The Gaussian Blog

Large deviations of Gaussian vectors

Let X be a centered Gaussian random vector, on some probability space (€2, A, P), with
values in a real separable Banach space E equipped with its Borel o-algebra B, and with

norm || - ||.

It is a consequence of the sharp integrability of the norms of Gaussian random vectors
(cf. [1]) that

1
. 2 _
lim log P(I1X]| 2 1) = —— (1)
where
o> = sup  E((6X)?). (2)
gebx|lgl<1

This result is actually a particular case of a more general large deviation principle for the
family of laws of e X as ¢ — 0, providing further knowledge on tail behaviors.

The post briefly presents this large deviation theorem. General references on (Gaussian)
large deviations include [14, 8, 7, 11, 6, 13] etc.
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1 Rate function

Given a centered Gaussian random vector X on (2, A,P) with values in E, its law p on
the Borel sets of E gives rise to an abstract Wiener space structure (E,H, 1), in which the
Hilbert space H C FE, with scalar product (:,-),,, is the reproducing kernel Hilbert space
associated to the covariance structure of u (cf. [2]).

For the example of the Wiener measure p on the Banach space E = C([0,1]) of real
continuous functions on [0, 1], law of a standard Brownian motion or Wiener process W =
(W(t))te[o,l}v the reproducing kernel Hilbert space H is identified as the subspace of F =
C([0,1]) consisting of the absolutely continuous functions & : [0, 1] — R, with almost every-
where derivative i’ in L2([0,1]) (for the Lebesgue measure), and with

hly, = (/Olh’(t)th> 1/2.

The rate function Z : £ — [0, +00] which will govern the large deviation properties of

eX as € — 0 is defined as
1 2 .
= f reH,
I(z) = alehy i @ (3)
+oo if x ¢ H.

In the large deviation language, this rate function is a good rate function in the sense that
its level sets {Z < a}, a > 0, are compact in E (due to the compactness of the H-balls in

2 The large deviation principle

Large deviations for Gaussian measures go back to M. Schilder [12] for the Wiener measure,
and to M. Donsker and S. Varadhan [9] in general. The study of [9] actually adresses the
large deviation principle for sums of independent Banach space valued random variables, the
Gaussian case being a particular case.

In the context exposed in the first section, the following theorem presents the large
deviation behavior of the law of e X as ¢ — 0. For a subset A of E, let

Z(A) = inf Z(z).

T€EA

Theorem 1 (The Gaussian large deviation principle). For any closed set F in E,

limsupe®logP(eX € F) < —Z(F). (4)

e—0



For any open set O in E,

1imiglf52 logP(eX € O) > —Z(0). (5)

Applied to complements of balls, this theorem easily produces the limit (1), together with
the observation that o = supy,, <1 [|h]|.

The proof of the upper-bound (4) in Theorem 1 presented here relies on isoperimetric and
concentration inequalities (cf. [3, 4]) which provide a very convenient tool to this task. The
lower-bound (5) classically relies on the Cameron-Martin translation formula. The combined
arguments actually produce a measurable version of the large deviation principle, without
referring to any topology associated to the underlying abstract Wiener space (cf. [5, 10]).

Proof. A simple proof of the upper-bound (4) may therefore be provided by the Gaussian
isoperimetric inequality (actually only the suitable concentration properties). Namely, let F’
be closed in E, and take r such that 0 < r < Z(F). By the very definition of Z(F),

FNvork =0,

where I is the (closed) unit ball in H. Since F'is closed and K is compact in F, there exists
1 > 0 such that it still holds true that

F O [V2r K+ Bg(0,n)] = 0

where Bg(0,7n) is the ball with center the origin and with radius n for the norm || - || in E.
Clearly

limP(eX € Bp(0,n)) = limP(X € Bg(0,2)) = 1.

e—0 e—0 €

Recall now the Gaussian isoperimetric inequality for the law of X (cf. [3]), expressing
that, whenever P(X € A) > ®(a) = \/%7 e e~2%dx for some a € R,

PXe€eA+sK) > P(a+s)

for every s > 0. For € > 0 small enough, P(X € Bg(0,2)) > 3 = ®(0). Hence,

2
]P’(EXE F) < P(e’:‘X ¢ \/2T’C+BE<Oa77)) < 1—(I)<_T> < e—r/az'
£
Therefore
limsupe®logP(eX € F) < —r,

e—0

which is the result since r < Z(F) is arbitrary.



As mentioned above, the full strength of the Gaussian isoperimetric inequality is not
really needed, and weaker concentration inequalities are enough to achieve the conclusion.
For example, as emphasized in [4],

P(X € A+5sK) > 1— o~ 58 H0(n(A))s

for every s > 0, where 6(u(A)) — 0 as u(A) — 1, so that the proof may be developed
similarly.

The proof of the lower-bound (5) is an application of the Cameron-Martin translation
formula. Let h € O NH. Since O is open, there exists n > 0 such that h + Bg(0,n) C O,
and thus

P(eX € O) > P(eX € h+ Bg(0,7)).

In the notation of [2], the Cameron-Martin translation formula yields that

P(eX € h+ Bg(0,1)) = p(2+ Bg(0,2))

B2 h
= exp | — [l / exp ( — = |du,
2¢? ) JBg0,m) €

where it is recalled that % is Gaussian under y with variance |h|3, (h = fol h'(t)dW (t) on the
Wiener space). By Jensen’s inequality,

h h du
exp | — — |du > p(Bg(0,2 exp(—/ —-—).
/BE(o,g) P ( 5) w2 p(Bu(0,2) Bp,1) € H(Bg(0,1))

. . . 1/2
[ Tdw< [ il < (/h%) — Ihl.
Bp(0,2) E E

For every ¢ > 0 small enough, u(Bg(0,2)) > 5 (for example). As a consequence of the

Now

various preceding lower-bounds,
P > = S e s A e £
(eX €0) 5 exp ( 922 -
from which it follows that

1
limigleQ logP(eX € O) > —5 |h|3, = —Z(h).
E—

This result for any h € ONH yields the announced lower-bound (5), and completing therefore
the proof of Theorem 1. O



References

[1] Integrability of norms of Gaussian random vectors and processes. The Gaussian Blog.

[2] Admissible shift, reproducing kernel Hilbert space, and abstract Wiener space. The
Gaussian Blog.

[3] The Gaussian isoperimetric inequality. The Gaussian Blog.
[4] Gaussian concentration inequalities. The Gaussian Blog.

[5] G. Ben Arous, M. Ledoux. Schilder’s large deviation principle without topology. Pitman
Res. Notes Math. Ser. 284, 107-121 (1993).

[6] V. Bogachev. Gaussian measures. Math. Surveys Monogr. 62. American Mathematical
Society (1998).

[7] A. Dembo, O. Zeitouni. Large Deviations Techniques and Applications. Springer (1998).
[8] J.-D. Deuschel, D. Stroock. Large deviations. Academic Press (1989).

[9] M. D. Donsker, S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time I1I. Comm. Pure Appl. Math. 29, 389-461 (1976).

[10] M. Ledoux. Isoperimetry and Gaussian Analysis. Ecole d’Eté de Probabilités de St-Flour
1994. Lecture Notes in Math. 1648, 165-294. Springer (1996).

[11] M. Lifshits. Gaussian random functions. Kluwer (1994).

[12] M. Schilder. Asymptotic formulas for Wiener integrals. Trans. Amer. Math. Soc. 125,
63-85 (1966).

[13] D. Stroock. Probability theory: an analytic view. Cambridge University Press (2011).

[14] S. R. S. Varadhan. Large Deviations and Applications. STAM Publications, Philadelphia
(1984).



