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Mehler kernel, and the
Ornstein-Uhlenbeck operator

Let 1
hi(z) = - e_ﬁlz‘z, t>0, reR",
(4rt)2

be the standard heat kernel, fundamental solution of the heat equation

Ohy = Ap,

with A the standard Laplacian. The convolution semigroup H,f(z) = f*h,(z), t > 0, solves
OH,f = AH,f = H;Af with initial data f. At t = %, h; is just the standard Gaussian
density so that H1 f(0) = [;. fdvy, (while Hof = f), where dv,(z) = 5 L2l d)\, () is

the standard Gaussian measure on the Borel sets of R™.

While the Gaussian density is the central piece of the heat kernel definition, invariance of
the heat semigroup (Hy),, is still with respect to the Lebesgue measure (in the sense that
Jgn hie(x)dXy(x) = 1). There is a related Gaussian kernel, the Mehler kernel,

672t

=t ( o e el 2 y]); 1)

t >0, z,y € R", which has the advantage to be invariant with respect to ~,, i.e.

pt(x7 y) -

/npt(x,y)d%(y) =1

(for every z € R™).
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The Mehler kernel induces the Ornstein-Uhlenbeck semigroup, with infinitesimal gener-
ator the drifted Laplacian L = A — x - V. The spectrum of the operator —L is N, and the
eigenvectors are the Hermite polynomials (cf. [1]).

It is the purpose of this post to briefly present some general aspects and results on the
Mehler kernel and the Ornstein-Uhlenbeck operator. Standard references include [6, 5, 7, 8,
4]...
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1 Mehler kernel and Ornstein-Uhlenbeck operator
The Mehler kernel, as given in (1), satisfies the basic semigroup property with respect to v,

[ po 2 pe)an(a) = peaday 2)

for all s,£ > 0 and x,y € R™. As such, it generates the Ornstein-Uhlenbeck semigroup
P f(x) = f2)pe(z, 2)dy(2), t>0, xR, (3)
RTL

for any suitable measurable function f : R™ — R, with the natural extension Py = Id. After
the change of variable e 'z + /1 — e~2ty = 2 in (3), it takes the form

P f(z) = /n fleTz+V1—e2y)dy(y), t>0, z€R", (4)



known as Mehler’s integral formula.

The family (P;),s, defines a Markov semigroup, symmetric in L?(7,) and invariant with
respect to v,, that is

fPtgd’Vnzf gP,fdv, and /Ptfd%z fdyn.
R™ n R™ R™

These properties are actually a reformulation of the rotational invariance of Gaussian mea-
sures, expressing that under 7, ® ,, the couples

(zsin(6) + y cos(8), z cos(d) — ysin(6)),
with e™" = sin(f), are distributed as (z,y).

The infinitesimal generator

1
L = lim - [P~ R

of the Markov semigroup (%), is the drifted Laplacian L = A —z- V. This can be checked
for instance on the Mehler formula (4) since

d —2t
@l = / <_€_t“¢1€?e2ty> V(e + V1 — e y)dya(y)

- _e—t/ z-Vf(e "z + V1 —e2y)dy,(y)

+ e_%/ Af(e "tz + V1 —e2y)dv.(y)
]Rn
- L_Ptf
where the last steps follows from integration by parts in the y variable.

The semigroup (F;),, is invariant with respect to v, ( Jgn Lfdy, = 0), and fulfills the
basic integration by parts formula by with respect to =,

. f(=Lg)dy, = | Vf-Vgdy, (5)

Rn
for every smooth functions f,g: R® — R.

The semigroup (%), is a contraction in all LP(u)-spaces with norms || - ||p, 1<p<oo.
The hypercontractivity property [2] on the other hand expresses that whenever 1 < p < ¢ < 0o
and e%t > 1%,

1P flly < (L1, (6)

The Ornstein-Uhlenbeck semigroup (Pt)tzo is ergodic, lim;_,o, P, f = fR” fdv,. The con-
vergence in the L?(v,)-norm is exponential on mean-zero functions f : R™ — R as a conse-
quence of the Gaussian Poincaré inequality (cf. Section 6).
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2 Spectrum of the Ornstein-Uhlenbeck operator

The spectrum of the operator —L is N, with eigenfunctions given by the Hermite polynomials
Hka E € Nn?
LH, = —k Hy (7)

with k = ky + - + ko, k = (ku, ..., kn).

This may be seen in various ways. For example, by the Mehler formula (4), the action of
P, on the multi-dimensional generating function fy(z) = err=3A? gz X € R", of the family
of Hermite polynomials, is given by

Ptf/\(x) _ / eA-(e*ta:Jr\/l—e—%’y),%|)\|2dﬁyn(y) _ fe—t)\(x).

Therefore P.Hy = e ™Hy, t > 0, where k = ky + -+ + ky, k = (ki,...,k,), and hence
LH, = —kH,.

As a consequence of the integration by parts formual (7), for any (smooth) function
f:R" > R, and any k € N",

k fHydy, = — fLH,dy, = Vf-VHdy,,
1 R™ Rn
which is a generalized form of the basic integration by parts formula
/ xfdy, = Vfdy,
n Rn

(as vector integrals), corresponding to the choice of the first eigenfunctions Hy, k = 1.

3 Differential formulas

The following differential formulas on the Mehler kernel are fundamental in Gaussian calculus
of variation, and directly follow from the Mehler formula (4).

Whenever f: R"™ — R is smooth enough, ¢t > 0, x € R",

VRf@) = et [ Vi e VIZeT)dnt) = < RENE. ©®

VP, f(z) yfle 'z +V1—e2y)dv(y), (9)

eft
/I —e 2 /n

the second resulting from integration by parts.
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4 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process { X7 ;t > 0,2 € R"} with associated semigroup
P f(z) = ]E(f(Xf)) = E(f(Xt) | Xo = CC)), t>0, zeR",

admits the explicit representation

¢
X; = et(x—l—\/i/ esBs>
0

where (B;),, is a standard Brownian motion in R"”. This process is the solution of the
stochastic differential equation

dX, = V2dB; — X,dt.

The law of X, given X, = x is normal with mean e~*x and covariance v/1 — e=2¢Id, from
which the Mehler formula (4) is recovered, and if X, is distributed as N(0,1d), so is X;
(invariance). For s,t > 0,

Cov(X,, X;) = e st (1 — e72(s1)),

5 Harmonic oscillator

The Ornstein-Uhlenbeck operator is closely related to another famous and well-studied op-
erator, the harmonic oscillator in R", given on smooth functions f by

Hf = A~ lef (10)

The harmonic oscillator H is thus adding a potential to the Laplace operator. It is still
symmetric with respect to the Lebesgue measure, and represents the simplest model of
quantum mechanics. Denoting by U, = @—iW?, x € R™, the ground state function for which
HUy = —% Uy, the (ground state) transformation

n 1
— —H
fo 5 F+ G B
yields the Ornstein-Uhlenbeck operator L since
H(Upf) = —gU0f+UOAf+2VUO-Vf.

The transformation f — Uy f therefore carries over the analysis of the harmonic oscillator H
into the analysis of the Ornstein-Uhlenbeck operator L in terms of Hermite polynomials.
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6 A proof of the Gaussian Poincaré inequality

The Gaussian Poincaré inequality
Var,, (f) < [ [VfPdy, (11)
R’ﬂ

for functions f in L?(v,) as well as their gradients, is presented in the post [3]. A quick proof
may be provided by interpolation along the Ornstein-Uhlenbeck semigroup. Namely, for a
smooth function f : R™ — R,

Var,,(f) = - frdryn — (/nfd%)2 = /OOO (% /Rn(Ptf)Zd%>dt-

Now, by the integration by parts formula (5),

d

o | (P, = / PfLPfdy. = 2 | |VESPdy.
Rn n R’n/

Using that VBP.f = e 'P,(Vf), t > 0 (8), and that P, is a contraction in L%(v,), it follows

that
Var,, (f) = 2/0006_2t</Rn }Pt(Vf)\Qd%)dt

< 2/ 6_2t< |Vf|2d7n)dt
O R’n/

= | |VfPdyn.
Rn

The Gaussian Poincaré inequality induces (is actually equivalent to) the exponential
decay for mean-zero functions f in L2(v,),

1Py < e fll, £ 0. (12)
Namely,
d
Senglt = (2 [ vz [ pring,)
=e2f(2 | ®ppan, -2 rvafﬁd%)
n ]R’IL

where integration by parts has been used. Hence the Poincaré inequality (11) applied to P, f
ensures that ¢ | P,f||5, t > 0, is decreasing, which amounts to (12).



This exponential decay may also be viewed spectrally, as a spectral gap. Namely, in
dimension one for simplicity, if a mean-zero function f is Fourier-Hermite expanded as f =
> k1 arhy, then, for every ¢ > 0,

Ptf == Z e_ktakhk.

k>1

Taking the L?(v;)-norm,
IPfll; = Y e ™ag < e ai = e | f]l5-

k>1 k>1
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