space \mathcal{H} of μ is defined as the subspace $j^*(L^2(\mu))$ of E. By the preceding, its elements are of the form $\int_E x \varphi(x) d\mu(x)$ with $\varphi \in L^2(\mu)$. This description induces a natural scalar product on \mathcal{H} via the covariance of μ by

$$\langle j^*(\varphi), j^*(\psi) \rangle_{\mathcal{H}} = \langle \varphi, \psi \rangle_{L^2(\mu)}, \quad \varphi, \psi \in L^2(\mu).$$

Since $j(E^*)^{\perp} = \text{Ker}(j^*)$, j^* restricted to the closure E_2^* of E^* in $L^2(\mu)$ is linear and bijective onto \mathcal{H} . For simplicity in the notation, set below for $h \in \mathcal{H}$,

$$\widetilde{h} = (j^*_{|E_2^*})^{-1}(h) \in E_2^* \subset L^2(\mu).$$

Under μ , \widetilde{h} is Gaussian with variance $|h|_{\mathcal{H}}^2$.

Note that σ of (2) is then also $\sup_{x \in \mathcal{K}} ||x||$ where \mathcal{K} is the closed unit ball of \mathcal{H} for this Hilbert space scalar product. In particular, for every x in \mathcal{H} ,

$$||x|| \le \sigma |x|_{\mathcal{H}}$$

where $|x|_{\mathcal{H}} = \langle x, x \rangle_{\mathcal{H}}^{1/2}$. Moreover, \mathcal{K} is a compact subset of E. Indeed, if $(\xi_n)_{n \in \mathbb{N}}$ is a sequence in the unit ball of E^* , there is a subsequence $(\xi_{n'})_{n' \in \mathbb{N}}$ which converges weakly to some ξ in E^* . Now, since the ξ_n 's are Gaussian under μ , $\xi_{n'} \to \xi$ in $L^2(\mu)$ so that j is a compact operator. Hence j^* is also a compact operator, from which the compactness of \mathcal{K} follows.

The terminology "reproducing kernel" stems from the fact that an element $\varphi \in L^2(\mu)$ is reproduced, by duality, from the covariance kernel of μ as

$$\int_{E} \varphi \, \psi \, d\mu \, = \, K(\varphi, \psi)$$

where ψ is running through $L^2(\mu)$. A further illustration of this property in the context of Gaussian processes is provided below.

It is useful to visualize the preceding abstract construction on a number of basic examples.

For γ_n the canonical Gaussian measure on \mathbb{R}^n (equipped with an arbitrary norm), it is plain that $\mathcal{H} = \mathbb{R}^n$ with its Euclidean structure, and \mathcal{K} is the Euclidean (closed) unit ball B(0,1).

If X is a Gaussian vector on \mathbb{R}^n with non-degenerate covariance matrix $\Sigma = M^\top M$, the unit ball \mathcal{K} of the reproducing kernel Hilbert space associated to the distribution of X is the ellipsoid M(B(0,1)).

An infinite dimensional version of γ_n might consist of an infinite sequence $(Y_n)_{n\in\mathbb{N}}$ of independent standard normal random variables (on some probability space $(\Omega, \mathcal{A}, \mathbb{P})$). This sequence does not belong almost surely to the Hilbert space ℓ^2 of square summable sequences, but as soon as $(a_n)_{n\in\mathbb{N}}$ is a (deterministic) sequence in ℓ^2 , the new Gaussian sequence $(a_nY_n)_{n\in\mathbb{N}}$ belongs to $E=\ell^2$, and its law μ defines an abstract Wiener space (E,\mathcal{H},μ) with reproducing kernel Hilbert space \mathcal{H} given by the infinite-dimensional ellipsoid consisting of the sequences $(b_n)_{n\in\mathbb{N}}$ such that $\left(\frac{b_n}{a_n}\right)_{n\in\mathbb{N}}$ belongs to ℓ^2 (assuming the a_n 's different from zero).

Another illustrative, infinite-dimensional, example is the classical Wiener space associated with Brownian motion, say on [0,1] and with real values for simplicity (cf. [2]). Let thus E be the Banach space C([0,1]) of all real continuous functions x on [0,1] equipped with the uniform norm (the Wiener space), and let μ be the distribution of a standard Brownian motion, or Wiener process, $W = (W(t))_{t \in [0,1]}$ starting at the origin (the Wiener measure). The dual space of C([0,1]) is the space of signed measures on [0,1], and if m and m' are finitely supported measures on [0,1], $m = \sum_i c_i \delta_{t_i}$, $c_i \in \mathbb{R}$, $t_i \in [0,1]$, $m' = \sum_j c'_j \delta_{t'_j}$, $c'_j \in \mathbb{R}$,

 $t'_{j} \in [0, 1],$

$$\int_{E} \langle m, x \rangle \langle m', x \rangle d\mu(x) = \mathbb{E} (\langle m, W \rangle \langle m', W \rangle)$$

$$= \sum_{i,j} c_{i} c'_{j} \mathbb{E} (W(t_{i})W(t'_{j}))$$

$$= \sum_{i,j} c_{i} c'_{j} (t_{i} \wedge t'_{j})$$

by definition of the covariance of Brownian motion. It follows that the element $h = j^*j(m) = \int_E x \langle m, x \rangle d\mu(x)$ of \mathcal{H} is the map $h: t \in [0,1] \mapsto \sum_i c_i(t_i \wedge t)$. This map is absolutely continuous, with almost everywhere derivative h' satisfying

$$\int_{0}^{1} h'(t)^{2} dt = \int_{0}^{1} \left| \sum_{i} c_{i} \mathbb{1}_{[0,t_{i}]} \right|^{2} dt$$

$$= \int_{0}^{1} \sum_{i,j} c_{i} c_{j} \mathbb{1}_{[0,t_{i}]} \mathbb{1}_{[0,t_{j}]} dt$$

$$= \sum_{i,j} c_{i} c_{j} (t_{i} \wedge t_{j}) = \int_{E} \langle m, x \rangle^{2} d\mu(x) = |h|_{\mathcal{H}}^{2}.$$

By a standard extension, the reproducing kernel Hilbert space \mathcal{H} associated to the Wiener measure μ on E may then be identified with the Cameron-Martin Hilbert space [7] of the absolutely continuous elements h of C([0,1]) such that $\int_0^1 h'(t)^2 dt < \infty$. Moreover, if $h \in \mathcal{H}$,

$$\widetilde{h} = (j^*_{|E_2^*})^{-1}(h) = \int_0^1 h'(t)dW(t)$$

as a Wiener (-Itô) integral, defining a Gaussian random variable with mean zero and variance $\int_0^1 h'(t)^2 dt$.

While the Wiener space C([0,1]) is equipped here with the uniform topology, other choices are possible. Let F be a separable Banach space such that the Wiener process W belongs almost surely to F. Using probabilistic notation, the previous abstract Wiener space theory indicates that if φ is a real valued random variable, on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, with $\mathbb{E}(\varphi^2) < \infty$, then $h = \mathbb{E}(W\varphi) \in F$. Since $\mathbb{P}(W \in F \cap C([0,1])) = 1$, it immediately follows that the Cameron-Martin Hilbert space may be identified with a subset of F, and is also the reproducing kernel Hilbert space of the Wiener measure on F. Examples of subspaces F include the Lebesgue spaces $L^p([0,1])$, $1 \le p < \infty$, or the Hölder spaces with exponent α , $0 < \alpha < \frac{1}{2}$, given by

$$||x||_{\alpha} = \sup_{0 \le s \ne t \le 1} \frac{|x(s) - x(t)|}{|s - t|^{\alpha}}, \quad x \in C([0, 1]).$$

4 Gaussian process

The construction of the reproducing kernel Hilbert space \mathcal{H} of the law of a Gaussian random vector with values in a Banach space may be, at least formally, extended to the setting of Gaussian processes. By definition, a Gaussian process $X = (X_t)_{t \in T}$, on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, indexed by a parameter set T, is a random process such that any finite-dimensional vector $(X_{t_1}, \ldots, X_{t_n}), t_1, \ldots, t_n \in T$, is a Gaussian vector in \mathbb{R}^n . The finite-dimensional distributions of the process $X = (X_t)_{t \in T}$ are therefore fully determined by the the covariance function $\Sigma(s,t) = \mathbb{E}(X_sX_t), s,t \in T$. As for the Brownian motion, the associated reproducing kernel Hilbert space \mathcal{H} is the span of the functions $s \mapsto \Sigma(s,t), t \in T$, with scalar product

$$\langle h, k \rangle_{\mathcal{H}} = \sum_{i,j} c_i d_j \, \Sigma(s_i, t_j)$$

whenever $h = \sum_i c_i \Sigma(s_i, \cdot, \cdot)$, for a finite collection of $c_i \in \mathbb{R}$, $s_i \in T$, and similarly $k = \sum_j d_j \Sigma(\cdot, t_j)$, and

$$\mathbb{E}\left(\left|\sum_{i} c_{i} X_{s_{i}}\right|^{2}\right) = \langle h, h \rangle_{\mathcal{H}}^{2}.$$

5 Abstract Wiener space

In the preceding context of a Gaussian measure μ on a Banach space E with reproducing kernel Hilbert space \mathcal{H} , the triple

$$(E, \mathcal{H}, \mu)$$

is called, following L. Gross [9], an abstract Wiener space.

A dual point of view, starting from a given Hilbert space, more commonly used by analysts on Wiener spaces, may be emphasized (cf. [11] for further details). Let \mathcal{H} be a real separable Hilbert space with norm $|\cdot|_{\mathcal{H}}$ and let e_1, e_2, \ldots be an orthormal basis of \mathcal{H} . Define a simple additive measure ν on the cylinder sets in \mathcal{H} by

$$\nu(x \in \mathcal{H}; (\langle x, e_1 \rangle, \dots, \langle x, e_n \rangle) \in B) = \gamma_n(B)$$

for all Borel sets B in \mathbb{R}^n . Let $\|\cdot\|$ be a measurable semi-norm on \mathcal{H} , and denote by E the completion of \mathcal{H} with respect to $\|\cdot\|$. Then $(E,\|\cdot\|)$ is a real separable Banach space. If $\xi \in E^*$, consider $\xi_{|\mathcal{H}}: \mathcal{H} \to \mathbb{R}$ that is identified with an element h in $\mathcal{H} = \mathcal{H}^*$ (in the preceding language, $h = j^*j(\xi)$). Let then μ be the $(\sigma$ -additive) extension of ν on the Borel sets of E. In particular, the distribution of $\xi \in E^*$ under μ is Gaussian with mean zero and variance $|h|^2_{\mathcal{H}}$. Therefore, μ is a Gaussian Radon measure on E with reproducing kernel Hilbert space \mathcal{H} , and (E,\mathcal{H},μ) is an abstract Wiener space. With respect to this

approach, the abstract Wiener space construction of the preceding sections focuses more on the Gaussian measure.

6 Series representation

The next property is a useful series representation of Gaussian random vectors which can efficiently be used to transfer (dimension-free) properties from finite-dimensional to infinite-dimensional Gaussian measures. The Cameron-Martin translation formula (see the next section) may for example be approached in this way. Another illustration is the extension of the isoperimetric inequality to infinite-dimensional Gaussian measures (cf. [3]).

The result puts besides forward the fundamental Gaussian measurable structure consisting of the canonical Gaussian product measure on $\mathbb{R}^{\mathbb{N}}$ with reproducing kernel Hilbert space ℓ^2 .

Theorem 1. Let (E, \mathcal{H}, μ) a Wiener triple, $(e_k)_{k\geq 1}$ an orthonormal basis of \mathcal{H} , and $(g_k)_{k\geq 1}$ a sequence of independent real standard normal variables on some probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Then the series $X = \sum_{k=1}^{\infty} g_k e_k$ converges in E almost surely and in every L^p , and is distributed according to μ .

In the example of the Wiener measure on the space E = C([0,1]) of continuous functions on [0,1], any orthonormal basis $(h_k)_{k\geq 1}$ of $L^2([0,1])$ for the Lebesgue measure, gives rise to a Schauder basis

$$e_k(t) = \int_0^t h_k(s)ds, \quad t \in [0, 1], \ k \ge 1,$$

of E = C([0,1]) to which the preceding Theorem 1 applies. Now, in this concrete example, specific bases $(h_k)_{k\geq 1}$ are of interest, such as the trigonometric or Haar bases. Each of them actually provides a simple approach to continuity of the Brownian paths (cf. [2]).

Theorem 1 actually entails a somewhat more precise statement. Since μ is a Radon measure, the space $L^2(\mu)$ is separable and the closure E_2^* of E^* in $L^2(\mu)$ consists of Gaussian random variables on the probability space (E, \mathcal{B}, μ) . Let $(g_k)_{k\geq 1}$ denote an orthonormal basis of E_2^* , and set $e_k = j^*(g_k)$, $k \geq 1$. Then $(e_k)_{k\geq 1}$ defines a complete orthonormal system in \mathcal{H} , and $(g_k)_{k\geq 1}$ is a sequence on (E, \mathcal{B}, μ) of independent standard Gaussian random variables.

A proof of Theorem 1 may, for example, be obtained from a vector valued-martingale convergence theorem (although a direct approach in many specific situations is often easier to apprehend). Here are some details. Recall that $\int_E ||x||^p d\mu(x) < \infty$ for every p > 0. Denote by \mathcal{B}_n the σ -algebra generated by g_1, \ldots, g_n . It is easily seen that the conditional expectation of the identity map on (E, μ) with respect to \mathcal{B}_n is equal to $X_n = \sum_{k=1}^n g_k e_k$.

By the vector-valued martingale convergence theorem, see [17], the series $X = \sum_{k=1}^{\infty} g_k e_k$ converges almost surely and in any L^p-space. Since moreover $e_k = \int_E x \varphi_k d\mu$, $k \geq 1$, where $(\varphi_k)_{k\geq 1}$ is an orthonormal basis of L²(μ) (by the reproducing kernel property),

$$\mathbb{E}(\langle \xi, X \rangle^2) = \sum_{k=1}^{\infty} \langle \xi, e_k \rangle^2 = \sum_{k=1}^{\infty} \left(\int_E \langle \xi, x \rangle \varphi_k d\mu \right)^2 = \int_E \langle \xi, x \rangle^2 d\mu(x)$$

for every ξ in E^* , so that X has law μ , and the last claim follows.

As a consequence of this series representation, it may be deduced that the closure $\overline{\mathcal{H}}$ of \mathcal{H} in E coincides with the support of μ (for the topology given by the norm on E), a property that shows the coherence of the abstract Wiener space construction.

7 Cameron-Martin translation formula

After the preceding somewhat lengthy developments, this last section addresses the translation formula for infinite-dimensional Gaussian measures. Actually, the series representation in an orthonormal basis of the reproducing kernel Hilbert space may be used to access the Cameron-Martin translation formula discussed in the introduction from its finite-dimensional version (cf. e.g. [5, 14]).

Theorem 2 (The Cameron Martin formula). On an abstract Wiener space (E, \mathcal{H}, μ) , for any h in \mathcal{H} , the shifted probability measure $\mu(\cdot + h)$ is absolutely continuous with respect to μ , with density given by the formula

$$\mu(B+h) = e^{-\frac{1}{2}h|_{\mathcal{H}}^2} \int_B e^{-\widetilde{h}} d\mu \tag{4}$$

for every Borel set B in E, where it is recalled that $h = (j^*_{|E_2^*})^{-1}(h)$.

As developed first in [7], it takes an explicit form on the standard Wiener space. Namely, for $h \in \mathcal{H}$, $\widetilde{h} = (j^*_{|E_2^*})^{-1}(h) = \int_0^1 h'(t)dW(t)$, so that if μ is the Wiener measure on E = C([0,1]), the shifted measure $\mu(\cdot + h)$ has density

$$\exp\left(-\frac{1}{2}\int_{0}^{1}h'(t)^{2}dt - \int_{0}^{1}h'(t)dW(t)\right)$$

with respect to μ .

References

[1] Integrability of norms of Gaussian random vectors and processes. The Gaussian Blog.

- [2] Brownian motion and Wiener measure. The Gaussian Blog.
- [3] The Gaussian isoperimetric inequality. The Gaussian Blog.
- [4] A. Badrikrian, S. Chevet. Mesures cylindriques, espaces de Wiener et fonctions aléatoires gaussiennes. Lecture Notes in Math. 379. Springer (1974).
- [5] V. Bogachev. Gaussian measures. Math. Surveys Monogr. 62. American Mathematical Society (1998).
- [6] C. Borell. Convex measures on locally convex spaces. Ark. Mat. 12, 239–252 (1974).
- [7] H. Cameron, W. Martin. Transformations of Wiener integrals under translations. *Ann. Math.* 45, 386–396 (1944).
- [8] X. Fernique. Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens. Université de Montréal, Centre de Recherches Mathématiques (1997).
- [9] L. Gross. Abstract Wiener spaces. Proc. 5th Berkeley Symp. Math. Stat. Prob. 2, 31–42 (1965).
- [10] S. Janson. Gaussian Hilbert spaces. Cambridge Tracts in Math. 129. Cambridge University Press (1997).
- [11] H.-H. Kuo. Gaussian measures in Banach spaces. Lecture Notes in Math. 436. Springer (1975).
- [12] M. Ledoux. Isoperimetry and Gaussian Analysis. École d'Été de Probabilités de St-Flour 1994. Lecture Notes in Math. 1648, 165–294. Springer (1996).
- [13] M. Ledoux, M. Talagrand. Probability in Banach spaces (Isoperimetry and processes). Ergebnisse der Mathematik und ihrer Grenzgebiete 23. Springer (1991).
- [14] M. Lifshits. Gaussian random functions. Kluwer (1995).
- [15] M. Lifshits. Lectures on Gaussian processes. SpringerBriefs Math. (2012).
- [16] J. Neveu. Processus aléatoires gaussiens. Sém. Math. Sup. 34. Les Presses de l'Université de Montréal (1968).
- [17] J. Neveu. Martingales à temps discret. Masson (1972).
- [18] D. Nualart. The Malliavin calculus and related topics. Springer (2006).
- [19] D. Stroock. Probability theory: an analytic view. Cambridge University Press (2011).