
A simple proof of the Nualart-Peccati

Fourth-Moment Theorem

Abstract

D. Nualart and G. Peccati showed in 2005 [10] that for a sequence of Wiener chaos of

fixed degree, the convergence to a Gaussian law is equivalent to the convergence of the

fourth moments. The note presents the recent simple and short proof by E. Azmoodeh,

S. Campese and G. Poly [1] of this result.

In the striking contribution [10], D. Nualart and G. Peccati discovered that the fourth

moment of homogeneous polynomial chaos on Wiener space is enough to characterize conver-

gence towards the Gaussian distribution. Specifically, and in a simplified (finite dimensional)

setting, let F : RN → R, 1 ≤ d ≤ N , be defined by

F = F (x) =
N∑

i1,...,id=1

ai1,...,ik xi1 · · ·xid , x = (x1, . . . , xN) ∈ RN , (1)

where ai1,...,id are real numbers vanishing on diagonals and symmetric in the indices. Such a

function F will be called homogeneous of degree d. Let now Fn on RNn , n ∈ N, Nn →∞, be

a sequence of such homogeneous polynomials of fixed degree d. The theorem of D. Nualart

and G. Peccati expresses that the distributions Fn under the standard Gaussian measures

dγNn(x) = 1
(2π)Nn/2 e

−|x|2/2dx on RNn converge as n → ∞ towards the standard Gaussian

distribution on the real line if and only if∫
RNn

F 2
n dγNn → 1 and

∫
RNn

F 4
n dγNn → 3,

1 and 3 being respectively the second and fourth moments of the standard normal. (Equiv-

alently, the Fn’s may be normalized in L2(γNn) so that the fourth-moment characterizes the

weak convergence.)
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The analysis developed in [10] actually holds for homogeneous chaos (multiple stochastic

inetegrals) on the infinite dimensional Wiener space, and the equivalence is further described

in terms of convergence of contractions. The proof of [10] relies on multiplication formulas

for homogeneous chaos and stochastic calculus.

Since [10] was published, other proofs have been developed, including [4, 6, 7]... In partic-

ular, the work by D. Nualart and S. Ortiz-Latorre [9] introduces a technological advance with

a new proof based on Malliavin operators and the use of integration by parts on Wiener space

emphasizing that the convergence of (Fn)n∈N to a Gaussian distribution is also equivalent to

the fact that

VarγNn

(
|∇Fn|2)→ 0,

where VarγNn
is the variance with respect to γNn . This reduction was actually analyzed in

the work by I. Nourdin and G. Peccati [5] as an effect of the so-called Stein method in this

context. By this methodology, the latter authors provide furthermore quantitative bounds

in the Nualart-Peccati theorem via the inequality (under
∫
RNn F

2
ndγNn = 1)

VarγNn

(
|∇Fn|2

)
≤ Cd

(∫
RNn

F 4
n dγNn − 3

)
where Cd > 0 only depends on d.

Virtually all the aforementioned proofs make crucial use of the product formula for mul-

tiple stochastic integrals, itself a form of the multiplication formula for Hermite polynomials

(and rely on a rather rigid structure of the underlying probability space). Building upon the

Stein method and the reduction to the analysis of VarγNn

(
|∇Fn|2), E. Azmoodeh, S. Campese

and G. Poly [1] (see also the earlier [3]) recently produced a new simple proof avoiding the use

of product formulas. Their spectral argument rather relies on the eigenfunction properties

of the Ornstein-Uhlenbeck operator with invariant measure the Gaussian distribution, and a

clever argument on the chaotic decomposition of the square of an homogeneous polynomial.

One success of the approach is its ability to cover, with the same flexibility, settings away

from the original Gaussian model (not expanded here).

The aim of the note is to present, in a concise exposition, the new argument by E. Az-

moodeh, S. Campese and G. Poly [1]. The exposition is introduced by some classical facts on

the Ornstein-Uhlenbeck operator, and its eigenfunctions consisting of the Hermite polyno-

mials, and the chaos decomposition on a function on the Gauss space, and a brief reminder

of Stein’s method in this context following [5, 6].
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1 Preliminaries on the Ornstein-Uhlenbeck operator

Recall the standard Gaussian measure γN on RN with density 1
(2π)N/2 e

−|x|2/2 with respect

to the Lebesgue measure. General references on the content of this section are e.g. the

monographs [8, 6, 2].

The basic integration by parts formula with respect to γN expresses that for every smooth

functions f, g : RN → R, ∫
RN

f(−Lg)dγN =

∫
RN

∇f · ∇g dγN (2)

where

Lf = ∆f − x · ∇f

is the Ornstein-Uhlenbeck operator.

According to the integration by parts formula (2), the Ornstein-Uhlenbeck operator L

has γN as invariant and reversible probability measure, and generates the symmetric bilinear

carré du champ operator

Γ(f, g) = ∇f · ∇g =
1

2

[
L(fg)− f Lg − g Lf

]
acting on functions f, g in a suitable domain A of smooth functions on RN . For simplicity in

the notation below, set Γ(f) = Γ(f, f) = |∇f |2 which is always non-negative. The operator

L is a diffusion operator in the sense that for every smooth function ϕ : R → R, and every

f ∈ A,

Lϕ(f) = ϕ′(f) Lf + ϕ′′(f) Γ(f). (3)

Alternatively, Γ is a derivation in the sense that Γ(ϕ(f), g) = ϕ′(f) Γ(f, g).

The spectrum of the operator −L is N, with eigenfunctions given by the Hermite poly-

nomials. For every λ ∈ R, the expansion in x ∈ R,

eλx−
1
2
λ2 =

∞∑
k=0

λk√
k!
hk(x)

defines the one-dimensional Hermite polynomials hk, k ∈ R. For every k ∈ N, hk is a

polynomial of degree k. For example h0(x) = 1, h1(x) = x, h2(x) = 1√
2
(x2 − 1). It is

easily checked, on the generating series for example, that Lhk = −k hk, k ∈ N. The Hermite

polynomials are orthogonal in L2(γ1), orthonormal in the preceding formulation, and the

complete system hk, k ∈ N, therefore defines an orthonormal basis (of eigenvectors of L) of

L2(γ1).
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Multi-dimensional Hermite polynomials on RN are defined as products of one-dimensional

polynomials with multi-index. Namely, for k = (k1, . . . , kN) ∈ NN and x = (x1, . . . , xN) ∈ RN ,

set

Hk(x) = hk1(x1) · · ·hkN (xN).

For every k = (k1, . . . , kN) ∈ NN , LHk = −k Hk with k = k1 + · · · + kN , k = (k1, . . . , kN).

As in the real case, the family Hk, k ∈ NN , defines an orthonormal basis of the Hilbert

space L2(γN). The so-called orthogonal chaos decomposition (Fourier-Hermite expansion) of

a function in L2(γN) takes the form

f =
∑
k∈NN

fkHk =
∞∑
k=0

(∑
|k|=k

fkHk

)
where the fk’s are real numbers, and |k| = k1+· · ·+kN . The sums under parentheses actually

represents the so-called homogeneous Wiener chaos of order k, which may be considered more

generally.

Since h1(x) = x, x ∈ R, the homogeneous polynomial F from (1) is an eigenfunction of

order d of L, that is

−LF = dF. (4)

2 The first step: Stein’s lemma

The following statement from [5] (see also [6]) presents the application of Stein’s method in

the context of an eigenfunction of the Ornstein-Uhlenbeck operator. The outcome is that,

for an eigenfunction F of −L with eigenvalue d ≥ 1, the proximity of Γ(F ) = |∇F |2 to a

constant forces the law of F under γN to be close to the (one-dimensional) standard normal.

The underlying principle relies on the chain rule formula for the diffusion operator L,

L(ϕ ◦ F ) = ϕ′(F ) LF + ϕ′′(F ) Γ(F ) = −dFϕ′(F ) + ϕ′′(F ) Γ(F )

along a smooth function ϕ : R → R. Therefore, if Γ(F ) = d, L(ϕ ◦ F ) = d (L1ϕ)(F ) where

L1 is the one-dimensional Ornstein-Uhlenbeck operator with invariant measure γ1, and thus

the law of F is γ1.

Proposition 1. Let F be an eigenfunction of −L with eigenvalue d ≥ 1. Denote by ν the

distribution of F under γN . Given ϕ : R→ R integrable with respect to ν and γ1, let ψ be a

smooth solution of the associated Stein equation ϕ−
∫
R ϕdγ1 = ψ′ − xψ. Then,∣∣∣∣ ∫

R
ϕdν −

∫
R
ϕdγ1

∣∣∣∣ ≤ Cϕ
d

(∫
RN

[
Γ(F )− d

]2
dγN

)1/2

where Cϕ = ‖ψ′‖2∞.
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Proof. Since ν is the distribution of F under γN , by the Stein equation,∫
R
ϕdν −

∫
R
ϕdγ1 =

∫
RN

ϕ(F )dγN −
∫
R
ϕdγ1 =

∫
RN

[
ψ′(F )− Fψ(F )

]
dγN .

Now −LF = dF so that

ψ′(F )− Fψ(F ) = ψ′(F ) + d−1 LF ψ(F )

and hence, after integration by parts with respect to the operator L (2) and the use of the

diffusion property (3),∫
R
ϕdν −

∫
R
ϕdγ1 =

∫
RN

ψ′(F )
[
1− d−1Γ(F )

]
dγN .

Together with the Cauchy-Schwarz inequality,∣∣∣∣ ∫
R
ϕdν −

∫
R
ϕdγ1

∣∣∣∣ ≤ (∫
RN

ψ′(F )2dγN

)1/2(∫
RN

[
1− d−1Γ(F )

]2
dγN

)1/2

which amounts to the claim.

3 The second step: chaos decomposition

The preceding step indicates that in order to tackle the Fourth-Moment Theorem it is enough

to show that, for an eigenfunction F , Γ(F ) is close to its mean under a condition on the

(second and) fourth moment of F . The next statement achieves this goal for the specific

homogeneous polynomials (1) as considered in the Nualart-Peccati theorem. The proof is

thus taken from [1].

Proposition 2. Let F be an homogeneous polynomial of degree d as in (1). Then∫
RN

[
Γ(F )− d

]2
dγN ≤ d2

(
1

3

∫
RN

F 4dγN − 2

∫
RN

F 2dγN + 1

)
.

Proof. A first simple, but powerful, observation is the spectral representation of the Gamma

operator for an eigenfunction F of −L with eigenvalue d (i.e. −LF = dF ) expressed as

Γ(F ) =
1

2
L(F 2)− F LF =

1

2
L(F 2) + dF 2 =

1

2
(L + 2d Id)(F 2). (5)

In particular
∫
RN Γ(F )dγN = d

∫
RN F

2dγN .
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From (5), the clever argument from [1] relies on the decomposition∫
RN

[
Γ(F )− d

]2
dγN =

1

4

∫
RN

[
(L + 2d Id)(F 2 − 1)

]2
dγN

=
1

4

∫
RN

L(F 2 − 1)(L + 2d Id)(F 2 − 1)dγN

+
d

2

∫
RN

(F 2 − 1)(L + 2d Id)(F 2 − 1)dγN .

(6)

Now, as follows from the expression (1) of F , F 2 may be represented as an orthogonal sum

F 2 =
2d∑
k=0

Fk

of chaos elements of degree less than or equal to 2d. Indeed,

F 2 =
N∑

i1,...,id=1;j1,...,jd=1

ai1,...,ik aj1,...,jk xi1 · · ·xid xj1 · · ·xjd ,

and if xik = xj` for some k, `, since h2(x) = 1√
2
(x2−1), the sum decomposes into 2 orthogonal

elements of degree less than or equal to 2d. Using that each Fk is an eigenfunction of −L

with eigenvalue k, 0 ≤ k ≤ 2d,∫
RN

L(F 2)(L+2d Id)(F 2 − 1)dγN

=

∫
RN

L(F 2)
[
L(F 2) + 2dF 2 − 2d)

]
dγN

=

∫
RN

( 2d∑
k=0

(−k)Fk

)( 2d∑
k=0

(−k + 2d)Fk − 2d

)
dγN

= −
2d∑
k=0

(2d− k)k

∫
RN

F 2
k dγN

≤ 0.

Hence from (6), as a first step∫
RN

[
Γ(F )− d

]2
dγN ≤

d

2

∫
RN

(F 2 − 1)(L + 2d Id)(F 2 − 1)dγN . (7)
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Now, using (5) backwards,∫
RN

(F 2 − 1)(L+2d Id)(F 2 − 1)dγN

= 2

∫
RN

(F 2 − 1)
[
Γ(F )− d

]
dγN

= 2

∫
RN

F 2 Γ(F )dγN − 2d

∫
RN

F 2dγN − 2

∫
RN

Γ(F )dγN + 2d

= 2

∫
RN

F 2 Γ(F )dγN − 4d

∫
RN

F 2dγN + 2d

since
∫
RN Γ(F )dγN = d

∫
RN F

2dγN . By the diffusion property (3), the integration by parts

formula (2), and the eigenfunction property (4),

3

∫
RN

F 2 Γ(F )dγN =

∫
RN

Γ
(
F 3, F )dγN =

∫
RN

F 3(−LF )dγN = d

∫
RN

F 4dγN

so that ∫
RN

(F 2 − 1)(L + 2d Id)(F 2 − 1)dγN =
2d

3

∫
RN

F 4dγN − 4d

∫
RN

F 2dγN + 2d.

By (7), the inequality of Proposition 2 follows.

Proposition 1 and 2 then immediately lead to the bound, for ν the distribution of F

under γN , ∣∣∣∣ ∫
R
ϕdν −

∫
R
ϕdγ1

∣∣∣∣ ≤ Cϕ d

(
1

3

∫
RN

F 4dγN − 2

∫
RN

F 2dγN + 1

)1/2

(8)

for any smooth function ϕ : R → R. From this family of inequalities, the Nualart-Peccati

Fourth-Moment theorem immediately follows.

While the preceding simple proof is outlined in a finite dimensional setting, the principle

behind it may be extended to an infinite dimensional Wiener chaos framework along the

corresponding infinite dimensional spectral analysis, or a direct finite dimensional approxi-

mation procedure on the dimension free inequality (8).
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