
The Gaussian product conjecture

Abstract

Let (X1, . . . , Xn) be a centered Gaussian vector in Rn defined on some probability

space (Ω,A,P). The Gaussian product conjecture (inequality) expresses that for any

integers p1, . . . , pn ∈ N,

E
( n∏
k=1

X2pk
k

)
≥

n∏
k=1

E
(
X2pk
k

)
.

Despite a lot of interest, the general case of this conjecture is still widely open. The

post is devoted to a brief exposition of the state of the art.

1 The known results

Proposition 1. The conjecture is true when n = 2.

Proof. One possible argument is reminiscent of the proof of Slepian’s inequality (cf. e.g. [9]).

By homogeneity, it may be assumed that E(X2
1 ) = E(X2

2 ) = 1. Let then Y1 and Y2 be

independent standard normal variables, independent of the couple (X1, X2). For integers

q1, q2 ≥ 1, consider the function of t ∈ [0, 1],

φ(t) = E
((√

tX1 +
√

1− t Y1
)q1(√tX2 +

√
1− t Y2

)q2).
Since moments of real Gaussian variables only depend on the variance, the task is to show

that when q1 = 2p1 and q2 = 2p2 are even integers, φ is increasing so that

E
(
X2p1

1 X2p2
2

)
= φ(1) ≥ φ(0) = E

(
Y 2p1
1

)
E
(
Y 2p2
2

)
= E

(
X2p1

1

)
E
(
X2p2

2

)
.

Now

2φ′(t) = q1 E
((

X1√
t
− Y1√

1− t

)(√
tX1 +

√
1− t Y1

)q1−1(√tX2 +
√

1− t Y2
)q2)

+ q2 E
((

X2√
t
− Y2√

1− t

)(√
tX1 +

√
1− t Y1

)q1(√tX2 +
√

1− t Y2
)q2−1).
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The integration by parts formula with respect to X1 expresses that whenever ϕ : R→ R is

smooth,

E
(
X1ϕ(X1)

)
= E

(
ϕ′(X1)

)
.

Therefore

E
(
X1

(√
tX1 +

√
1− t Y1

)q1−1(√tX2 +
√

1− t Y2
)q2)

=
√
t (q1 − 1)E

((√
tX1 +

√
1− t Y1

)q1−2(√tX2 +
√

1− t Y2
)q2)

+
√
t q2 E(X1X2)E

((√
tX1 +

√
1− t Y1

)q1−1(√tX2 +
√

1− t Y2
)q2−1),

and with respect to Y1,

E
(
Y1
(√

tX1 +
√

1− t Y1
)q1−1(√tX2 +

√
1− t Y2

)q2)
=
√

1− t (q1 − 1)E
((√

tX1 +
√

1− t Y1
)q1−2(√tX2 +

√
1− t Y2

)q2).
(Note that when q1 = 1, (q1 − 1)(

√
tX1 +

√
1− t Y1)q1−2 is understood as 0.) Together with

the corresponding identities with respect to X2 and Y2, it readily follows that

2φ′(t) = (q1 + q2)E(X1X2)E
((√

tX1 +
√

1− t Y1
)q1−1(√tX2 +

√
1− t Y2

)q2−1).
Repeating the argument with the couple of integers (q1 − 1, q2 − 1), it follows that when q1
and q2 are even, φ′′(t) ≥ 0, t ∈ [0, 1]. But φ′(0) = 0 since Y1 and Y2 are independent and

centered, so φ is increasing, which is the claim.

Proposition 2. The conjecture is true when p1 = · · · = pn = 1.

This proposition is established in [4], as consequence of a general linear algebra inequality

between Hafnians and permanents. An alternate proof is provided by the more general

Theorem 5 below from [11], from which the following sketch is taken.

Proof. By homogeneity, it may be assumed that E(X2
1 ) = · · · = E(X2

n) = 1, so that the

inequality to establish is that

E
( n∏
k=1

X2
k

)
≥ 1.

The proof relies on the interpolation scheme of Proposition 1, although it will be convenient

to develop it with respect to the standard Gaussian measure dγn(x) = 1

(2π)
n
2
e−

1
2
|x|2dλn(x).

Namely, if Σ = M >M is the covariance matrix of the law of the centered Gaussian vector

(X1, . . . , Xn), the latter is distributed as MG where G has law γn. Denoting by v1, . . . , vn
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the rows of M , which are unit vectors in Rn by the chosen normalization, the inequality to

be proved amounts to ∫
Rn

n∏
k=1

〈vk, x〉2dγn(x) ≥ 1.

Set then, for k = 1, . . . , n,

fk(x, y; t) =
√
t 〈vk, x〉+

√
1− t yk, (x, y) ∈ Rn × Rn, t ∈ [0, 1].

The aim will be to show that the function of t ∈ [0, 1],

φ(t) =

∫
Rn×Rn

n∏
k=1

fk(x, y; t)2dγn(x)dγn(y)

is increasing, so that∫
Rn

n∏
k=1

〈vk, x〉2dγn(x) = φ(1) ≥ φ(0) =

∫
Rn

n∏
k=1

y2k dγn(y) = 1.

Arguing as in the proof of Proposition 1,

φ′(t) = 2
n∑
`=1

∫
Rn×Rn

∂tf`(x, y; t)f`(x, y; t)
∏
k 6=`

fk(x, y; t)2dγn(x)dγn(y)

=
n∑
`=1

∫
Rn×Rn

(
〈v`, x〉√

t
− y`√

1− t

)
f`(x, y; t)

∏
k 6=`

fk(x, y; t)2dγn(x)dγn(y)

= 2
∑
6̀=j

〈v`, vj〉
∫
Rn×Rn

f`(x, y; t)fj(x, y; t)
∏
k 6=`,j

fk(x, y; t)2dγn(x)dγn(y)

by integration by parts with respect to x and y in the last step.

Consider next the Ornstein-Uhlenbeck operator L = ∆ − 〈z,∇〉 on Rn × Rn, invariant

and symmetric with respect to γn ⊗ γn, and with Hermite polynomials as eigenvectors (see

[2]). For smooth functions f, g, L(fg) = f Lg + g Lf + 2∇f · ∇g. Each function fk is an

eigenfunction with eigenvalue 1 of −L. It therefore follows that, with F =
∏n

k=1 fk,

LF =
n∑
`=1

Lf`
∏
k 6=`

fk +
n∑
`6=j

〈∇f`,∇fj〉
∏
k 6=`,j

fk

= −nF + t

n∑
`6=j

〈v`, vj〉
∏
k 6=`,j

fk.
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From the expression of φ′, the task is therefore to show that∫
Rn×Rn

F LFdγndγn + n

∫
Rn×Rn

F 2dγndγn ≥ 0. (1)

The clever observation of [11] is that the product F =
∏n

k=1 fk may be expanded as

F =
n∑
`=0

W`

where each W` is a linear combination of Hermite polynomials in Rn×Rn of degree `. Since

LW` = −`W`, ` = 0, 1, . . . , n, and the W` are orthogonal in L2(γn ⊗ γn),∫
Rn×Rn

F LFdγndγn =
n∑
`=0

∫
Rn×Rn

F LW` dγndγn

= −
n∑
`=0

`

∫
Rn×Rn

F W` dγndγn

= −
n∑
`=0

`

∫
Rn×Rn

W 2
` dγndγn

≥ −n
n∑
`=0

∫
Rn×Rn

W 2
` dγndγn = −n

∫
Rn×Rn

F 2dγndγn

from which (1) follows. As a result, it holds true that φ′(t) ≥ 0 as requested.

Proposition 3. The conjecture is true when n = 3.

The full statement is established in [7], after partial results [8, 14, 15]. By means of

integration by parts, the proof in [7] shows that the map

Σ 7→ E
(
X2p1

1 X2p2
2 X2p3

3

)
from the covariance matrices Σ of the Gaussian vector (X1, X2, X3) is minimized at the

identity matrix.

In addition to the preceding results, the Gaussian product inequality has been shown to

hold under additional assumptions on the covariance structure of the Gaussian vector, and

extended outside the Gaussian setting (cf. [5, 12, 14, 3, 16, 6]...).

2 The complex version

J. Arias-de-Reyna proved in [1] that the complex version of the conjecture holds true.
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Theorem 4 (The complex Gaussian product inequality). If (Z1, . . . , Zn) is a centered Gaus-

sian vector in Cn, then for any integers p1, . . . , pn ∈ N,

E
( n∏
k=1

|Zk|2pk
)
≥

n∏
k=1

E
(
|Zk|2pk

)
.

By complex Gaussian vector, it is understood that for each k = 1, . . . , n, Zk = Xk + iYk,

and that the vector (X1, . . . , Xn, Y1, . . . , Yn) is jointly Gaussian in R2n. The proof in [1] is

based on a permanent inequality by E. Lieb [10] together with integral representations and

relations between Gaussian variables and permanents.

It is a standard fact that the monomials z ∈ C 7→ zk, k ∈ N, form a complete orthogonal

system for the complex Hilbert space L2(γC) where

dγC(z) =
1

2π
e−

1
2
|z|2dλC(z) =

1

2π
e−

1
2
(x2+y2)dλ2(x, y)

is the standard Gaussian measure on C. As such, the following statement obtained by

D. Malicet, I. Nourdin, G. Peccati, G. Poly in [11] is a natural version of the Gaussian

product conjecture with the monomials zk replaced by the Hermite polynomials hk, k ∈ N,

orthonormal basis of the real Hilbert space L2(γ1) with respect to the standard normal

distribution γ1 on R (cf. [2]).

Theorem 5. Let (X1, . . . , Xn) be a centered Gaussian vector in Rn. For any integers

p1, . . . , pn ∈ N,

E
( n∏
k=1

hpk(Xk)
2

)
≥

n∏
k=1

E
(
hpk(Xk)

2
)
.

This theorem is shown in [11] to be a particular case of an inequality for squares of

elements belonging to the Wiener chaos of the Gaussian vector. The proof of Theorem 5,

relying on integration by parts with respect to the Ornstein-Uhlenbeck operator, goes along

the lines put forward to cover Proposition 2 in the previous section.

3 A polarization problem

The Gaussian product inequality in the complex case (Theorem 4) is closely connected to a

famous polarization problem (a discussion taken from [1]), and its validity actually implies,

after the use of polar coordinates, the following theorem.

Theorem 6 (The complex polarization problem). For any collection v1, . . . , vn of unit vec-

tors in Cn, n ≥ 2, there exists a unit vector u ∈ Cn such that∣∣〈u, v1〉 · · · 〈u, vn〉∣∣ ≥ n−
n
2
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where 〈·, ·〉 is the scalar product in Cn. As a consequence, for every complex Hilbert space

H of dimension n ≥ 2, the n-th linear polarization constant cn(H) of H, defined as the least

m > 0 such that for all unit vectors v1, . . . , vn in H there exists a unit vector u ∈ H such

that ∣∣〈u, v1〉H · · · 〈u, vn〉H∣∣ ≥ m

is equal to n−
n
2 .

Now of course, the issue is about the real version of this theorem (with the same state-

ment). This real version has been established up to n ≤ 5 [13]. It is shown in [4] that it

would be implied by a solution to the Gaussian product conjecture.
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[13] A. Pappas, Sz. Révész. Linear polarization constants of Hilbert spaces. J. Math. Anal.

Appl. 300, 129–146 (2004).

[14] O. Russell, W. Sun. Some new Gaussian product inequalities. J. Math. Anal. Appl. 515,

Paper No. 126439 (2022).

[15] O. Russell, W. Sun. Moment ratio inequality of bivariate Gaussian distribution and

three-dimensional Gaussian product inequality. J. Math. Anal. Appl. 527, Paper

No. 127410 (2023).

[16] O. Russell, W. Sun. Using Sums-of-Squares to prove Gaussian product inequalities.

Depend. Model. 12, no. 1, Paper No. 20240003, 13 pp. (2024).

7


