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Admissible shift,
reproducing kernel Hilbert space,
and abstract Wiener space

1
2m)2
the Lebesgue measure on R", is not translation invariant. Shifted measures are described by

The standard Gaussian measure 7,, with density e‘émz, r € R™ with respect to

V(B +h) = 2l / e "Dy, (1)
B
where B + h = {z + h;x € B}, B Borel set in R"” and h € R". In other words, the shifted
measure v, (- + h) by an element h € R" is absolutely continuous with respect to ~,, with
density e~ 3= (k)

Let now p be the Wiener measure on the Borel sets of the Banach space C(]0,1]) of
real continuous functions on [0, 1], law of a standard Brownian motion or Wiener process
W = (W(t))te[o,u- It is not entirely clear to give a meaning to the preceding translation
formula in this infinite-dimensional context, and in particular to make sense of |h|*> and
(h,-). An early result of H. Cameron and W. Martin [7] answers this question in the following
form. If (and only if) A : [0, 1] — R is absolutely continuous on [0, 1], with almost everywhere
derivative i/ in L*([0, 1]) (for the Lebesgue measure), the shifted measure p(-+h) is absolutely
continuous with respect to p, with density

exp (- % /0 ey de — /0 1 h’(t)dW(t)),

where fol R (t)dW (t) is understood as a Wiener (-It6) integral.
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This translation formula actually entails some basic features associated to the Wiener
measure, namely the so-called Cameron-Martin Hilbert space of absolutely continuous func-
tions on [0,1] with almost everywhere derivative &’ in L%([0,1]), and the Wiener integral
fol R (t)dW (t). These objects are in fact only generated by the covariance function of W,
EW(s)W(t)) = s At, s,t € [0,1], and give rise to the specific structure consisting of the
space C([0, 1]), with its topology, the Cameron-Martin, or reproducing kernel, Hilbert space,
and the Wiener measure.

This structure, called abstract Wiener space, may be built for any Gaussian measure
(on a Banach space for example), and the text below develops the construction in a rather
general setting. While the exposition might appear somewhat abstract, it only relies on some
standard functional analysis and is not any longer or difficult than it would be for a specific
model like the Wiener space. It covers besides, in a most instructive way, several examples of
interest, even finite-dimensional. In addition, it naturally puts forward series representations
in orthonormal bases of the reproducing kernel Hilbert space (like the trigonometric or
Haar expansions of Brownian motion), a most useful property to transfer, in applications,
dimension-free statements from finite to infinite-dimensional Gaussian measures and vectors.

The note is mainly extracted from [12]. Some main expositions on Gaussian measures,
vectors, processes, in infinite-dimensional spaces are [16, 4, 11, 13, 14, 8, 10, 5, 18, 19, 15]...

Table of contents
1. Gaussian measure and random vector
2. Wiener space factorization
3. Reproducing kernel Hilbert space
4. Gaussian process
5. Abstract Wiener space
6. Series representation
7. Cameron-Martin translation formula

References



1 Gaussian measure and random vector

It is classical that the Lebesgue measure ), does not extend to an infinite-dimensional
setting. However, Gaussian measures, due in particular to their dimension-free features,
may easily be considered in infinite-dimensional spaces. A prototype, and central, example
is the Wiener measure, with associated Brownian or Wiener process, on the Banach space
C(]0,1]) of continuous functions on the interval [0, 1].

A Gaussian measure i on a real separable Banach space E equipped with its Borel
o-algebra B, and with norm || - ||, is a Borel probability measure on (F, B) such that the law
of each continuous linear functional on F is Gaussian. Equivalently, a random variable, or
vector, X on some probability space (£2,.4,P) with values in (F, B) is Gaussian if its law,
on the Borel sets of F, is Gaussian, that is, for every element & of the dual space E* of E,
(¢, X) is a real Gaussian variable.

By separability of B, the distribution of X may also be described by the finite-dimensional
distributions of the random process (£, X), £ € E*, and therefore by the covariance operator

E«axxaxn=3égwxc@wmm 6.Ce B

(for p the law of X). As such, all the standard properties of finite-dimensional Gaussian
random vectors extend to this infinite-dimensional setting.

The infinite dimensional setting may be extended to locally convex vector spaces [6], but
for simplicity, the exposition here is limited to Banach spaces.

Throughout the note, only centered Gaussian measures and vectors are considered, with-
out further notice.

2 Wiener space factorization

Let p be a Gaussian measure on (F,B). As E is separable, u is a Radon measure in the
sense that, for every B € B,

w(B) = sup {u(K); K C B, K compact in E'}.

It is known from the integrability properties of norms of Gaussian random vectors (cf. [1]),
that

o= sup (4@@%@0m<w, ©)

geb [I€]I<1



and actually

/ ||x||Pdu(z) < oo for every p > 0. (3)

E

The abstract Wiener space factorization of the Gaussian measure p on (E, B) is given by
E* L 12(n) L5 B,

where j is the injection map from E* into L?(u) = L*(E, B, 1; R) (i.e. j(&) = (&,-) € L3 (),
. Indeed, by the
integrability property (3), for any element ¢ of L?(u), the integral [, zp(z)du(z) is defined,

the dual map j* of j mapping L?(u) into E (rather than the bi-dual)

as an element of E. in the strong sense since

/E ol (@) |du() < ( /E ||x||2d,u(a7))1/2( /E |¢|2du)1/2 <

Now, for every £ € E*,
G Py = [ aleiute) = (¢ [ setadnto))

so that j*(¢) = [, ze(x)du(z) € E.

3 Reproducing kernel Hilbert space

The reproducing kernel Hilbert space H of p is defined as the subspace j*(L?(u)) of E. By
the preceding, its elements are of the form [, z¢(x)du(x) with ¢ € L*(p). This description
induces a natural scalar product on ‘H via the covariance of y by

G @) W)y = (0 W10y 50 € L2 ().

Since j(E*)t = Ker(j*), j* restricted to the closure Ej of E* in L%(u) is linear and
bijective onto H. For simplicity in the notation, set below for h € H,

h = (j*|E;)_l(h> € BE; CL3(p).

Under p, h is Gaussian with variance |h|3,.

Note that o of (2) is then also sup,cx ||z| where K is the closed unit ball of H for this
Hilbert space scalar product. In particular, for every z in H,

2]l < o[zl
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where |z|y = (x,:v)%f. Moreover, K is a compact subset of E. Indeed, if (§,),.y is a

sequence in the unit ball of E*, there is a subsequence (&), oy Which converges weakly to
some £ in E*. Now, since the &,’s are Gaussian under p, &, — & in L?(u) so that j is a
compact operator. Hence j* is also a compact operator, from which the compactness of IC
follows.

The terminology “reproducing kernel” stems from the fact that an element ¢ € L*(u) is
reproduced, by duality, from the covariance kernel of u as

/wdu = K(p,v)
FE

where 1) is running through L?(u). A further illustration of this property in the context of
Gaussian processes is provided below.

It is useful to visualize the preceding abstract construction on a number of basic examples.

For ~, the canonical Gaussian measure on R" (equipped with an arbitrary norm), it is
plain that H = R™ with its Euclidean structure, and K is the Euclidean (closed) unit ball
B(0,1).

If X is a Gaussian vector on R™ with non-degenerate covariance matrix ¥ = M "M, the
unit ball IC of the reproducing kernel Hilbert space associated to the distribution of X is the
ellipsoid M (B(0,1)).

An infinite dimensional version of 7, might consist of an infinite sequence (Y;,), .y of
independent standard normal random variables (on some probability space (2, A, P)). This
sequence does not belong almost surely to the Hilbert space £ of square summable se-
quences, but as soon as (an),cy is a (deterministic) sequence in ¢?, the new Gaussian se-
quence (a,Yy), oy belongs to E = 2, and its law 1 defines an abstract Wiener space (E,H, 1)
with reproducing kernel Hilbert space H given by the infinite-dimensional ellipsoid consisting
of tl;e sequences (by), oy such that (Z—Z)neN belongs to /? (assuming the a,,’s different from
7€10).

Another illustrative, infinite-dimensional, example is the classical Wiener space associated
with Brownian motion, say on [0, 1] and with real values for simplicity (cf. [2]). Let thus
E be the Banach space C(]0,1]) of all real continuous functions x on [0, 1] equipped with
the uniform norm (the Wiener space), and let p be the distribution of a standard Brownian
motion, or Wiener process, W = (W (t)),o ) starting at the origin (the Wiener measure).
The dual space of C([0,1]) is the space of signed measures on [0, 1], and if m and m’ are
finitely supported measures on [0, 1], m =} iy, ¢; € R, t; € [0,1], m' =7, 09513;_, c; € R,



e [0,1],
/E(m,@(m’,x)d,u(x) = E((m, W)(m',W>)
= Zcic;E(W(ti)W(t;))

by definition of the covariance of Brownian motion. It follows that the element h = j*j(m) =
Jpa(m,z)du(z) of H is the map h : t € [0,1] — >, ¢;(t; At). This map is absolutely
continuous, with almost everywhere derivative h’ satisfying

1 1
/ h,(t>2 dt = / Z C,;I]_[QM]
0 0 i

1
— / Z CiCj 1]_[07”] ]]-[O,tj]dt
0 =
27‘7
= Sagtint) = [ (madut) = A,
.3

2
dt

By a standard extension, the reproducing kernel Hilbert space H associated to the Wiener
measure p on E may then be identified with the Cameron-Martin Hilbert space [7] of the
absolutely continuous elements h of C([0, 1]) such that fol h'(t)?dt < co. Moreover, if h € H,

b= )0 = [ Waw

as a Wiener (-It0) integral, defining a Gaussian random variable with mean zero and variance
INXGR?

While the Wiener space C([0, 1]) is equipped here with the uniform topology, other choices
are possible. Let F' be a separable Banach space such that the Wiener process W belongs
almost surely to F'. Using probabilistic notation, the previous abstract Wiener space theory
indicates that if ¢ is a real valued random variable, on a probability space (2, A4, P), with
E(¢?) < oo, then h = E(Wy) € F. Since P(W € FnC([0,1])) = 1, it immediately follows
that the Cameron-Martin Hilbert space may be identified with a subset of F', and is also
the reproducing kernel Hilbert space of the Wiener measure on F. Examples of subspaces
F include the Lebesgue spaces LP([0, 1]), 1 < p < oo, or the Hélder spaces with exponent «,
0<a< %, given by

x(s) — x(t
lall, = sup =IO oo, 1.
o<stt<1  |s — 1



4 Gaussian process

The construction of the reproducing kernel Hilbert space H of the law of a Gaussian random
vector with values in a Banach space may be, at least formally, extended to the setting
of Gaussian processes. By definition, a Gaussian process X = (X;),.,, on a probability
space (€2, A,P), indexed by a parameter set T, is a random process such that any finite-
dimensional vector (Xy,,..., Xy, ), t1,...,t, € T, is a Gaussian vector in R™. The finite-
dimensional distributions of the process X = (X;),., are therefore fully determined by the
the covariance function X(s,t) = E(X:X;), s,t € T. As for the Brownian motion, the
associated reproducing kernel Hilbert space H is the span of the functions s — X(s,t),
t € T, with scalar product

(hok)y = Y cidy X(si,t;)

4,7

whenever h = Y. ¢; 3(s;, -, ), for a finite collection of ¢; € R, s; € T, and similarly k£ =
>-;d;5(+, ), and

“

5 Abstract Wiener space

Z CiXs,-

7

) — (h R

In the preceding context of a Gaussian measure pu on a Banach space E with reproducing
kernel Hilbert space H, the triple
(E,H, 1)

is called, following L. Gross [9], an abstract Wiener space.

A dual point of view, starting from a given Hilbert space, more commonly used by
analysts on Wiener spaces, may be emphasized (cf. [11] for further details). Let H be a real
separable Hilbert space with norm | - |,, and let ey, ez, ... be an orthormal basis of #. Define
a simple additive measure v on the cylinder sets in H by

v(z € H;((z,e1),...,{(z,€,)) € B) = 7,(B)

for all Borel sets B in R™. Let || - || be a measurable semi-norm on #, and denote by E
the completion of H with respect to || - ||. Then (E, || - ||) is a real separable Banach space.
If £ € E*, consider &y : H — R that is identified with an element h in H = H* (in the
preceding language, h = j*j(£)). Let then p be the (o-additive) extension of v on the
Borel sets of E. In particular, the distribution of £ € E* under p is Gaussian with mean
zero and variance |h|3,. Therefore, u is a Gaussian Radon measure on F with reproducing
kernel Hilbert space H, and (E,H, ) is an abstract Wiener space. With respect to this
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approach, the abstract Wiener space construction of the preceding sections focuses more on
the Gaussian measure.

6 Series representation

The next property is a useful series representation of Gaussian random vectors which can
efficiently be used to transfer (dimension-free) properties from finite-dimensional to infinite-
dimensional Gaussian measures. The Cameron-Martin translation formula (see the next
section) may for example be approached in this way. Another illustration is the extension
of the isoperimetric inequality to infinite-dimensional Gaussian measures (cf. [3]).

The result puts besides forward the fundamental Gaussian measurable structure consist-

ing of the canonical Gaussian product measure on RY with reproducing kernel Hilbert space
2.

Theorem 1. Let (E,H, ;1) a Wiener triple, (ex),s, an orthonormal basis of H, and (gx);~,
a sequence of independent real standard normal variables on some probability space (2, A, IPT)
Then the series X = > 7~ grex converges in E almost surely and in every LP, and is dis-
tributed according to .

In the example of the Wiener measure on the space E' = C([0, 1]) of continuous functions
on [0, 1], any orthonormal basis (hx),, of L?([0,1]) for the Lebesgue measure, gives rise to
a Schauder basis

¢
en(t) = / hip(s)ds, te€[0,1], k> 1,
0

of E = (C([0,1]) to which the preceding Theorem 1 applies. Now, in this concrete example,
specific bases (hy),, are of interest, such as the trigonometric or Haar bases. Each of them
actually provides a simple approach to continuity of the Brownian paths (cf. [2]).

Theorem 1 actually entails a somewhat more precise statement. Since p is a Radon
measure, the space L?(p1) is separable and the closure Ej of E* in L?(p) consists of Gaussian
random variables on the probability space (E, B, it). Let (gx),~; denote an orthonormal basis
of E3, and set e, = j*(gx), kK > 1. Then (ey),-, defines a complete orthonormal system in H,
and (gx),~, is a sequence on (F, B, i) of independent standard Gaussian random variables.

A proof of Theorem 1 may, for example, be obtained from a vector valued-martingale
convergence theorem (although a direct approach in many specific situations is often easier
to apprehend). Here are some details. Recall that [, |lz][?du(z) < oo for every p > 0.
Denote by B, the o-algebra generated by ¢1,...,9,. It is easily seen that the conditional
expectation of the identity map on (E, u) with respect to B, is equal to X,, = > /'_, gxes.



By the vector-valued martingale convergence theorem, see [17], the series X = > 77 grey
converges almost surely and in any LP-space. Since moreover e = [ g Tordp, k> 1, where
(¢k) >, is an orthonormal basis of L%(u) (by the reproducing kernel property),

E((€, X)?) = i:}f,ekv - i ( /E (&,2) @kduf - /E (€, 2)2du()

for every £ in E* so that X has law pu, and the last claim follows.

As a consequence of this series representation, it may be deduced that the closure H of H
in F coincides with the support of u (for the topology given by the norm on E), a property
that shows the coherence of the abstract Wiener space construction.

7 Cameron-Martin translation formula

After the preceding somewhat lengthy developments, this last section addresses the transla-
tion formula for infinite-dimensional Gaussian measures. Actually, the series representation
in an orthonormal basis of the reproducing kernel Hilbert space may be used to access the
Cameron-Martin translation formula discussed in the introduction from its finite-dimensional
version (cf. e.g. [5, 14]).

Theorem 2 (The Cameron Martin formula). On an abstract Wiener space (E,H, ), for
any h in H, the shifted probability measure u(- + h) is absolutely continuous with respect to
W, with density given by the formula

w(B+h) = e 2t / e_zd,u (4)
B
for every Borel set B in E, where it is recalled that h = (j*|E;)*1(h).

As developed first in [7], it takes an explicit form on the standard Wiener space. Namely,
for h € H, h = (§%g;) ' (h) = fol R'(t)dW (t), so that if u is the Wiener measure on E =
C([0,1]), the shifted measure pu(- + h) has density

exp ( - %/Olh/(t)Q dt — /01 h’(t)dW(t))

with respect to p.
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