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The Gaussian isoperimetric inequality

The classical isoperimetric inequality in Euclidean space expresses that balls are the sets

with minimal surface measure given the volume. A similar property holds true on the sphere,

on which geodesic balls (caps) are the extremizers of the isoperimetric problem.

Equip now Rn with the standard Gaussian probability measure γn, with density 1

(2π)
n
2
e−

1
2
|x|2 ,

x ∈ Rn, with respect to the Lebesgue measure. For a fixed Gaussian measure γn(A), what

are the Borel sets A with the minimal surface measure (in the sense for example, of the

Minkowski content γ+n (A) = lim infr→0
1
r

[
γn(Ar) − γn(A)

]
)? The striking answer is that

half-spaces H are the extremal sets of the Gaussian isoperimetric problem.

H

h

A

The Gaussian isoperimetric inequality is part of a family of geometric inequalities satisfied

by Gaussian measures, described in the parallel note [1]. Due to its dimension-free character,
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it is a main tool in the analysis of infinite-dimensional Gaussian measures and vectors, and

and the root of concentration inequalities (cf. [2]). This text reviews the known proofs of

the Gaussian isoperimetric inequality.
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1 The Gaussian isoperimetric inequality

Let γn be the standard Gaussian probability measure on the Borel sets of Rn, with density

ϕn(x) = 1

(2π)
n
2
e−

1
2
|x|2 , x ∈ Rn, with respect to the Lebesgue measure. Denote by Φ(t) =∫ t

−∞ ϕ1(x)dx, t ∈ R, the (continuous, strictly increasing) distribution function in dimension

one, and define then the Gaussian isoperimetric profile

I(s) = ϕ1 ◦ Φ−1(s), s ∈ [0, 1]. (1)

The function I is symmetric along the vertical line s = 1
2
, and such that I(0) = I(1) = 0.

It is worthwhile observing that I(s) ∼ s
√

2 log
(
1
s

)
as s→ 0.
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Given r > 0, Ar = {x ∈ Rn; infa∈A |x− a| ≤ r} is the (closed) r-neighborhood of a set A

in Rn. The (Gaussian) outer Minkowski content of Borel set A is defined as

γ+n (A) = lim inf
r→0

1

r

[
γn(Ar)− γn(A)

]
.

Theorem [The Gaussian isoperimetric inequality] For any Borel set A in Rn,

γ+n (A) ≥ I
(
γn(A)

)
. (2)

Equality is achieved on the half-spaces H = {x ∈ Rn; 〈x, u〉 ≤ h} where u is a unit vector

and h ∈ R.

The measure of a half-space is computed in dimension one, γn(H) = Φ(h), and its

boundary measure is

γ+n (H) = lim inf
r→0

1

r

[
Φ(h+ r)− Φ(h)

]
= ϕ1(h).

The Gaussian isoperimetric inequality thus expresses equivalently that, if H is a half-space

such that Φ(h) = γn(H) = γn(A), then

γ+n (A) ≥ γ+n (H), (3)

and half-spaces are the extremal sets of the Gaussian isoperimetric problem.

Integrating along the neighborhoods, (3) is equivalently formulated as

γn(Ar) ≥ γn(Hr), r > 0, (4)

provided that γn(A) = (≥) γn(H), or

Φ−1
(
γn(Ar)

)
≥ Φ−1

(
γn(A)

)
+ r, r > 0 (5)

(since γn(Hr) = Φ(h+ r)).
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Linear (affine) transformations yield the isoperimetric statement for any Gaussian mea-

sure. The dimension-free character allows furthermore for an infinite-dimensional formula-

tion on an abstract Wiener space (E,H, µ), developed first in [10], as

Φ−1
(
µ(A+ rK)

)
≥ Φ−1

(
µ(A)

)
+ r, r ≥ 0,

where K is the unit ball of the reproducing kernel Hilbert space H (cf. [3]). (Here A+ rK =

{a+ rh ; a ∈ A, h ∈ K}, which, in Rn, amounts to Ar for K the Euclidean unit ball.)

The following sections briefly present the various known proofs of the Gaussian isoperi-

metric inequality.

2 Limit of spherical isoperimetry

In the neighborhood formulation, the isoperimetric inequality for the (normalized) uniform

measure σN on the N -sphere SN in RN+1, due to P. Lévy [25] and E. Schmidt [31], expresses

that whenever A is a Borel set in SN , and B a spherical cap (geodesic ball) such that σN(A) =

(≥) σN(B), then

σN(Ar) ≥ σN(Br) (6)

for any r ≥ 0, where Ar is the r-neighborhood of A in the geodesic metric.

It is a folklore result, usually quoted as “Poincaré’s lemma”, that the normalized uniform

measure on the sphere
√
N SN , when projected on a n-dimensional subspace, converges as

N →∞ to the standard n-dimensional Gaussian measure (cf. e.g. [24]). Via this limit, V. Su-

dakov and B. Tsirel’son [32], and C. Borell [10], independently, put forward the Gaussian

isoperimetric inequality from the corresponding one on the sphere, the extremal spherical

caps turning into half-spaces.

3 Gaussian symmetrization

Classical proofs of the isoperimetric inequality on the sphere use symmetrization techniques

(see e.g. [19]). It is the contribution of A. Ehrhard [16] to have introduced a powerful (Steiner)

symmetrization procedure specifically attached to the Gaussian framework, with which he

provided a direct independent proof of the Gaussian isoperimetric inequality (along the

standard symmetrization scheme). Specifically, given a Borel set A in Rn, and u a direction

vector, define the (Gaussian) symmetrized set A∗ (in the direction u) such that, for any

x ∈ (Ru)⊥, A∗ ∩ (x+ Ru) = (−∞, a] where a ∈ [−∞,+∞] is given by

Φ(a) = γ1
(
A ∩ (x+ Ru)

)
.
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Then γn(A∗) = γn(A), and the task is to show that symmetrization decreases the boundary

measure γ+n (A∗) ≤ γ+n (A). For infinitely many directions u, the resulting symmetrized set is

a half-space.

4 Kernel rearrangement inequality

For Borel sets A,B in Rn, and t > 0, set

Kt(A,B) =

∫
Rn

∫
Rn

1A(x)1B
(
e−tx+

√
1− e−2t ) y

)
dγn(x)dγn(y).

It has been shown by C. Borell [11], using the Gaussian symmetrization technology of [16, 17],

that, whenever H is a half-space with the same Gaussian measure as a Borel set A, then

Kt(A,A) ≤ Kt(H,H). (7)

A heat flow argument of this inequality is provided in [29], extended in a diffusion process

picture in [18]. It is shown in [23, 24] that, for any Borel set A and any t > 0,

γn(A)−Kt(A,A) = Kt(A,A
c) ≤ arccos(e−t)√

2π
γ+n (A),

and that, if H is a half-space,

lim
t→0

√
2π

arccos(e−t)
Kt(H,H

c) = γ+n (H).

Combined with (7), the latter yields that γ+n (A) ≥ γ+n (H) whenever γn(A) = γn(H), that is

the Gaussian isoperimetric inequality.

5 Brunn-Minkowski inequality

In [16], A. Ehrhard discovered, using Gaussian symmetrization, an improved form of the

Brunn-Minkowski inequality for Gaussian measures

Φ−1
(
γn(θA+ (1− θ)B)

)
≥ θΦ−1

(
γn(A)

)
+ (1− θ) Φ−1

(
γn(B)

)
(8)

for any θ ∈ [0, 1] and any convex bodies A, B in Rn. This inequality has been extended to

the case of only one convex body in [22], and finally to all Borel sets in [12] by pde methods.

New recent proofs include [33, 21, 30].

The inequality (8) applied to B the Euclidean ball with center the origin and radius r
1−θ

yields (5) as θ → 1.
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6 Limit of a two-point inequality

In [8], S. Bobkov showed that for any smooth function f : Rn → [0, 1],

I
(∫

Rn

f dγn

)
≤
∫
Rn

√
I(f)2 + |∇f |2 dγn. (9)

Applied to a (smooth) approximation of f = 1A, this inequality yields (2). This functional

form is actually equivalent to (2) when considering the level sets of functions defined on

Rn+1.

The proof of (9) in [8] is based on the two-point inequality

I
(
a+b
2

)
≤ 1

2

√
I(a)2 + 1

2
|a− b|2 + 1

2

√
I(b)2 + 1

2
|a− b|2

for all a, b ∈ [0, 1], and a tensorization argument and the central limit theorem. The stability

by product of the functional inequality (9) is indeed a main feature (being true for n = 1, it

holds for any dimension n).

7 Heat flow monotonicity

A direct heat flow proof of Bobkov’s inequality (9) has been presented in [4]. Let

pt(x) =
1

(4πt)
n
2

e−
1
4t
|x|2 , t > 0, x ∈ Rn,

be the standard heat kernel, fundamental solution of the heat equation ∂tpt = ∆pt. The

convolution semigroup Ptf(x) = f ∗ pt(x), t > 0, solves ∂tPtf = ∆Ptf with initial data f .

At t = 1
2
, pt is just the standard Gaussian density so that P 1

2
f(0) =

∫
Rn fdγn (while

P0f = f). In order to verify (9), it suffices therefore to show that, for a smooth function

f : Rn → [0, 1], (at any point),

Ps

(√
I (P 1

2
−sf)2 + 2s|∇P 1

2
−sf |2

)
, s ∈ [0, 1

2
],

is increasing, which is simply achieved taking its derivative (cf. [4]). A martingale proof along

the same line, which includes extensions to path (Wiener) spaces, is provided in [7, 14].

8 Geometric measure theory

A proof of the Gaussian isoperimetric inequality relying on geometric measure theory is

presented in the note by F. Morgan [27], with the suitable version of the Heinze-Karcher
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inequality on weighted manifolds. This inequality provides an upper bound on the volume

of a one-sided neighborhood of a hypersurface in terms of its mean curvature and the Ricci

curvature of the ambient manifold. In Gauss space, it yields

γn(A)

γ+n (S)
≤ γn(H)

γ+n (H)

where S is a minimizing hypersurface enclosing a set A with γn(A) = γn(H). See also

E. Milman [26], relying on regularity of isoperimetric minimizers, both in the interior and

on the boundary, as emphasized in the early work by M. Gromov [20].

9 Deficit

A stronger version of the isoperimetric inequality examines lower bounds on the deficit

γ+n (A)− γn(H+)

in terms of a functional measuring the proximity of a half-spaceH = Hu = {x ∈ Rn; 〈x, u〉 ≤ h}
such as γn(Hu) = γn(A), with the Borel set A. First steps in this investigation involved a geo-

metric analysis with the Ehrhard symmetrization [15], and a study of the deficit in the kernel

rearrangement inequality (7) [28, 29, 18]. A variational method is developed by M. Barchiesi,

A. Brancolini and V. Julin [6] providing sharp bounds on the deficit. These authors introduce

a technique which is based on an analysis of the first and the second variation conditions of

solutions to a suitable minimization problem, providing a direct proof of the sharp deficit

bound

γ+n (A)− γn(H+) ≥ c
(
γn(A)

)√
inf

u∈Sn−1
γn(A∆Hu)

(where c(γn(A)) > 0 only depends on the measure of A).

10 Extension to strongly log-concave measures

The Gauss space and measure is a model example (of positive curvature and infinite dimen-

sion in the language of [5]) to which other examples may be compared. A most natural and

famous instance is the case of a probability measure dµ = e−V dx on Rn whose potential

V : Rn → R is more convex than the quadratic potential, that is V (x) − c
2
|x|2, x ∈ Rn, is

convex for some c > 0. A main result in this setting is that the isoperimetric profile Iµ of µ

is bounded from below by the Gaussian one. That is, if

Iµ(s) = inf
{
µ+(A) ;µ(A) = s

}
, s ∈ [0, 1],
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where the infimum is running over all Borel sets A in Rn (and with a definition of µ+(A)

similar to γ+n (A)), then

Iµ ≥
√
c I. (10)

The property (10) has been established in [4] by the heat flow monotonicity method

(Section 6). A proof using needle decomposition has been proposed in [9]. A celebrated

contraction principle in optimal transport by L. Caffarelli [13], expressing that µ is the
1√
c
-Lipschitz image of γn, produces a neat and direct proof of (10) (although not saying

anything on the Gaussian case itself). The geometric measure theory approach outlined

in Section 7 covers the framework of weighted Riemannian manifolds with (generalized)

curvature bounded from below by a positive constant, also covered by the heat flow argument

(cf. [4, 5]).
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