
Stein’s inequality for multivariate Gaussian

Abstract

The note briefly describes a couple of analogues of Stein’s inequality for the mul-

tivariate Gaussian distribution in terms of the quadratic Kantorovich metric, which

arose recently in the literature.

Stein’s method [15] is a general device to achieve approximation of probability measures

by a fixed target measure, typically the normal distribution.

Let dγ(x) = e−x
2/2 dx√

2π
be the standard normal distribution on the real line R. The

classical Stein lemma expresses that given a (bounded, measurable) function ϕ : R→ R, the

equation

ψ′ − xψ = ϕ−
∫
R
ϕdγ (1)

may be solved with a function ψ, bounded as well as its derivative. More precisely, ψ may

be chosen so that ‖ψ‖∞ ≤
√

2π ‖ϕ‖∞ and ‖ψ′‖∞ ≤ 4 ‖ϕ‖∞ (see [15], and [5, 12, 4] for a

detailed proof and related inequalities).

Recall the total variation distance between a probability measure µ on R and γ,

‖µ− γ‖TV = sup
A∈B(R)

[
µ(A)− γ(A)

]
=

1

2
sup

[ ∫
R
ϕdµ−

∫
R
ϕdγ

]
where the supremum is taken over all bounded measurable ϕ : R → R with ‖ϕ‖∞ ≤ 1.

Stein’s lemma may then be used to provide the basic approximation bound, called Stein’s

inequality,

‖µ− γ‖TV ≤ sup

∣∣∣∣ ∫
R
ψ′dµ−

∫
R
xψ dµ

∣∣∣∣ (2)

where the supremum runs over all continuously differentiable functions ψ : R→ R such that

‖ψ‖∞ ≤
√

π
2

and ‖ψ′‖∞ ≤ 2. One of the main interests in (2) lies in the fact that only the

measure µ is involved in the upper bound via explicit integrals. It has been used in a wide
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range of applications quantifying the convergence to a normal distribution (cf. [15, 5, 12, 4]

and the references therein).

The question of analogues of the Stein inequality (2) in higher dimension has been of

interest in the recent years, in particular due to the difficulty to handle equivalents of (1)

in a multivariate setting. This short note emphasizes a couple of results in this direction in

terms of the Kantorovich quadratic transportation distance. Given probability measures µ

and ν on the Borel sets of Rd with a finite second moment, let

W2(µ, ν) = inf
π

(∫
Rd×Rd

|x− y|2dπ(x, y)

) 1
2

,

where the infimum is taken over all couplings π on Rd×Rd with respective marginals µ and

ν, be the quadratic Kantorovich (Wasserstein) distance between µ and ν.

Let γd denote the standard Gaussian measure on the Borel sets of Rd with density

(2π)−d/2e−
1
2
|x|2 , x ∈ Rd, with respect to the Lebesgue measure.

1 Stein kernel

The first highlighted bound is expressed in terms of a Stein kernel associated to the unknown

distribution µ. Given a centered probability measure µ on Rd, a Stein kernel of µ is a

measurable matrix-valued map τµ on Rd such that for every smooth test function ϕ : Rd → R,∫
Rd

x · ∇ϕdµ =

∫
Rd

τµ · ∇2ϕdµ

where ∇ϕ stands for the gradient of ϕ, with the scalar product between vectors in Rd,

and ∇2ϕ stands for the Hessian of ϕ, with the Hilbert-Schmidt scalar product between

(symmetric) d× d matrices. The choice for ϕ of the coordinate maps x 7→ xk, k = 1, . . . , d,

justifies the centering hypothesis. With respect to the differential equation (1), the picture

here lies at a second differential order.

Stein kernels appear implicitly in the literature about Stein’s method (see the original

monograph [15, Lecture VI] of C. Stein, as well as [3, 4, 6, 7]...), while second order operators

in a multivariate setting were considered in [2, 8]. They gained momentum in the past years,

specially in connection with probabilistic approximations involving random variables living

on a Gaussian (Wiener) space (see the monograph [12]).

According to the standard Gaussian integration by parts formula∫
Rd

xψ dγd =

∫
Rd

∇ψ dγd
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(as vector valued integrals) for smooth functions ψ : Rd → R, the identity matrix Id in Rd is

a Stein kernel for γd. The proximity of τµ with Id thus indicates that µ should be close to the

Gaussian distribution γd. Therefore, whenever such a Stein kernel τµ exists, the quantity,

called Stein discrepancy (of µ with respect to γd, and associated to the underlying kernel

τµ),

S2

(
µ | γd

)
=

(∫
Rd

|τµ − Id|2 dµ
) 1

2

(with | · | the Hilbert-Schmidt norm) becomes relevant as a measure of the proximity of µ

and γd.

In dimension one, Stein’s inequality (2) (with ψ = ϕ′) precisely indicates that

‖µ− γ1‖TV ≤ 2

∫
R
|τµ − 1|dµ,

and therefore, by Jensen’s inequality,

‖µ− γ1‖TV ≤ 2 S2

(
µ | γ1

)
,

justifying the interest in the Stein discrepancy.

It is the purpose of the following proposition from [10] to emphasize the corresponding

inequality in Rd in terms of the Kantorovich metric W2.

Proposition 1. In the preceding notation,

W2

(
µ, γd

)
≤ S2

(
µ | γd

)
.

For such a result to be useful and of interest, it is necessary to determine and describe

suitable kernels τµ of the probability µ to be approximated by the Gaussian distribution γd.

In dimension d = 1, if µ has a density ρ with respect to the Lebesgue measure on R, the

Stein kernel τµ is uniquely determined (up to sets of zero Lebesgue measure), and under

standard regularity assumptions on ρ, a version of τµ is given by

τµ(x) =
1

ρ(x)

∫ ∞
x

yρ(y)dy

for x inside the support of ρ. In higher dimension, Stein kernels are not always unique and

even may not exist.

In several illustrations and applications however, the unknown probability measure µ is

actually of more concrete nature, allowing for descriptions of a kernel. A typical instance is

the example of the law µ of F (X) where

F = (F1, . . . , Fd) : Rn → Rd
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is measurable and X is a (standard) Gaussian random vector on Rn (on some probability

space (Ω,A,P)). In other words, µ, as a probability measure on the Borel sets of Rd, is

the law of F under γn, and the following studies its proximity to the standard Gaussian

distribution γd on Rd. It is possible to consider more general distributions for X, such as the

Wiener measure in infinite dimension [12], or the invariant measure of a Markov triple in the

sense of [1], but for simplicity of this note, X is just normal in finite dimension (see [12, 10]

for these extensions). In most applications, the function F is also assumed to be reasonably

regular in order to perform a number of differentiation and integration by parts operations,

smoothness that will always be implicit below (polynomials is a class of examples). Since µ

should be centered, E(F (X)) = 0.

Towards the analysis of such distributions, it will be critical, following [2, 8], to deal with

the (Ornstein-Uhlenbeck) second order differential operator L = ∆−x ·∇, acting on smooth

functions on Rn, invariant and symmetric with respect to γn. By integration by parts, for

smooth functions f, g : Rn → R,∫
Rn

f Lg dγn = −
∫
Rn

∇f · ∇g dγn.

The operator L admits a spectral representation, with spectrum the negative integers and

the Hermite polynomials as eigenfunctions. As such, it makes sense to consider the inverse

operator (−L)−1 acting on mean zero function of the underlying domain. The reader is

referred to [1] for an account on the Ornstein-Uhlenbeck operator. The suitable smoothness

and domain properties will be mostly understood below.

Given smooth functions

F = (F1, . . . , Fd), G = (G1, . . . , Gd) : Rn → Rd,

denote by Γ(F,G) the d × d matrix (∇Fk · ∇G`)1≤k,`≤d. The operators L and (−L)−1 are

acting on a multivariate function F = (F1, . . . , Fd) as LF = (LF1, . . . ,LFd) and similarly for

(−L)−1.

In this setting and with the latter notation, a Stein kernel τµ for the law µ of F (X) =

(F1, . . . , Fd)(X) on Rd may be represented by a regular version of the conditional (matrix-

valued) expectation

E
(
T (X) |F (X)

)
of T (X), where T = Γ((−L)−1F, F ), with respect to the σ-field generated by F (X). Indeed,

for any smooth test function ϕ : Rd → R and every k, ` = 1, . . . , `, by definition of the
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conditional expectation,∫
Rd

τµk` ∂
2
k`ϕdµ = E

(
E
(
Tk`(X) |F (X)

)
∂2k`ϕ(F (X))

)
= E

(
Tk`(X) ∂2k`ϕ(F (X))

)
=

∫
Rn

Tk` (∂2k`ϕ) ◦ F dγn

since X has law γn. Hence, by definition of T ,

d∑
k,`=1

∫
Rd

τµk` ∂
2
k`ϕdµ =

d∑
k,`=1

∫
Rn

∇((−L)−1Fk) · ∇F` (∂2k`ϕ) ◦ F dγn

=
d∑

k=1

∫
Rn

∇((−L)−1Fk) · ∇((∂kϕ) ◦ F )) dγn

=
d∑

k=1

∫
Rn

Fk (∂kϕ) ◦ F dγn

where integration by parts for the operator L has been used in the last step. Since µ is the

law of F under γn,
∑d

k=1

∫
Rn Fk (∂kϕ) ◦ F dγn =

∑d
k=1

∫
Rd xk ∂kϕdµ, so that∫

Rd

τµ · ∇2ϕdµ =
d∑

k,`=1

∫
Rd

τµk` ∂
2
k`ϕdµ =

d∑
k=1

∫
Rd

xk ∂kϕdµ =

∫
Rd

x · ∇ϕdµ,

justifying the form of the kernel τµ.

Proposition 1 therefore yields

W2

(
µ, γd

)2 ≤ ∫
Rd

|τµ − Id|2 dµ

= E
(∣∣E(T (X) |F (X))− Id

∣∣2)
≤ E

(
|T (X)− Id|2

)
=

∫
Rn

|T − Id|2dγn

(3)

after the use of Jensen’s inequality in the conditional expectation.

Inequality (3) is relevant in a number of illustrations. At first sight, the upper bound

might not appear so tractable due to the form of T = Γ((−L)−1F, F ). However, several

instances are easily handled. A typical illustration, that actually motivated this type of

results [12], is the case of a function F consisting of eigenfunctions of L. That is, −LFk =

nkFk for some integers nk ≥ 1, k = 1, . . . , d, so that T takes the simple form

Tk` =
1

nk
∇Fk · ∇F`, k, ` = 1, . . . , d.
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The inequality (3) then yields

W2

(
µ, γd

)2 ≤ ∫
Rn

d∑
k,`=1

∣∣∣ 1

nk
∇Fk · ∇F` − δk`

∣∣∣2dγn (4)

which may be suitably controlled given the (smooth) function F = (F1, . . . , Fd).

In the present Gaussian setting, the eigenfunctions Fk, k = 1, . . . , d, are actually explicit

Hermite polynomials, and computational bounds are therefore available. This procedure has

been developed in [12] in the more general context of infinite dimensional Wiener chaos to

provide in particular rates of convergence to the Gaussian distribution in the fourth moment

theorem for stochastic integrals of [14].

In general, the inverse operator (−L)−1 embedded into T = Γ((−L)−1F, F ) may be de-

scribed by the Ornstein-Ulenbeck semigroup (Pt)t≥0 with infinitesimal generator L to provide

handful expressions. The semigroup (Pt)t≥0 namely admits the integral representation

Ptf(x) =

∫
Rn

f
(
e−tx+

√
1− e−2t y

)
dγn(y), x ∈ Rn, t ≥ 0,

and (−L)−1 is given by (−L)−1 =
∫∞
0
Ptdt (on centered functions in the suitable domain).

For the further purposes, also observe that for smooth f ,

∇Ptf = e−tPt(∇f)

(Pt acting coordinatewise on vector valued functions). Then, for every k, ` = 1, . . . , d,

Tk` = ∇((−L)−1Fk) · ∇F`

=

∫ ∞
0

∇(PtFk) · ∇F` dt

=

∫ ∞
0

e−t Pt(∇Fk) · ∇F` dt,

(5)

and after a use of Jensen’s inequality in e−tdt, (3) yields

W2

(
µ, γd

)2 ≤ ∫ ∞
0

e−t
d∑

k,`=1

∫
Rn

∣∣Pt(∇Fk) · ∇F` − δk`∣∣2dγn dt.
Again, this bound may be reasonably controlled for given functions F .

Another direction to make use of (3) is provided by the Poincaré inequality for γn,∫
Rn

f 2dγn ≤
∫
Rn

|∇f |2dγn
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for every smooth f : Rn → R with mean zero. Applied to the coordinates of T =

Γ((−L)−1F, F ),∫
Rn

|T − Id|2dγn =
d∑

k,`=1

∫
Rn

|Tk` − δk`|2dγn ≤
d∑

k,`=1

∫
Rn

|∇Tk`|2dγn (6)

provided that ∫
Rn

Tk` dγn =

∫
Rn

∇((−L)−1Fk) · ∇F` dγn

=

∫
Rn

FkF` dγn

= E
(
Fk(X)F`(X)

)
= δk`

for every k, ` = 1, . . . , d. In other words, the covariance matrix of the random vector F (X)

should be the identity matrix.

Now it follows from the description (5) that

∇Tk` =

∫ ∞
0

e−2t Pt(∇2Fk)∇F` dt+

∫ ∞
0

e−t∇2F` Pt(∇Fk) dt

(the matrix Pt(∇2Fk) acting on the vector ∇F` to produce a vector in Rd, and similarly for

the other term). Therefore, whenever the covariance of F (X) is the identity matrix, (3) and

(6) yield, after the use of the Cauchy-Schwarz inequality,

W2

(
µ, γd

)2 ≤ ∫ ∞
0

e−2t
d∑

k,`=1

∫
Rn

∣∣Pt(∇2Fk)∇F`
∣∣2dγn dt

+ 2

∫ ∞
0

e−t
d∑

k,`=1

∫
Rn

∣∣∇2F` Pt(∇Fk)
∣∣2dγn dt.

(7)

Using convexity on the integral representation of the operators Pt, t ≥ 0, the preceding

bound may be given a more tractable form. Namely, for every k, ` = 1, . . . , d,∫
Rn

∣∣∇2F` Pt(∇Fk)
∣∣2dγn =

∫
Rn

n∑
i=1

∣∣∣∣ n∑
j=1

∂ijF` Pt(∂jFk)

∣∣∣∣2dγn
≤

n∑
i=1

∫
Rn

n∑
j=1

(∂ijF`)
2

n∑
j=1

[
Pt(∂jFk)

]2
dγn

=

∫
Rn

|∇2F`|2
n∑
j=1

[
Pt(∂jFk)

]2
dγn.
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Now, for every j = 1, . . . , n, by Jensen’s inequality on the integral representation of Pt,∫
Rn

|∇2F`|2
[
Pt(∂jFk)

]2
dγn

≤
∫
Rn

|∇2F`(x)|2
(∫

Rn

(∂jFk)
2
(
e−tx+

√
1− e−2t y

)
dγn(y)

)
dγn(x),

so that ∫
Rn

|∇2F`|2
n∑
j=1

[
Pt(∂jFk)

]2
dγn

≤
∫
Rn

∫
Rn

|∇2F`(x)|2 |∇Fk|2
(
e−tx+

√
1− e−2t y

)
dγn(x)dγn(y).

Finally, by another use of the Cauchy-Schwarz inequality in the tensor measure γn ⊗ γn, for

every t ≥ 0,

d∑
k,`=1

∫
Rn

∣∣∇2F` Pt(∇Fk)
∣∣2dγn

≤
(∫

Rn

[ d∑
k=1

|∇Fk|2
]2
dγn

)1/2(∫
Rn

[ d∑
`=1

|∇2F`|2
]2
dγn

)1/2

(since e−tx+
√

1− e−2t y under dγn(x)dγn(y) has law γn). The term

d∑
k,`=1

∫
Rn

∣∣Pt(∇2Fk)∇F`
∣∣2dγn

in (7) is handled similarly, leading finally to the following statement.

Proposition 2. In the preceding notation, provided that F (X), with law µ on the Borel sets

of Rd, has covariance matrix the identity, and that F : Rn → Rd is smooth enough,

W2

(
µ, γd

)2 ≤ 3

(∫
Rn

[ d∑
k=1

|∇Fk|2
]2
dγn

)1/2(∫
Rn

[ d∑
`=1

|∇2F`|2
]2
dγn

)1/2

. (8)

Arbitrary covariances are considered in [13]). The preceding statement applies in dimen-

sion d = 1 also for the total variation distance.

Inequalities such as (8) have been exploited in [13] to study central limit theorems on

Wiener space and in [3] to control the distance of the law of traces of random matrices to

the Gaussian distribution, under the terminology of second-order Poincaré inequalities.
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2 An additive variant

The preceding analysis involving the inverse operator (−L)−1 may be replaced by an additive

variant in the following way. Consider again the law µ of F (X) where F : Rn → Rd and X

follows the standard Gaussian distribution on Rn. Recall the Ornstein-Uhlenbeck generator

L.

For positive numbers κk > 0, k = 1, . . . , d, denote by K the diagonal matrix K =

diag(κ1, . . . , κd). Given F = (F1, . . . , Fd) smooth enough, recall Γ(F, F ) = Γ(F ) the d × d
matrix (∇Fk · ∇F`)1≤k,`≤d. Introduce the quantities A and B defined by

A =

(∫
Rn

∣∣F +K−1 LF
∣∣2dγn) 1

2

and

B =

(∫
Rn

∣∣Id−K−1 Γ(F )
∣∣2 dγn) 1

2

,

the norms | · | being understood as above in the Euclidean space Rd and in the space of

d × d matrices (Hilbert-Schmidt norm). The expressions A and B thus depend on F and

on κk > 0, k = 1, . . . , d. While A involves the generator L, it may be given a form only

involving derivatives of F (as for B). Namely,∫
Rn

∣∣F +K−1 LF
∣∣2dγn =

∫
Rn

|F |2dγn + 2
d∑

k=1

∫
Rn

κ−1k Fk LFk dγn +
d∑

k=1

∫
Rn

κ−2k (LFk)
2dγn

=

∫
Rn

|F |2dγn − 2
d∑

k=1

∫
Rn

κ−1k Γ(Fk) dγn +
d∑

k=1

∫
Rn

κ−2k Γ2(Fk)dγn

where Γ(Fk) = |∇Fk|2 and Γ2(Fk) = |∇2Fk|2 + |∇Fk|2 (cf. [1]).

The following approximation result is presented in [9].

Proposition 3. In the preceding notation, for any choice of κk > 0, k = 1, . . . , d,

W2

(
µ, γd

)
≤ A+B.

A form of this multivariate normal approximation result in the W1 metric was developed

in [11] relying on exchangeable pairs. The ingredients in the proof of Proposition 3 are similar

in nature to the ones in Proposition 1. The conclusion may be used in different instances of

interest. If F1, . . . Fd are eigenfunctions of L with eigenvalues −n1, . . . ,−nd, for the choice of

κk = nk, k = 1, . . . , d, the quantity A vanishes, and Proposition 3 amounts to (4). However,

when F1, . . . Fd are only approximate eigenfunctions in the sense that LFk +nkFk is small in

some L2 sense, then Proposition 3 becomes of interest while (3) is not easily exploitable.
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Proposition 3 has been illustrated in [9] via this device in the study of rates of convergence

of linear statistics along polynomials of the spectral measure of random matrices from the

Gaussian Unitary Ensemble.
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Wiener space. J. Funct. Anal. 257, 593–609 (2009).

[14] D. Nualart, G. Peccati. Central limit theorems for sequences of multiple stochastic

integrals. Ann. Probab. 33, 177–193 (2005).

[15] C. Stein. Approximate computation of expectations. Institute of Mathematical Statistics

Lecture Notes – Monograph Series 7. Institute of Mathematical Statistics (1986).

11


