
“More than fifteen proofs of the

logarithmic Sobolev inequality”

In his monograph Optimal transport, old and new, Springer (2009), C. Villani mentions

on page 559, that: “At present, there are more than fifteen known proofs of the logarithmic

Sobolev inequality”1. It is the purpose of this note to try to identify these proofs.2

By “logarithmic Sobolev inequality”, it is understood in this note the inequality with

respect to the Gaussian measure (or its equivalent form with respect to the Lebesgue mea-

sure), the only one considered here. The preceding monograph [20], as well as [2] among

others, describe a wealth of logarithmic Sobolev inequalities in various contexts. A main

source of references for this post are the surveys [12, 8, 13].

Let γ = γn be the standard Gaussian probability distribution on Rn, with density
1

(2π)
n
2
e−

1
2
|x|2 , x ∈ Rn, with respect to the Lebesgue measure. The logarithmic Sobolev

inequality (for γ) expresses that, for every smooth function f : Rn → R with
∫
Rn f

2dγ = 1,∫
Rn

f 2 log f 2 dγ ≤ 2

∫
Rn

|∇f |2dγ. (1)

(By homogeneity, for every smooth, square integrable, f : Rn → R,∫
Rn

f 2 log f 2 dγ −
∫
Rn

f 2 dγ log

(∫
Rn

f 2 dγ

)
≤ 2

∫
Rn

|∇f |2dγ.)

It is a simple matter to check that the inequality is sharp on the exponential functions

f(x) = e〈x,a〉−|a|
2
, x ∈ Rn, where a ∈ Rn.

1The number 15 seems to be taken from the survey [12].
2Any relevant informations, references, omitted or new proofs, are most welcome, and will be incorporated

as they appear (to the author’s knowledge).
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This inequality can take various equivalent forms. For example, for any (smooth strictly

positive) probability density f with respect to γ (i.e.
∫
Rn f dγ = 1),∫

Rn

f log f dγ ≤ 1

2

∫
Rn

|∇f |2

f
dγ. (2)

The right-hand side is the so-called Fisher information I(µ | γ) of the probability measure

dµ = fdγ with respect to γ, so that the latter can also be formulated as

H
(
µ |γ

)
≤ 1

2
I
(
µ |γ

)
(3)

where H(µ |γ) =
∫
Rn f log fdγ is the relative entropy of µ with respect to γ.

It is an important feature that the inequality and the constants do not depend on the

dimension of the underlying state space. By affine transformations, the logarithmic Sobolev

inequality may be formulated for arbitrary Gaussian measures. Due to its dimension-free

character, infinite dimensional Gaussian measures may also be considered.

After preliminary steps and formulations by

A. Stam. Some inequalities satisfied by the quantities of information of Fisher and Shannon.

Inf. Control 2, 101–112 (1959)

in a (one-dimensional) information theoretic framework (see 16.), and

P. Federbush. A partially alternate derivation of a result of Nelson. J. Math. Phys. 10,

50–52 (1969)

in a mathematical physics context,

logarithmic Sobolev inequalities have been introduced and emphasized by L. Gross in the

fundamental contribution

2. L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061–1083 (1975)

where, in particular, (1) is established.

A further main aspect of this work by L. Gross is the equivalence (in a general Dirichlet

form framework) of logarithmic Sobolev inequalities with hypercontractivity properties. For

the Gaussian measure γ, let

Ptf(x) =

∫
Rn

f
(
e−tx+

√
1− e−2t y

)
dγ(y), t > 0, x ∈ Rn, (4)
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be the so-called Ornstein-Uhlenbeck semigroup (acting on suitable functions f : Rn → R).

By Jensen’s inequality, the operators Pt are contractions in all Lp(γ), p ≥ 1, spaces. The

logarithmic Sobolev inequality (1), holding for all smooth functions f , is equivalent to the

hypercontractivity property

‖Ptf‖q ≤ ‖f‖p (5)

holding for all (measurable) f : Rn → R, 1 < p < q <∞, e2t ≥ q−1
p−1 (where ‖ · ‖p is the Lp(γ)

norm). The proof of the equivalence (put forward by L. Gross, and already apparent in the

aforementioned work of P. Federbush) amounts to take the time derivative of ‖Ptf‖q(t) where

q(t) = 1 + e2t(p − 1), which yields the logarithmic Sobolev inequality up to a power-type

change of function.

The hypercontractive bound (5) was actually put forward first, before the logarithmic

Sobolev inequality, by E. Nelson in

1. E. Nelson. A quartic interaction in two dimensions. Mathematical Theory of Elementary

Particles 69–73. M.I.T. Press, Cambridge (1966); E. Nelson. The free Markov field. J.

Funct. Anal. 12, 211–227 (1973).

The proof of (5) therein is a reduction to a problem of multipliers for Hermite series, analyzed

in the broader context of continuous Fock spaces. Several related papers in the mathematical

physics literature appeared in the period (cf. [12, 8]).

For the discussion, it is significant to emphasize the corresponding logarithmic Sobolev

inequality and hypercontractivity property on the discrete cube {−1,+1}n, and more specifi-

cally on the two-point space {−1,+1}, equipped with the uniform probability measure, where

they amount to two-point inequalities. That is, for the logarithmic Sobolev inequality,

1

2

[
a2 log a2 + b2 log b2

]
− 1

2
(a2 + b2) log

(1

2
(a2 + b2)

)
≤ (a− b)2 (6)

for every a, b ∈ R, and, for hypercontractivity,(1

2

[
|a+ e−tb|q + |a− e−tb|q

])1/q
≤
(1

2

[
|a+ b|p + |a− b|p

])1/p
(7)

for every a, b ∈ R, 1 < p < q <∞, e2t ≥ q−1
p−1 . Of course, according to Gross’ principle, these

two families of inequalities are equivalent ((6) being the infinitesimal version of (7)). The

point is that actually the two-point inequalities tensorize to the discrete cube {−1,+1}n,

and then, after a suitable rescaling, yield the Gaussian inequalities via the classical central

limit theorem, which is the original proof emphasized by L. Gross in his 1975 article (see

e.g. [1] for a detailed discussion). This reasoning has been very fruitful in the origin and

proofs of the logarithmic Sobolev inequality and hypercontractivity.
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From the same tensorization property, it is enough to prove the logarithmic Sobolev

inequality (1) and hypercontractivity (5) in dimension one, and many of the proofs presented

below are restricted to this case. Besides, the lists only emphasize proofs yielding optimal

constants. In this regard, it may be mentioned that a defective term in the logarithmic

Sobolev inequality may be accepted, provided it is dimension-free. More precisely, suppose

that it may be established that for every ε > 0, there is a constant C(ε) > 0 such that, for

every n ≥ 1 and all smooth functions f : Rn → R such that
∫
Rn f

2dγ = 1,∫
Rn

f 2 log f 2 dγ ≤ (2 + ε)

∫
Rn

|∇f |2dγ + C(ε),

then (1) holds true. Indeed, given g : R→ R with
∫
R g

2dγ1 = 1, application of the latter to

f = g⊗n yields ∫
R
g2 log g2 dγ1 ≤ (2 + ε)

∫
R
g′

2
dγ1 +

C(ε)

n

from which the claim follows after letting n tend to infinity and ε to zero.

Logarithmic Sobolev inequalities may be considered in a wide generality (cf. e.g. [20, 2]).

Only the Gaussian logarithmic Sobolev inequality and hypercontractivity are considered in

this note. The Gaussian logarithmic Sobolev inequality is sometimes considered, and proved,

in its Euclidean (dimensional) form, with respect to the Lebesgue measure (obtained after a

simple, equivalent, change of function – seemingly first emphasized in [22]),∫
Rn

f 2 log f 2dx ≤ n

2
log

(
2

nπe

∫
Rn

|∇f |2dx
)

(8)

for every smooth function f : Rn → R such that
∫
Rn f

2dx = 1.

The list of proofs is divided into proofs of hypercontractivity (historically first) and

proofs of the logarithmic Sobolev inequality. For each of them, a two-line description of

the corresponding underlying argument is presented. Some works address at the same time

hypercontractivity and logarithmic Sobolev inequality. While only the Gaussian logarithmic

Sobolev inequality is classified, it should be mentioned that several proofs apply similarly

to the family of log-concave probability measures dµ = e−V dx on Rn where V : Rn → R
is a potential which is more convex than the quadratic one in the sense that V (x) − c

2
|x|2,

x ∈ Rn, is convex for some c > 0 (as well as even more general settings cf. [20, 2]).

Only the first references on a given type of proof are emphasized, hopefully not omitting

any and addressing proper acknowledgement. It is a bit difficult to settle whether there are

more than fifteen different proofs, since a certain amount of overlaps and similar arguments

in different contexts may be detected.
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1 Hypercontractivity

3. A. Bonami. Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst.

Fourier 20, 335–402 (1970). W. Beckner. Inequalities in Fourier analysis. Ann. of Math. 102,

159–182 (1975).

Proofs of the two-point inequality (7).

4. H. Brascamp, E. Lieb. Best constants in Young’s inequality, its converse, and its gener-

alization to more than three functions. Advances in Math. 20, 151–173 (1976).

Proof of hypercontractivity from a general integral inequality of Hölder type for functions

composed along directions in Rn, established by symmetrization techniques3.

5. J. Neveu. Sur l’espérance conditionnelle par rapport à un mouvement brownien. Ann.

Inst. H. Poincaré Probab. Stat. 12, 105–109 (1976).

Martingale representation of the conditional expectation with respect to Brownian motion

and use of stochastic calculus.

14. J. Epperson. The hypercontractive approach to exactly bounding an operator with

complex Gaussian kernel. J. Funct. Anal. 87, 1–30 (1989). E. Lieb. Gaussian kernels have

only Gaussian maximizers. Invent. Math. 102, 179–208 (1990).

Proof of hypercontractivity via the study of Gaussian extremizers of operators given by

Gaussian kernels.

21. Y. Hu. A unified approach to several inequalities for Gaussian and diffusion measures.

Séminaire de Probabilités XXXIV, Lecture Notes in Math. 1729, 329–335. Springer (2000).

E. Mossel, J. Neeman. Robust optimality of Gaussian noise stability. J. Eur. Math. Soc. 17,

433–482 (2015).

Heat flow proof of both hypercontractivity and the logarithmic Sobolev inequality along

the line of the Bakry-Émery proof of logarithmic Sobolev inequality (10.).

3Numerous alternate proofs of this inequality, known as Brascamp-Lieb inequality, are available nowadays.
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2 Logarithmic Sobolev inequality

6. O. Rothaus. Lower bounds for eigenvalues of regular Sturm-Liouville operators and the

logarithmic Sobolev inequality. Duke Math. J. 45, 351–362 (1978).

Simple use of Jensen’s inequality and the fact that the lowest eigenfunction for a Sturm-

Liouville boundary value problem with Dirichlet boundary conditions is positive.

7. R. Adams, F. Clarke. Gross’s logarithmic Sobolev inequality: a simple proof. Amer. J.

Math. 101, 1265–1270 (1979).

Solving an optimization problem on the line by calculus of variations.

8. C. Mueller, F. Weissler. Hypercontractivity for the heat semigroup for ultraspherical

polynomials and on the n-sphere. J. Funct. Anal. 48, 252–283 (1982).

Analytic investigation of multipliers along ultraspherical polynomials yielding at the ex-

tremal cases the two-point inequality and the Gaussian logarithmic Sobolev inequality.

9. A. Ehrhard. Sur l’inégalité de Sobolev logarithmique de Gross. Séminaire de Proba-

bilités XVIII, Lecture Notes in Math. 1059, 194–196. Springer (1984).

Consequence of a Gaussian Polyá-Szegö energy inequality established by Gaussian sym-

metrization4.

10. D. Bakry, M. Émery. Diffusions hypercontractives. Séminaire de Probabilités XIX,

Lecture Notes in Math. 1123, 177–206. Springer (1985).

Study of the second derivative of entropy along the Ornstein-Uhlenbeck semigroup, out-

lined, in a simplified form, in Section 3 (a scheme of proof valid in a general Markov triple

context cf. [2]).

11. O. Rothaus. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev

inequalities. J. Funct. Anal. 64, 296–313 (1985).

Deduction of the (Euclidean) logarithmic Sobolev inequality from the classical Euclidean

isoperimetric inequality by the co-area formula.

4Further, improved, works in this direction include [7, 18].
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12. O. Rothaus. Hypercontractivity and the Bakry-Émery criterion for compact Lie groups.

J. Funct. Anal. 65, 358–367 (1986).

Use of non-linear equation solved by extremal functions under the curvature condition

fulfilled by Gauss space (in a compact setting though).

13. M. Ledoux. Isopérimétrie et inegalités de Sobolev logarithmiques gaussiennes. Comptes

Rendus Acad. Sci. Paris 306, 79–82 (1988). E. Pelliccia, G. Talenti. A proof of a logarithmic

Sobolev inequality. Calc. Var. Partial Differential Equations 1, 237–242 (1993).

Deduction of the (Gaussian) logarithmic Sobolev inequality from the Gaussian isoperi-

metric inequality by the co-area formula.

15. E. Carlen, M. Loss. Extremals of functionals with competing symmetries. J. Funct.

Anal. 88, 437–456 (1990). W. Beckner. Sobolev inequalities, the Poisson semigroup, and

analysis on the sphere Sn. Proc. Nat. Acad. Sci. U.S.A. 89, 4816–4819 (1992).

Proof by duality and general rearrangement inequalities, of both hypercontractivity and

logarithmic Sobolev inequality, exploiting competition between rearrangement on the sphere

and Gauss space and the familiar Riesz rearrangement (partly inspired by E. Lieb’s proof

[17] of the sharp Hardy-Littlewood-Sobolev inequalities).

16. E. Carlen. Superadditivity of Fisher’s information and logarithmic Sobolev inequalities.

J. Funct. Anal. 101, 194–211 (1991).

Consequence of an inequality due to N. Blachman [4] and A. Stam [19] in informa-

tion theory, itself a direct consequence of superadditivity of Fisher information. Proof of a

strengthened form of the logarithmic Sobolev inequality involving a Fourier transform con-

tribution, itself a reinterpretation of an inequality due to W. Beckner [3] and I. Hirschmann

[14]. The information-theoretic background and approach to the logarithmic Sobolev in-

equality, in particular the connection to the Shannon-Stam entropy power inequality, are

discussed in [10] and [9].

17. G. Toscani. Sur l’inégalité logarithmique de Sobolev. C. R. Acad. Sci. Paris, Math. 324,

689–694 (1997).

Proof of the Euclidean logarithmic Sobolev inequality via the Fokker-Planck equation,

similar in nature to the Bakry-Émery argument (10.), leading to a deficit term identifying

the extremal functions5.

5see also [15] about the latter point.
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18. W. Beckner. Geometric asymptotics and the logarithmic Sobolev inequality. Forum

Math. 11, 105–137 (1999).

The Euclidean logarithmic Sobolev inequality is developed as a geometric asymptotic

estimate with respect to Lebesgue measure from the classical isoperimetric inequality in Rn

in its functional form with sharp constants.

19. W. Beckner (as quoted in [16], p. 146).

Deduction from S. Bobkov’s functional form of the Gaussian isoperimetric inequality

[5, 2].

20. M. Capitaine, E. P. Hsu, M. Ledoux. Martingale representation and a simple proof of

logarithmic Sobolev inequalities on path spaces Electron. Comm. Probab.2, 71–81 (1999).

Proof by stochastic calculus on Brownian paths, starting from the Clark-Ocone-Haussmann

formula. Going back to unpublished works by B. Maurey and J. Neveu, and actually close

in spirit to the Neveu proof of hypercontractivity.

22. S. Bobkov, M. Ledoux. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic

Sobolev inequalities Geom. Funct. Anal. 10, 1028–1052 (2000).

Deduction from the functional form (Prékopa-Leindler) of the Brunn-Minkowski inequal-

ity at the edge of the parameters.

23. F. Otto, C. Villani. Generalization of an inequality by Talagrand and links with the

logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000).

Proof of a strengthened form of the logarithmic Sobolev inequality linking entropy, Fisher

information and Wasserstein distance (HWI inequality) by optimal transport and pde tools.

24. S. Bobkov, I. Gentil, M. Ledoux. Hypercontractivity of Hamilton-Jacobi equations. J.

Math. Pures Appl. 80, 669–696 (2001).

Proof of the Otto-Villani HWI inequality by means of the logarithmic form of Wang’s

Harnack inequality [21], itself following from the Bakry-Émery scheme 10.

25. M. Del Pino, J. Dolbeault. Best constants for Gagliardo-Nirenberg inequalities and

applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002); M. Del Pino,

J. Dolbeault. The optimal Euclidean Lp-Sobolev logarithmic inequality. J. Funct. Anal. 197,

151–161 (2003).

The Euclidean logarithmic Sobolev inequality appears as an extreme point in the proof of

best constants in a family of Gagliardo-Nirenberg inequalities achieved by non-linear analysis.
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26. D. Cordero-Erausquin. Some applications of mass transport to Gaussian-type inequali-

ties. Arch. Ration. Mech. Anal. 161, 257–269 (2002).

Direct mass transportion methods (including the Otto-Villani HWI inequality).

27. J. Lehec. Representation formula for the entropy and functional inequalities. Ann. Inst.

Henri Poincaré Probab. Stat. 49, 885–899 (2013).

Proof from a stochastic representation formula for Gaussian relative entropy in Wiener

space, relying on stochastic calculus and Girsanov’s theorem.

28.6 G. Wang, C. Xia, X. Zhang. The logarithmic Sobolev inequality on non-compact

self-shrinkers (2024).

Proof for the logarithmic Sobolev inequality in the Euclidean space by using the Alexan-

drov-Bakelman-Pucci (ABP) pde method emphasized by S. Brendle in [6] to establish loga-

rithmic Sobolev inequalities on subspaces and submanifolds. (See also [11] for earlier work

in this line of investigation.)

3 The simplest proof?

In [12], L. Gross presents the 1978 proof by O. Rothaus as the simplest proof of the loga-

rithmic Sobolev inequality. In 2010, he agreed that, probably, the simplest proof is the one

by D. Bakry and M. Émery (1985) 10. This section thus outlines this argument.

Let

ht(x) =
1

(4πt)
n
2

e−
1
4t
|x|2 , t > 0, x ∈ Rn,

be the standard heat kernel, fundamental solution of the heat equation ∂tht = ∆pt. The

convolution semigroup Htf(x) = f ∗ ht(x), t > 0, solves ∂tHtf = ∆Htf = Ht∆f with initial

data f . At t = 1
2
, ht is just the standard Gaussian density so that H 1

2
f(0) =

∫
Rn fdγ (while

P0f = f).

6Added in 2024.
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For f > 0 smooth, t > 0, at any point, by the heat equation,

Ht(f log f)−Htf logHtf

=

∫ t

0

d

ds
Hs

(
Ht−sf logHt−sf

)
ds

=

∫ t

0

Hs

(
∆
(
Ht−sf logHt−sf

)
−∆Ht−sf logHt−sf −∆Ht−sf

)
ds

=

∫ t

0

Hs

( |∇Ht−sf |2

Ht−sf

)
ds

(since ∆(g log g)−∆g log g −∆g = |∇g|2
g

for any smooth positive function g). Now, for any

u > 0, ∇Huf = Hu(∇f), so that

|∇Huf |2 ≤
[
Hu(|∇f |)

]2 ≤ Hu

( |∇f |2
f

)
Huf

by the Cauchy-Schwarz inequality for the integral kernel Hu. With u = t− s, it follows that

|∇Ht−sf |2

Ht−sf
≤ Ht−s

( |∇f |2
f

)
,

and hence

Ht(f log f)−Htf logHtf ≤
∫ t

0

Hs

(
Ht−s

( |∇f |2
f

))
ds = tHt

( |∇f |2
f

)
from the semigroup property. For t = 1

2
, at x = 0 (for example), the latter amounts to

(2). Thus, the logarithmic Sobolev inequality is (just) a consequence of the Cauchy-Schwarz

inequality.
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