
Some geometric inequalities

for Gaussian measures

Abstract

The note emphasizes some inequalities for Gaussian measures of geometric flavour.

Its pattern is modeled on the 2002 review article [10] by R. Lata la, with the remarkable

feature that all the conjectures exposed therein have now (2014) been solved.

Gaussian measures share some surprising geometric inequalities. The following reviews

the answers of the last decade to several conjectured inequalities, the Ehrhard inequality,

the S and B-inequalities and the Gaussian correlation inequality. The first section is a brief

reminder of the Gaussian isoperimetric inequality in order to put some of the results in

perspective.

Let γn be the standard Gaussian measure on the Borel sets of Rn, with density 1

(2π)
n
2
e−

1
2
|x|2 ,

x ∈ Rn, with respect to the Lebesgue measure.

1 The Gaussian isoperimetric inequality

Given r > 0, let Ar = {x ∈ Rn; infa∈A |x− a| ≤ r} be the (closed) r-neighborhood of a set A

in Rn. The (Gaussian) outer Minkowski content of Borel set A is given by

γ+(A) = lim inf
r→0

1

r

[
γ(Ar)− γ(A)

]
.

A half-space in Rn is defined as H = {x ∈ Rn; 〈x, u〉 ≤ h} where u is a unit vector and

h ∈ R.

Theorem 1 (The Gaussian isoperimetric inequality [2, 15]). For any Borel set A in Rn, if

H is a half-space such that γ(A) = γ(H), then

γ+(A) ≥ γ+(H). (1)
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The measure of a half-space is computed in dimension one as γ(H) = Φ(h) where Φ(t) =
1√
2π

∫∞
−t e

− 1
2
x2dx, t ∈ R, is the distribution function of the standard normal law on the real

line (with the convention Φ(−∞) = 0, Φ(+∞) = 1). Integrating along the neighborhoods,

(1) is equivalently formulated as

γ(Ar) ≥ γ(Hr), r > 0,

provided that γ(A) = (≥) γ(H), or

Φ−1
(
γ(Ar)

)
≥ Φ−1

(
γ(A)

)
+ r, r > 0 (2)

since γ(Hr) = Φ(h+ r).

Linear (affine) transformations yield the isoperimetric statement for any Gaussian mea-

sure. The dimension-free character allows furthermore for an infinite-dimensional formula-

tion on an abstract Wiener space (E,H, µ) as

Φ−1
(
µ(A+ rK)

)
≥ Φ−1

(
µ(A)

)
+ r, r ≥ 0,

where K is the unit ball of the associated reproducing kernel Hilbert spaceH, and A+rK =

{a + rh ; a ∈ A, h ∈ K} (see [11]). (Due to the linear structure, on the Euclidean space Rn,

Ar = A+ rB(0, 1) where B(0, 1) is the (closed) Euclidean unit ball.)

2 The Ehrhard inequality

The classical Brunn-Minkowski inequality in Euclidean space states that for any Borel sets

A and B in Rn,

voln
(
θA+ (1− θ)B

)
≥ θ voln(A) + (1− θ) voln(B), θ ∈ [0, 1]. (3)

(If A and B are subsets of Rn, A + B = {a + b ; a ∈ A, b ∈ B}.) This remarkable and

powerful geometric inequality, with numerous consequences and applications, may be used

in particular to recover the standard isoperimetric inequality in Rn. The task is to show

that, for fixed volume, balls are the extremal sets of the isoperimetric problem. That is, in

the integrated form, whenever voln(A) = (≥) voln(B) where B is some ball,

voln
(
A+B(0, r)

)
≥ voln

(
B +B(0, r)

)
for every r > 0. Now, if B = B(0, r0) for some r0, the choice in (3) of B = B(0, θr

1−θ ) such

that θ = r0
r0+r
∈ (0, 1), yields on the left-hand side θn voln(A + B(0, r)) while, by the choice
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of θ, the right-hand side is equal to

θ voln
(
B(0, r0)

)
+ (1− θ) voln

(
B
(
0, θr

1−θ

))
= θ rn0 voln

(
B(0, 1)

)
+ (1− θ) θnrn

(1− θ)n
voln

(
B(0, 1)

)
= θn(r0 + r)n voln

(
B(0, 1)

)
= θn voln

(
B(0, r0 + r)

)
= θn voln

(
B(0, r0) +B(0, r)

)
from which the claim follows.

Gaussian measures satisfy a similar property, in the form of the log-concavity inequality

log γn
(
θA+ (1− θ)B

)
≥ θ log γn(A) + (1− θ) log γn(B), θ ∈ [0, 1].

This inequality extends to any Gaussian measure on a separable Banach space E, and any

Borel sets A and B in E (cf. [5]). However, this log-concavity property does not imply the

Gaussian isoperimetry.

In 1983, A. Ehrhard [5] emphasized an improved form of log-concavity of Gaussian mea-

sures through the inverse Φ−1 of the distribution function Φ the standard normal distribution,

which in particular covers the isoperimetric inequality.

Theorem 2 (The Ehrhard inequality). For any Borel sets A,B in Rn, and any θ ∈ [0, 1],

Φ−1
(
γn(θA+ (1− θ)B)

)
≥ θΦ−1

(
γn(A)

)
+ (1− θ) Φ−1

(
γn(B)

)
.

Again, Theorem 2 extends to any Gaussian measure on a separable Banach space.

It is not difficult to see how Ehrhard’s inequality includes isoperimetry. Indeed, applying

it to 1
θ
A and to B = r

1−θB(0, 1), r > 0, θ ∈ (0, 1), where B(0, 1) is the (closed) Euclidean

unit ball, yields

Φ−1
(
γn(A+ rB(0, 1))

)
≥ θΦ−1

(
γn
(
1
θ
A
))

+ (1− θ) Φ−1
(
γn
(

r
1−θ B(0, 1)

))
.

As θ → 1,

Φ−1
(
γn(A+ rB(0, 1))

)
≥ Φ−1

(
γn(A)

)
+ r,

which is one form of Gaussian isoperimetry (2).

Theorem 2 was established for convex sets by A. Ehrhard [5] using symmetrization scheme

in Gauss space that he introduced to this task. It was extended to the case of only one of

the sets A, B to be convex (good enough to recover isoperimetry) in [8]. C. Borell [3] finally
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proved the full result using pde tools on the functional version, in the form of the following

Prékopa-Leindler-type inequality. If f, g, h : Rn → [0, 1] are measurable and θ ∈ [0, 1] are

such that

Φ−1
(
h(θx+ (1− θ)y)

)
≥ θΦ−1

(
f(x)

)
+ (1− θ) Φ−1

(
g(y)

)
,

for all x, y ∈ Rn, then

Φ−1
(∫

Rn

hdγn

)
≥ θΦ−1

(∫
Rn

fdγn

)
+ (1− θ)Φ−1

(∫
Rn

gdγn

)
.

Applied to f = 1A and g = 1B yields the statement in Theorem 2 (and this functional form

is actually equivalent to it when considering the level sets of functions defined on Rn+1).

The proof in [3]1 is based on a parabolic maximum principle applied to the second order

differential operator on Rn × Rn,

E = ∆x + ∆y + 2
n∑
i=1

∂xi∂yi

and the functional

C(t, x, y) = Uh
(
t, θx+ (1− θ)y

)
− θ Uf (t, x)− (1− θ)Ug(t, y), t ≥ 0, x, y ∈ Rn,

where, for q = h, f, g, Uq = Φ−1(uq) and

uq(t, x) =

∫
Rn

q
(
x+
√
t z
)
dγn(z).

3 The S-inequality

The S-inequality is a type of isoperimetric inequality with respect to homotheties, with strips

as extremal sets.

Theorem 3 (The S-inequality). Let A be a symmetric closed convex set in Rn, and let

S = {x ∈ Rn; |〈x, u〉| ≤ s}, u unit vector, s ≥ 0, be a strip such that γn(A) = γn(S). Then

γn(tA) ≥ γn(tS) for t ≥ 1,

and

γn(tA) ≤ γn(tS) for 0 ≤ t ≤ 1.

1Alternate proofs, posterior to the note, have been presented in: R. van Handel, The Borell-Ehrhard game,

Probab. Theory Related Fields 170, 555–585 (2018), and: J. Neeman, G. Paouris, An interpolation proof

of Ehrhard’s inequality, Geometric aspects of functional analysis, Lecture Notes in Math. 2266, 263–278.

Springer (2020).
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This theorem has been established by R. Lata la and K. Oleszkiewicz [9], relying on

technical arguments and some clever real-line inequalities. It was observed by S. Szarek

(cf. [9]) that from the S-inequality the moment comparison of Gaussian measures on Banach

spaces is the same than in the real case. That is, if µ is a centered Gaussian measure on a

real separable Banach space E with norm ‖ · ‖, then( ∫
E
‖x‖qdµ

)1/q( ∫
R |x|qdγ1

)1/q ≤
( ∫

E
‖x‖pdµ

)1/p( ∫
R |x|pdγ1

)1/p
for any 0 ≤ p ≤ q.

4 The B-inequality

The B-inequality for Gaussian measure is another statement about convex sets. It has been

established by D. Cordero-Erausquin, M. Fradelizi and B. Maurey [4].

Theorem 4 (The B-inequality). Let A be a symmetric closed convex set in Rn. For every

α, β > 0,

γn
(√

αβA
)
≥
√
γn(αA) γn(βA).

In an equivalent formulation, the map t 7→ γn(etA) is log-concave on R.

A interesting feature of the proof of [4] is that it is connected to (but lies much deeper

than) the Gaussian Poincaré inequality for functions f which are orthogonal to constants

and to linear functions, for which the constant is improved from 1 to 1
2

as

Varγn(f) ≤ 1

2

∫
Rn

|∇f |2dγn.

This is in particular clear on the Hermite expansion proof of the Gaussian Poincaré inequality

(cf. [1]).

5 The Gaussian correlation inequality

Theorem 5 (The Gaussian correlation inequality). For any symmetric convex sets A,B in

Rn,

γn(A ∩B) ≥ γn(A) γn(B). (4)
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The same result holds true for any centered Gaussian measure on a Banach space E, and

symmetric convex sets in E.

The Gaussian correlation inequality has aroused great interest over the last 50 years2. In

dimension 2, the result goes back to L. Pitt [12]. When one of the sets A or B is a symmetric

strip, the inequality was proved independently by C. Khatri [7] and Z. Šidák [14]. It was

extended to the case when one of the sets is a symmetric ellipsoid by G. Hargé [6]. The final

step was achieved in a striking short contribution by T. Royen in 2014 [13].

As in earlier proofs, T. Royen uses an interpolation argument to establish that for any

centered Gaussian random vector X = (X1, . . . , Xn) in Rn and any 1 ≤ m < n,

P
(

max
1≤i≤n

|Xi| ≤ 1
)
≥ P

(
max
1≤i≤m

|Xi| ≤ 1
)
P
(

max
m<i≤n

|Xi| ≤ 1
)
.

Working rather with the vector (X2
1 , . . . , X

2
n), his main new ingredient is a clever use of the

Laplace transform of Gamma distributions to control the signs in the derivative along the

interpolation.
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