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Mehler kernel, and the

Ornstein-Uhlenbeck operator

Let

ht(x) =
1

(4πt)
n
2

e−
1
4t
|x|2 , t > 0, x ∈ Rn,

be the standard heat kernel, fundamental solution of the heat equation

∂tht = ∆pt

with ∆ the standard Laplacian. The convolution semigroup Htf(x) = f ∗ht(x), t > 0, solves

∂tHtf = ∆Htf = Ht∆f with initial data f . At t = 1
2
, ht is just the standard Gaussian

density so that H 1
2
f(0) =

∫
Rn fdγn (while H0f = f), where dγn(x) = 1

(2π)
n
2
e−

1
2
|x|2dλn(x) is

the standard Gaussian measure on the Borel sets of Rn.

While the Gaussian density is the central piece of the heat kernel definition, invariance of

the heat semigroup (Ht)t≥0 is still with respect to the Lebesgue measure (in the sense that∫
Rn ht(x)dλn(x) = 1). There is a related Gaussian kernel, the Mehler kernel,

pt(x, y) =
1

(1− e−2t)n
2

exp

(
− e−2t

2(1− e−2t)
[
|x|2 + |y|2 − 2etx · y

])
, (1)

t > 0, x, y ∈ Rn, which has the advantage to be invariant with respect to γn, i.e.∫
Rn

pt(x, y)dγn(y) = 1

(for every x ∈ Rn).
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The Mehler kernel induces the Ornstein-Uhlenbeck semigroup, with infinitesimal gener-

ator the drifted Laplacian L = ∆ − x · ∇. The spectrum of the operator −L is N, and the

eigenvectors are the Hermite polynomials (cf. [1]).

It is the purpose of this post to briefly present some general aspects and results on the

Mehler kernel and the Ornstein-Uhlenbeck operator. Standard references include [6, 5, 7, 8,

4]...
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1 Mehler kernel and Ornstein-Uhlenbeck operator

The Mehler kernel, as given in (1), satisfies the basic semigroup property with respect to γn,∫
Rn

ps(x, z) pt(z, y)dγn(z) = ps+t(x, y) (2)

for all s, t > 0 and x, y ∈ Rn. As such, it generates the Ornstein-Uhlenbeck semigroup

Ptf(x) =

∫
Rn

f(z) pt(x, z)dγn(z), t > 0, x ∈ Rn, (3)

for any suitable measurable function f : Rn → R, with the natural extension P0 = Id. After

the change of variable e−tx+
√

1− e−2t y = z in (3), it takes the form

Ptf(x) =

∫
Rn

f
(
e−tx+

√
1− e−2t y

)
dγn(y), t ≥ 0, x ∈ Rn, (4)
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known as Mehler’s integral formula.

The family (Pt)t≥0 defines a Markov semigroup, symmetric in L2(γn) and invariant with

respect to γn, that is∫
Rn

fPtg dγn =

∫
Rn

gPtfdγn and

∫
Rn

Ptfdγn =

∫
Rn

fdγn.

These properties are actually a reformulation of the rotational invariance of Gaussian mea-

sures, expressing that under γn ⊗ γn, the couples(
x sin(θ) + y cos(θ), x cos(θ)− y sin(θ)

)
,

with e−t = sin(θ), are distributed as (x, y).

The infinitesimal generator

L = lim
t→0

1

t
[Pt − P0]

of the Markov semigroup (Pt)t≥0 is the drifted Laplacian L = ∆−x ·∇. This can be checked

for instance on the Mehler formula (4) since

d

dt
Ptf =

∫
Rn

(
− e−tx+

e−2t√
1− e−2t

y
)
· ∇f

(
e−tx+

√
1− e−2t y

)
dγn(y)

= −e−t
∫
Rn

x · ∇f
(
e−tx+

√
1− e−2t y

)
dγn(y)

+ e−2t
∫
Rn

∆f
(
e−tx+

√
1− e−2t y

)
dγn(y)

= LPtf

where the last steps follows from integration by parts in the y variable.

The semigroup (Pt)t≥0 is invariant with respect to γn (
∫
Rn Lfdγn = 0), and fulfills the

basic integration by parts formula by with respect to γn∫
Rn

f(−Lg)dγn =

∫
Rn

∇f · ∇g dγn (5)

for every smooth functions f, g : Rn → R.

The semigroup (Pt)t≥0 is a contraction in all Lp(µ)-spaces with norms ‖ · ‖p, 1 ≤ p ≤ ∞.

The hypercontractivity property [2] on the other hand expresses that whenever 1 < p < q <∞
and e2t ≥ q−1

p−1 ,

‖Ptf‖q ≤ ‖f‖p. (6)

The Ornstein-Uhlenbeck semigroup (Pt)t≥0 is ergodic, limt→∞ Ptf =
∫
Rn fdγn. The con-

vergence in the L2(γn)-norm is exponential on mean-zero functions f : Rn → R as a conse-

quence of the Gaussian Poincaré inequality (cf. Section 6).
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2 Spectrum of the Ornstein-Uhlenbeck operator

The spectrum of the operator −L is N, with eigenfunctions given by the Hermite polynomials

Hk, k ∈ Nn,

LHk = −k Hk (7)

with k = k1 + · · ·+ kn, k = (k1, . . . , kn).

This may be seen in various ways. For example, by the Mehler formula (4), the action of

Pt on the multi-dimensional generating function fλ(x) = eλ·x−
1
2
|λ|2 , x, λ ∈ Rn, of the family

of Hermite polynomials, is given by

Ptfλ(x) =

∫
Rn

eλ·(e
−tx+

√
1−e−2ty)− 1

2
|λ|2dγn(y) = fe−tλ(x).

Therefore PtHk = e−ktHk, t ≥ 0, where k = k1 + · · · + kn, k = (k1, . . . , kn), and hence

LHk = −kHk.

As a consequence of the integration by parts formual (7), for any (smooth) function

f : Rn → R, and any k ∈ Nn,

k

∫
Rn

f Hk dγn = −
∫
Rn

f LHk dγn =

∫
Rn

∇f · ∇Hk dγn,

which is a generalized form of the basic integration by parts formula∫
Rn

xf dγn =

∫
Rn

∇f dγn

(as vector integrals), corresponding to the choice of the first eigenfunctions Hk, k = 1.

3 Differential formulas

The following differential formulas on the Mehler kernel are fundamental in Gaussian calculus

of variation, and directly follow from the Mehler formula (4).

Whenever f : Rn → R is smooth enough, t > 0, x ∈ Rn,

∇Ptf(x) = e−t
∫
Rn

∇f
(
e−tx+

√
1− e−2t y

)
dγn(y) = e−t Pt(∇f)(x), (8)

∇Ptf(x) =
e−t√

1− e−2t

∫
Rn

y f
(
e−tx+

√
1− e−2t y

)
dγn(y), (9)

the second resulting from integration by parts.
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4 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process {Xx
t ; t ≥ 0, x ∈ Rn} with associated semigroup

Ptf(x) = E
(
f(Xx

t )
)

= E
(
f(Xt) |X0 = x)

)
, t ≥ 0, x ∈ Rn,

admits the explicit representation

Xx
t = e−t

(
x+
√

2

∫ t

0

esBs

)
where (Bs)s≥0 is a standard Brownian motion in Rn. This process is the solution of the

stochastic differential equation

dXt =
√

2 dBt −Xtdt.

The law of Xt given X0 = x is normal with mean e−tx and covariance
√

1− e−2t Id, from

which the Mehler formula (4) is recovered, and if X0 is distributed as N (0, Id), so is Xt

(invariance). For s, t ≥ 0,

Cov(Xs, Xt) = e−|s−t| (1− e−2(s∧t)).

5 Harmonic oscillator

The Ornstein-Uhlenbeck operator is closely related to another famous and well-studied op-

erator, the harmonic oscillator in Rn, given on smooth functions f by

Hf = ∆f − 1

4
|x|2f. (10)

The harmonic oscillator H is thus adding a potential to the Laplace operator. It is still

symmetric with respect to the Lebesgue measure, and represents the simplest model of

quantum mechanics. Denoting by U0 = e−
1
4
|x|2 , x ∈ Rn, the ground state function for which

HU0 = −n
2
U0, the (ground state) transformation

f 7→ n

2
f +

1

U0

H(U0f)

yields the Ornstein-Uhlenbeck operator L since

H(U0f) = −n
2
U0f + U0 ∆f + 2∇U0 · ∇f.

The transformation f 7→ U0f therefore carries over the analysis of the harmonic oscillator H

into the analysis of the Ornstein-Uhlenbeck operator L in terms of Hermite polynomials.
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6 A proof of the Gaussian Poincaré inequality

The Gaussian Poincaré inequality

Varγn(f) ≤
∫
Rn

|∇f |2dγn, (11)

for functions f in L2(γn) as well as their gradients, is presented in the post [3]. A quick proof

may be provided by interpolation along the Ornstein-Uhlenbeck semigroup. Namely, for a

smooth function f : Rn → R,

Varγn(f) =

∫
Rn

f 2dγn −
(∫

Rn

f dγn

)2

=

∫ ∞
0

(
d

dt

∫
Rn

(Ptf)2dγn

)
dt.

Now, by the integration by parts formula (5),

d

dt

∫
Rn

(Ptf)2dγn = 2

∫
Rn

Ptf LPtfdγn = 2

∫
Rn

|∇Ptf |2dγn.

Using that ∇Ptf = e−tPt(∇f), t ≥ 0 (8), and that Pt is a contraction in L2(γn), it follows

that

Varγn(f) = 2

∫ ∞
0

e−2t
(∫

Rn

∣∣Pt(∇f)
∣∣2dγn)dt

≤ 2

∫ ∞
0

e−2t
(∫

Rn

|∇f |2dγn
)
dt

=

∫
Rn

|∇f |2dγn.

The Gaussian Poincaré inequality induces (is actually equivalent to) the exponential

decay for mean-zero functions f in L2(γn),

‖Ptf‖2 ≤ e−t ‖f‖2 , t ≥ 0. (12)

Namely,

d

dt
e2t ‖Ptf‖22 = e2t

(
2

∫
Rn

(Ptf)2dγn + 2

∫
Rn

Ptf LPtf dγn

)
= e2t

(
2

∫
Rn

(Ptf)2dγn − 2

∫
Rn

|∇Ptf |2 dγn
)

where integration by parts has been used. Hence the Poincaré inequality (11) applied to Ptf

ensures that e2t ‖Ptf‖22, t ≥ 0, is decreasing, which amounts to (12).
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This exponential decay may also be viewed spectrally, as a spectral gap. Namely, in

dimension one for simplicity, if a mean-zero function f is Fourier-Hermite expanded as f =∑
k≥1 akhk, then, for every t ≥ 0,

Ptf =
∑
k≥1

e−ktakhk.

Taking the L2(γ1)-norm,

‖Ptf‖22 =
∑
k≥1

e−2kta2k ≤ e−2t
∑
k≥1

a2k = e−2t ‖f‖22.
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