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Large deviations of Gaussian vectors

Let X be a centered Gaussian random vector, on some probability space (Ω,A,P), with

values in a real separable Banach space E equipped with its Borel σ-algebra B, and with

norm ‖ · ‖.

It is a consequence of the sharp integrability of the norms of Gaussian random vectors

(cf. [1]) that

lim
t→∞

t2 logP
(
‖X‖ ≥ t

)
= − 1

2σ2
(1)

where

σ2 = sup
ξ∈E∗,‖ξ‖≤1

E
(
〈ξ,X〉2

)
. (2)

This result is actually a particular case of a more general large deviation principle for the

family of laws of εX as ε→ 0, providing further knowledge on tail behaviors.

The post briefly presents this large deviation theorem. General references on (Gaussian)

large deviations include [14, 8, 7, 11, 6, 13] etc.
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1 Rate function

Given a centered Gaussian random vector X on (Ω,A,P) with values in E, its law µ on

the Borel sets of E gives rise to an abstract Wiener space structure (E,H, µ), in which the

Hilbert space H ⊂ E, with scalar product 〈·, ·〉H, is the reproducing kernel Hilbert space

associated to the covariance structure of µ (cf. [2]).

For the example of the Wiener measure µ on the Banach space E = C([0, 1]) of real

continuous functions on [0, 1], law of a standard Brownian motion or Wiener process W =

(W (t))t∈[0,1], the reproducing kernel Hilbert space H is identified as the subspace of E =

C([0, 1]) consisting of the absolutely continuous functions h : [0, 1]→ R, with almost every-

where derivative h′ in L2([0, 1]) (for the Lebesgue measure), and with

|h|H =

(∫ 1

0

h′(t)2 dt

)1/2

.

The rate function I : E → [0,+∞] which will govern the large deviation properties of

εX as ε→ 0 is defined as

I(x) =

{
1
2
|x|2H if x ∈ H,

+∞ if x /∈ H.
(3)

In the large deviation language, this rate function is a good rate function in the sense that

its level sets {I ≤ a}, a ≥ 0, are compact in E (due to the compactness of the H-balls in

E).

2 The large deviation principle

Large deviations for Gaussian measures go back to M. Schilder [12] for the Wiener measure,

and to M. Donsker and S. Varadhan [9] in general. The study of [9] actually adresses the

large deviation principle for sums of independent Banach space valued random variables, the

Gaussian case being a particular case.

In the context exposed in the first section, the following theorem presents the large

deviation behavior of the law of εX as ε→ 0. For a subset A of E, let

I(A) = inf
x∈A
I(x).

Theorem 1 (The Gaussian large deviation principle). For any closed set F in E,

lim sup
ε→0

ε2 logP(εX ∈ F ) ≤ −I(F ). (4)
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For any open set O in E,

lim inf
ε→0

ε2 logP(εX ∈ O) ≥ −I(O). (5)

Applied to complements of balls, this theorem easily produces the limit (1), together with

the observation that σ = sup|h|H≤1 ‖h‖.

The proof of the upper-bound (4) in Theorem 1 presented here relies on isoperimetric and

concentration inequalities (cf. [3, 4]) which provide a very convenient tool to this task. The

lower-bound (5) classically relies on the Cameron-Martin translation formula. The combined

arguments actually produce a measurable version of the large deviation principle, without

referring to any topology associated to the underlying abstract Wiener space (cf. [5, 10]).

Proof. A simple proof of the upper-bound (4) may therefore be provided by the Gaussian

isoperimetric inequality (actually only the suitable concentration properties). Namely, let F

be closed in E, and take r such that 0 < r < I(F ). By the very definition of I(F ),

F ∩
√

2rK = ∅,

where K is the (closed) unit ball in H. Since F is closed and K is compact in E, there exists

η > 0 such that it still holds true that

F ∩
[√

2rK +BE(0, η)
]

= ∅

where BE(0, η) is the ball with center the origin and with radius η for the norm ‖ · ‖ in E.

Clearly

lim
ε→0

P
(
εX ∈ BE(0, η)

)
= lim

ε→0
P
(
X ∈ BE(0, η

ε
)
)

= 1.

Recall now the Gaussian isoperimetric inequality for the law of X (cf. [3]), expressing

that, whenever P(X ∈ A) ≥ Φ(a) = 1√
2π

∫ a
−∞ e

− 1
2
x2dx for some a ∈ R,

P(X ∈ A+ sK) ≥ Φ(a+ s)

for every s ≥ 0. For ε > 0 small enough, P(X ∈ BE(0, η
ε
)) ≥ 1

2
= Φ(0). Hence,

P(εX ∈ F ) ≤ P
(
εX /∈

√
2rK +BE(0, η)

)
≤ 1− Φ

(√
2r

ε

)
≤ e−r/ε

2

.

Therefore

lim sup
ε→0

ε2 logP(εX ∈ F ) ≤ −r,

which is the result since r < I(F ) is arbitrary.
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As mentioned above, the full strength of the Gaussian isoperimetric inequality is not

really needed, and weaker concentration inequalities are enough to achieve the conclusion.

For example, as emphasized in [4],

P(X ∈ A+ sK) ≥ 1− e−
1
2
s2+δ(µ(A))s

for every s ≥ 0, where δ(µ(A)) → 0 as µ(A) → 1, so that the proof may be developed

similarly.

The proof of the lower-bound (5) is an application of the Cameron-Martin translation

formula. Let h ∈ O ∩ H. Since O is open, there exists η > 0 such that h + BE(0, η) ⊂ O,

and thus

P(εX ∈ O) ≥ P
(
εX ∈ h+BE(0, η)

)
.

In the notation of [2], the Cameron-Martin translation formula yields that

P
(
εX ∈ h+BE(0, η)

)
= µ

(
h
ε

+BE(0, η
ε
)
)

= exp

(
− |h|

2
H

2ε2

)∫
BE(0,

η
ε
)

exp

(
− h̃

ε

)
dµ,

where it is recalled that h̃ is Gaussian under µ with variance |h|2H (h̃ =
∫ 1

0
h′(t)dW (t) on the

Wiener space). By Jensen’s inequality,∫
BE(0,

η
ε
)

exp

(
− h̃

ε

)
dµ ≥ µ

(
BE(0, η

ε
)
)

exp

(
−
∫
BE(0,

η
ε
)

h̃

ε
· dµ

µ(BE(0, η
ε
))

)
.

Now ∫
BE(0,

η
ε
)

h̃ dµ ≤
∫
E

|h̃|dµ ≤
(∫

E

h̃2dµ

)1/2

= |h|H.

For every ε > 0 small enough, µ(BE(0, η
ε
)) ≥ 1

2
(for example). As a consequence of the

various preceding lower-bounds,

P(εX ∈ O) ≥ 1

2
exp

(
− |h|

2
H

2ε2
− 2|h|H

ε

)
from which it follows that

lim inf
ε→0

ε2 logP(εX ∈ O) ≥ −1

2
|h|2H = −I(h).

This result for any h ∈ O∩H yields the announced lower-bound (5), and completing therefore

the proof of Theorem 1.
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