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Integrability of norms of Gaussian

random vectors and processes

Let X be a centered Gaussian real random variable with variance σ2 defined on some

probability space (Ω,A,P). It is clear from the expression of the density 1√
2πσ2

e−
1

2σ2
x2 , x ∈ R,

of its law that E(eαX
2
) <∞ if and only if α < 1

2σ2 .

If X = (X1, . . . , Xn) is a centered Gaussian random vector, and S = max1≤k≤nXk (or

S = max1≤k≤n |Xk|),

E
(
eαS

2) ≤ E
(
eαmax1≤k≤nX

2
k

)
≤

n∑
k=1

E
(
eαX

2
k

)
< ∞

for some α > 0. As a consequence, for any norm ‖ · ‖ on Rn, there exists α > 0 such that

E(eα‖X‖
2
) <∞, although the optimal value of α is perhaps less immediate.

Consider now, on (Ω,A,P), a centered Gaussian sequenceXk, k ≥ 1, that is (Xk1 , . . . , Xkn)

is a (centered) Gaussian vector in Rn for any k1, . . . , kn ≥ 1, such that S = supk≥1Xk <∞
almost surely. What can be said about the integrability properties of S ? As a main result

discussed in this note,

E
(
eαS

2)
<∞ if and only if α <

1

2σ2

where σ2 = supk≥1 E(X2
k) <∞.

Names attached to the history of this statement are J.-P. Kahane, A. Skorokhod, X. Fer-

nique, H. Landau, L. Shepp, M. Marcus. The result may be addressed in the convenient
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setting of Gaussian random vectors with values in a (real separable) Banach, or, equivalently,

for Gaussian processes. It turns out that the only necessary key to achieve the conclusion

is the rotational invariance of Gaussian measures, expressed by the fact that if Y and Z

are independent centered Gaussian vectors, for any θ ∈ R, Y (θ) = Y sin(θ) + Z cos(θ) and

Y ′(θ) = Y cos(θ)− Z sin(θ) are independent with the same law as Y .

Throughout the note, all Gaussian vectors and processes will be centered, without further

notice. Most of the material may be found in the classical references [10, 11, 9, 6, 4, 12].
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1 A first strong integrability theorem

Let thus E be real separable Banach space equipped with its Borel σ-algebra B, and with

norm ‖ · ‖. A random variable, or vector, X on some probability space (Ω,A,P) is Gaussian

if its law, on the Borel sets of E, is Gaussian, that is, for every element ξ of the dual space

E∗ of E, 〈ξ,X〉 is a real Gaussian variable (cf. [1]).

Since E is separable, the norm ‖·‖ on E may be described as a supremum over a countable

set (ξk)k≥1 of elements of the unit ball of the dual space E∗, that is, for every x in E,

‖x‖ = sup
k≥1
〈ξk, x〉.

The framework thus conveniently covers the case of random vectors and supremum of Gaus-

sian processes (sequences).

The following basic integrability property is going back to X. Fernique [5] and H. Landau

and L. Shepp [7], after preliminary observations by J.-P. Kahane and A. Skorokhod (cf. [10]).
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Theorem 1. Let X be a Gaussian vector with values in (E,B, ‖ · ‖). There exists α > 0

such that

E
(
eα‖X‖

2)
< ∞.

The proof of Theorem 1 in [5] is solely based on the aforementioned rotational invariance,

while in [7] deeper isoperimetric-type arguments are developed.

The argument developed in the next section, due to B. Maurey and G. Pisier [14], and

which extends the idea of X. Fernique in [5], provides a simple direct proof of this theorem.

This argument actually covers a more general framework, and emphasizes at the same time

the concentration inequality, for a Gaussian vector X,

P
(∣∣‖X‖ − E(‖X‖)

∣∣ ≥ r
)
≤ 2 e−

2r2

π2σ2 , r ≥ 0, (1)

where σ2 = supξ∈E∗,‖ξ‖≤1 E(〈ξ,X〉2), which actually goes much beyond the integrability

theorem itself. In particular, this concentration property of the norm of X around its mean

arises at the exponential rate σ2, and it is of fundamental importance to realize that E(‖X‖)
is in general much bigger than σ, as may be checked on the example of the Euclidean norm

of a standard normal vector X in Rn (for which E(‖X‖) is of the order of
√
n while σ = 1).

The inequality (1) is actually part of the family of Gaussian concentration inequalities

presented in the companion post [2].

2 The Fernique-Maurey-Pisier argument

Let E and F be finite-dimensional Banach spaces (think of Rn and Rm, with arbitrary

norms), and let f : E → F be locally Lipschitz. The function f has, at almost every point

y ∈ E, a derivative f ′(y) which is a linear map from E into F . For z in E, denote by f ′(y) ·z
the value of f ′(y) on z, so that

f ′(y) · z = lim
t→0

1

t

[
f(y + tz)− f(y)

]
.

Proposition 2 (The Maurey-Pisier inequality). Let Y be a Gaussian random vector on

(Ω,A,P) with values in E. Let f : E → F be locally Lipschitz, and Ψ : F → R be a convex

function such that Ψ ◦ f(Y ) is integrable. Then

E
(
Ψ
(
f(Y )− E

(
f(Y )

))
≤ E

(
Ψ
(π

2
f ′(Y ) · Z

))
(2)

where Z denotes an independent copy of Y .
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Proof. Write

f(Y )− f(Z) =

∫ π/2

0

d

dθ
f
(
Y (θ)

)
dθ =

∫ π/2

0

f ′
(
Y (θ)

)
· Y ′(θ)dθ

where Y (θ) = Y sin(θ) + Z cos(θ), Y ′(θ) = Y cos(θ)− Z sin(θ). By convexity of Ψ,

Ψ
(
f(Y )− f(Z)

)
≤ 2

π

∫ π/2

0

Ψ
(π

2
f ′
(
Y (θ)

)
· Y ′(θ)

)
dθ.

Take now expectation of both sides of this inequality. By the rotational invariance of Gaus-

sian measures, for every fixed θ ∈ R, the couple (Y (θ), Y ′(θ)) has the same distribution as

the couple (Y, Z), so that

E
(
Ψ
(
f(Y )− f(Z)

))
≤ E

(
Ψ
(π

2
f ′(Y ) · Z

))
.

It remains to observe that by Jensen’s inequality (and independence of Y and Z),

E
(
Ψ
(
f(Y )− f(Z)

))
≥ E

(
Ψ
(
f(Y )− E

(
f(Y )

))
.

An important feature of the Maurey-Pisier inequality (2) is that it is fully dimension-free,

allowing thus for extensions to infinite-dimensional spaces. One such extension is considered

next, but the Maurey-Pisier inequality goes beyond this illustration since vector-valued func-

tions f may be considered. With respect to [5], it may be noticed that the Fernique proof

uses rotational invariance of Gaussian random vectors for one angle, and on distribution func-

tions, whereas the Maurey-Pisier inequality relies on a continuum of angles along measurable

functions of the vectors.

Applied to E = Rn, F = R, Y with law N (0, Id) and to the family of convex functions

Ψ(u) = eλu, u ∈ R, λ ∈ R, partial integration of the inequality (2) with respect to Z yields

E
(
eλ[f(Y )−E(f(Y ))]

)
= E

(
e
π2

8
λ2|f ′(Y )|2).

As a consequence, the following corollary may be stated. For a function f : Rn → R,

‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

Corollary 3. Let Y with law N (0, Id) on Rn. For any Lipschitz function f : Rn → R and

any λ ∈ R,

E
(
eλ[f(Y )−E(f(Y ))]

)
≤ e

π2

8
λ2‖f‖2Lip .

The companion post [2] presents an improved version of this corollary (replacing π2

8
by 1

2
)

by different, although related, tools, and is used in Section 5 to reach the sharp integrability

exponents.
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3 Proof of the integrability Theorem 1

While Theorem 1 directly follows from the suitable infinite-dimensional version of Proposi-

tion 2, due to its dimension-free character, a simple finite-dimensional approximation pro-

vides an easy approach.

Given a Gaussian random vector X with values in E, the proof will, as announced,

establish the stronger concentration inequality (1), including that E(‖X‖) <∞ and σ <∞.

Theorem 1 is then immediate by integration of this exponential tail inequality, with α < 2
π2σ2 .

The constant π
2

is optimal in the general form (2) of the Maurey-Pisier inequality, for

vector-valued functions f . But, as developed in the next section, the optimal exponent in

the integrability theorem may be achieved from the more precise Gaussian concentration

inequalities.

The task is therefore to establish the concentration inequality (1), which may easily be

accessed by a finite-dimensional argument on the basis of Corollary 3.

First observe that

σ2 = sup
ξ∈E∗,‖ξ‖≤1

E
(
〈ξ,X〉2

)
< ∞.

Indeed, let m > 0 be such that P(‖X‖ ≤ m) ≥ 3
4
. Then, for every element ξ in E∗ with

‖ξ‖ ≤ 1, P(〈ξ,X〉 ≤ m) ≥ 3
4
. Now 〈ξ,X〉 is real Gaussian with variance E(〈ξ,X〉2). Since

1√
2π

∫ 1/2

−∞ e
− 1

2
x2dx < 3

4
, it follows that [E(〈ξ,X〉2)]1/2 ≤ 2m.

Recall then that, for every x in E, ‖x‖ = supk≥1 〈ξk, x〉 where (ξk)k≥1 is a sequence in

the unit ball of the dual space E∗. For every integer n ≥ 1, consider the (finite-dimensional)

Gaussian vector Xn = (〈ξ1, X〉, . . . , 〈ξn, X〉) in Rn. The vector Xn has the same distribution

as AY where Y has law N (0, Id) and Σ = A >A is the covariance matrix of Xn. For any

measurable map f : Rn → R, Corollary 3 yields that

E
(
eλ[f(X)−E(f(X))]

)
= E

(
eλ[f◦A(Y )−E(f◦A(Y ))]

)
≤ e

π2

8
λ2‖f◦A‖2Lip

for every λ ∈ R, provided that ‖f ◦ A‖Lip <∞. Apply this inequality to the function

f(x) = f(x1, . . . , xn) = max
1≤k≤n

xk = ‖x‖n.

For every x, y ∈ Rn, k = 1, . . . , n,∣∣(Ax)k − (Ay)k
∣∣2 =

∣∣∣∣ n∑
`=1

Ak`(x` − y`)
∣∣∣∣2 ≤ n∑

`=1

A2
k` |x− y|2 = Σkk |x− y|2

so that

‖f ◦ A‖2Lip ≤ max
1≤k≤n

E
(
〈ξk, X〉2

)
≤ sup

ξ∈E∗,‖ξ‖≤1
E
(
〈ξ,X〉2

)
= σ2.
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As a consequence of the preceding, for every λ ∈ R and every n ≥ 1,

E
(
eλ[‖X‖n−E(‖X‖n)]

)
≤ e

π2

8
λ2σ2

.

By Markov’s inequality, for every r ≥ 0 and λ ≥ 0,

P
(
‖X‖n − E(‖X‖n) ≥ r

)
≤ e−λr+

π2

8
λ2σ2

.

After optimization in λ, it follows that

P
(
‖X‖n − E(‖X‖n) ≥ r

)
≤ e−

2r2

π2σ2 (3)

for every r ≥ 0. Together with the same argument for −f , and the union bound,

P
(∣∣‖X‖n − E(‖X‖n)

∣∣ ≥ r
)
≤ 2 e−

2r2

π2σ2 . (4)

The final step is to let n tend to infinity, so to replace ‖X‖n by ‖X‖. A little care is nec-

essary here to handle the expectations E(‖X‖n). Let m > 0 be such that P(‖X‖ ≤ m) ≥ 1
2
,

and let r0 > 0 be such that 2 e−2r
2
0/π

2σ2
< 1

2
. Hence, by (4), E(‖X‖n) ≤ m+r0 independently

of n, and therefore E(‖X‖) < ∞. By monotone convergence as n → ∞, (4) (and similarly

(3)) then turns into the announced (1).

Although this is not strictly necessary, to be on the (positive) safe side, it might be

easier to work, exactly in the same way, with ‖x‖ = supk≥1 |〈ξk, x〉| and the functions on

Rn, f(x) = max1≤k≤n |xk|. This comment is of interest for supremum of (centered) Gaussian

processes.

Indeed, the integrability Theorem 1 is not specific to norms on Banach spaces, actually

measurable semi-norms may be used similarly (really only basic convexity is used in the proof

argument). In particular, all the preceding integrability properties apply to the supremum

of a centered Gaussian process (Xt)t∈T , assuming proper measurability assumptions to deal

with suprema. For example, if T is countable, and supt∈T |Xt| < ∞ almost surely, the

conclusions apply then with ‖X‖ replaced by this supremum supt∈T |Xt|. As a statement,

there exists α > 0 such that

E
(
eα [supt∈T |Xt|]2

)
< ∞. (5)

The point being that the main argument relies on dimension-free finite dimensional inequal-

ities, and the maximum function is used exactly in the same way. If necessary, further

details are provided in [10, 11, 9] for instance. Note that if supt∈T Xt < ∞ almost surely

only, by symmetry (due to the centering), supt∈T |Xt| < ∞ almost surely (and thus also

E(eα [supt∈T Xt]
2
) <∞).

6



4 Moment equivalence

The proof of Theorem 1, and more precisely (1), has an other interesting consequence as the

equivalence of all moments of Gaussian random vectors. That is, for every 0 < p, q < ∞,

there exists a constant Cp,q > 0 only depending on p and q such that, for any Gaussian

vector X with values in some Banach space E with norm ‖ · ‖,(
E
(
‖X‖p

))1/p
≤ Cp,q

(
E
(
‖X‖q

))1/q
. (6)

The claim easily follows from the integration in t ≥ 0 of the concentration inequality (1),

together with the fact that E(‖X‖) ≤ m + r0 and σ ≤ Cp[E(‖X‖p)]1/p for any p > 0. The

result applies similarly to ‖X‖ = supt∈T |Xt| for a Gaussian process X = (Xt)t∈T . It is

shown in [8], as a consequence of the solution of the so-called S-conjecture (cf. [3]), that the

constants Cp,q are the same than in the real case.

5 Sharp integrability

The more precise Gaussian concentration inequalities (presented e.g. in [2]) show that Corol-

lary 3 can be improved into

E
(
eλ[f(Y )−E(f(Y ))]

)
≤ e

λ2

2
‖f‖2Lip , λ ∈ R.

It is then clear that all the tail inequalities of the previous section are also improved from

the factor 2
π2 to 1

2
in the exponential. In particular the basic concentration inequality (1)

actually reads

P
(∣∣‖X‖ − E(‖X‖)

∣∣ ≥ r
)
≤ 2 e−

r2

2σ2 , r ≥ 0. (7)

The values α > 0 in Theorem 1 thus satisfies α < 1
2σ2 , which actually describes the sharp

exponent (first obtained in [13] by different means). Indeed, optimality follows from the

one-dimensional case as, for every ξ ∈ E∗ with ‖ξ‖ ≤ 1,

∞ > E
(
eα‖X‖

2) ≥ E
(
eα〈ξ,X〉

2)
=

1√
1

E(〈ξ,X〉2) − 2α
,

so that indeed α < 1
2σ2 . The same holds true for (5) with α < 1

2 supt∈T E(X2
t )

. Dealing with

the partial supremum S = supt∈T Xt might require a few more details. For every t ∈ T and

r ≥ 0,

1− Φ

(
r√

E(X2
t )

)
= P(Xt ≥ r) ≤ P(S ≥ r).
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Hence, with σ2 = supt∈T E(X2
t ), for every r ≥ 0,

1− Φ
( r
σ

)
≤ P(S ≥ r),

a tail behavior which prevents the fact that E(eαS
2
) <∞ for some α ≥ 1

2σ2 .

These conclusions may be summarized in the following general statement, which describes

the optimal integrability properties of norms of (centered) Gaussian vectors and supremum

of Gaussian processes.

Theorem 4 (The Gaussian integrability theorem). Let X be a Gaussian vector on a prob-

ability space (Ω,A,P) with values in a real separable Banach space (E,B, ‖ · ‖). Then

E
(
eα‖X‖

2)
< ∞ if and only if α <

1

2 sup‖ξ‖≤1 E(〈ξ,X〉2)
.

Similarly, if X = (Xt)t∈T is a (separable) Gaussian process on a probability space (Ω,A,P)

such that supt∈T Xt, or equivalently supt∈T |Xt|, is finite almost surely, then

E
(
eαS

2)
< ∞ if and only if α <

1

2 supt∈T E(X2
t )

where S = supt∈T Xt or supt∈T |Xt|.

If a random vector X is not centered, the conclusion of Theorem 4 (applied to X−E(X))

still holds true with sup‖ξ‖≤1 Var(ξ,X〉) instead of sup‖ξ‖≤1 E(〈ξ,X〉2). Things are a bit more

delicate for processes, unless it is considered S = supt∈T |Xt|.

References

[1] Admissible shift, reproducing kernel Hilbert space, and abstract Wiener space. The

Gaussian Blog.

[2] Gaussian concentration inequalities. The Gaussian Blog.

[3] Some geometric inequalities for Gaussian measures. The Gaussian Blog.

[4] V. Bogachev. Gaussian measures. Math. Surveys Monogr. 62. American Mathematical

Society (1998).
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