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The Fourth-Moment Theorem

By the classical moment theorem, a sequence of random variables (Fn)n∈N on some prob-

ability space (Ω,A,P), having moments of all orders, converges in distribution to a standard

normal variable Z if (and only if)

E
(
F p
n

)
→ E

(
Zp
)

for every integer p.

Let (Xn)n∈N be a sequence of independent standard normal variables. For a fixed integer

d ≥ 1, consider

Fn =
Nn∑

i1,...,id=1

ai1,...,ik Xi1 · · ·Xid ,

where ai1,...,id are real numbers vanishing on diagonals and symmetric in the indices, and

(Nn)n∈N is a sequence of integers strictly increasing to infinity as n → ∞. In a striking

contribution, D. Nualart and G. Peccati showed in 2005 [13] that in order for such a sequence

(Fn)n∈N to converge weakly to a standard normal Z, it is actually enough that the first 2

moments

E
(
F 2
n

)
→ 1 and E

(
F 4
n

)
→ 3

converge to the second and fourth moments of the standard normal. (Equivalently, the Fn’s

may be normalized in L2(P) so that the fourth moment characterizes the weak convergence.)

The analysis developed in [13] actually holds for homogeneous chaos (multiple stochastic

integrals) on the infinite dimensional Wiener space, with a proof relying on multiplication

formulas for homogeneous chaos and stochastic calculus. This post exposes a (short and

simple) proof of this result following [4] (see also [6]) based on a spectral analysis of the
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Ornstein-Uhlenbeck operator applied to such homogeneous polynomials. As in some of the

alternate proofs (see e.g. [12, 7, 9, 10]...), the first step of the argument makes use of a

version of Stein’s inequality in this context (cf. [3]).
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1 Homogeneous polynomials and a target inequality

Let dγN(x) = 1
(2π)N/2 e

−|x|2/2dx on RN be the standard Gaussian measure on RN . For a fixed

1 ≤ d ≤ N , let F : RN → R be defined by

F = F (x) =
N∑

i1,...,id=1

ai1,...,ik xi1 · · ·xid , x = (x1, . . . , xN) ∈ RN , (1)

where ai1,...,id are real numbers vanishing on diagonals and symmetric in the indices. Such

a function F will be called homogeneous of degree d. The Fourth-Moment Theorem is thus

reformulated equivalently as the distributional convergence of Fn on RNn , n ∈ N, Nn →∞,

under γNn , towards the standard Gaussian distribution on the real line if and only if∫
RNn

F 2
n dγNn → 1 and

∫
RNn

F 4
n dγNn → 3.

With respect to the introduction, the proof developed below is thus presented in the

context of functions with respect to the standard Gaussian measure γN , and emphasizes

more precisely inequalities for each fixed N . The target will actually to prove that, for ν the

distribution of F under γN ,∣∣∣∣ ∫
R
ϕdν −

∫
R
ϕdγ1

∣∣∣∣ ≤ Cϕ d

(
1

3

∫
RN

F 4dγN − 2

∫
RN

F 2dγN + 1

)1/2

(2)
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for any smooth function ϕ : R→ R, with Cϕ > 0 only depending on ϕ. From this family of

inequalities, the Fourth-Moment Theorem immediately follows.

While the proof is outlined below in a finite dimensional setting, the principle behind it

may be extended to an infinite dimensional Wiener chaos framework (cf. [9]) along the corre-

sponding infinite dimensional spectral analysis, or a direct finite dimensional approximation

procedure on the dimension free inequality (2).

2 Reminders on the Ornstein-Uhlenbeck operator and

Hermite polynomials

This section briefly brings together elements from the posts [1] and [2] (see also [11, 9, 5]...).

The Ornstein-Uhlenbeck operator is acting on smooth functions f : RN → R as

Lf = ∆f − x · ∇f.

The basic integration by parts formula with respect to γN expresses that for every smooth

functions f, g : RN → R, ∫
RN

f(−Lg)dγN =

∫
RN

∇f · ∇g dγN . (3)

According to the integration by parts formula (3), the Ornstein-Uhlenbeck operator L

has γN as invariant and reversible probability measure, and generates the symmetric bilinear

carré du champ operator

Γ(f, g) = ∇f · ∇g =
1

2

[
L(fg)− f Lg − g Lf

]
acting on functions f, g in a suitable domain A of smooth functions on RN . For simplicity in

the notation below, set Γ(f) = Γ(f, f) = |∇f |2 which is always non-negative. The operator

L is a diffusion operator in the sense that for every smooth function ϕ : R → R, and every

f ∈ A,

Lϕ(f) = ϕ′(f) Lf + ϕ′′(f) Γ(f). (4)

Alternatively, Γ is a derivation in the sense that Γ(ϕ(f), g) = ϕ′(f) Γ(f, g).

The spectrum of the operator −L is N, with eigenfunctions given by the Hermite poly-

nomials. For every λ ∈ R, the expansion in x ∈ R,

eλx−
1
2
λ2 =

∞∑
k=0

λk√
k!
hk(x)

3



defines the one-dimensional Hermite polynomials hk, k ∈ R. For every k ∈ N, hk is a

polynomial of degree k. For example h0(x) = 1, h1(x) = x, h2(x) = 1√
2
(x2 − 1). It is

easily checked, on the generating series for example, that Lhk = −k hk, k ∈ N. The Hermite

polynomials are orthogonal in L2(γ1), orthonormal in the preceding formulation, and the

complete system hk, k ∈ N, therefore defines an orthonormal basis (of eigenvectors of L) of

L2(γ1).

Multi-dimensional Hermite polynomials on RN are defined as products of one-dimensional

polynomials with multi-index. Namely, for k = (k1, . . . , kN) ∈ NN and x = (x1, . . . , xN) ∈ RN ,

Hk(x) = hk1(x1) · · ·hkN (xN).

For every k = (k1, . . . , kN) ∈ NN , LHk = −k Hk with k = k1 + · · · + kN , k = (k1, . . . , kN).

As in the real case, the family Hk, k ∈ NN , defines an orthonormal basis of the Hilbert

space L2(γN). The so-called orthogonal chaos decomposition (Fourier-Hermite expansion) of

a function in L2(γN) takes the form

f =
∑
k∈NN

fkHk =
∞∑
k=0

(∑
|k|=k

fkHk

)
where the fk’s are real numbers, and |k| = k1+· · ·+kN . The sums under parentheses actually

represents the so-called homogeneous Wiener chaos of order k, which may be considered more

generally.

Since h1(x) = x, x ∈ R, the homogeneous polynomial F from (1) is an eigenfunction of

order d of L, that is

−LF = dF. (5)

3 The first step: Stein’s lemma

The following statement from [8, 9] presents the application of Stein’s method in the con-

text of an eigenfunction of the Ornstein-Uhlenbeck operator. The outcome is that, for an

eigenfunction F of −L with eigenvalue d ≥ 1, the proximity of Γ(F ) = |∇F |2 to a constant

forces the law of F under γN to be close to the (one-dimensional) standard normal. The

underlying principle relies on the chain rule formula for the diffusion operator L,

L(ϕ ◦ F ) = ϕ′(F ) LF + ϕ′′(F ) Γ(F ) = −dFϕ′(F ) + ϕ′′(F ) Γ(F )

along a smooth function ϕ : R → R. Therefore, if Γ(F ) = d, L(ϕ ◦ F ) = d (L1ϕ)(F ) where

L1 is the one-dimensional Ornstein-Uhlenbeck operator with invariant measure γ1, and thus

the law of F is γ1.
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Proposition 1. Let F be an eigenfunction of −L with eigenvalue d ≥ 1. Denote by ν the

distribution of F under γN . Given ϕ : R→ R integrable with respect to ν and γ1, let ψ be a

smooth solution of the associated Stein equation ϕ−
∫
R ϕdγ1 = ψ′ − xψ. Then,∣∣∣∣ ∫

R
ϕdν −

∫
R
ϕdγ1

∣∣∣∣ ≤ Cϕ
d

(∫
RN

[
Γ(F )− d

]2
dγN

)1/2

where Cϕ = ‖ψ′‖2∞.

Proof. Since ν is the distribution of F under γN , by the Stein equation,∫
R
ϕdν −

∫
R
ϕdγ1 =

∫
RN

ϕ(F )dγN −
∫
R
ϕdγ1 =

∫
RN

[
ψ′(F )− Fψ(F )

]
dγN .

Now −LF = dF so that

ψ′(F )− Fψ(F ) = ψ′(F ) + d−1 LF ψ(F )

and hence, after integration by parts with respect to the operator L (3) and the use of the

diffusion property (4),∫
R
ϕdν −

∫
R
ϕdγ1 =

∫
RN

ψ′(F )
[
1− d−1Γ(F )

]
dγN .

Together with the Cauchy-Schwarz inequality,∣∣∣∣ ∫
R
ϕdν −

∫
R
ϕdγ1

∣∣∣∣ ≤ (∫
RN

ψ′(F )2dγN

)1/2(∫
RN

[
1− d−1Γ(F )

]2
dγN

)1/2

which amounts to the claim.

4 The second step: chaos decomposition

The preceding step indicates that it is enough to show that, for an eigenfunction F , Γ(F ) =

|∇F |2 is close to its mean under a condition on the fourth moment of F . The next statement

achieves this goal for the specific homogeneous polynomials (1). Together with Proposition 1,

this result yields the announced claim (2). The proof of the proposition below is thus taken

from [4].

Proposition 2. Let F be an homogeneous polynomial of degree d as in (1). Then∫
RN

[
Γ(F )− d

]2
dγN ≤ d2

(
1

3

∫
RN

F 4dγN − 2

∫
RN

F 2dγN + 1

)
.
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Proof. As a first simple, but powerful, observation,

Γ(F ) =
1

2
L(F 2)− F LF =

1

2
L(F 2) + dF 2 =

1

2
(L + 2d Id)(F 2)

since F is an eigenfunction of −L with eigenvalue −d, i.e. −LF = dF . In particular

Γ(F )− dF 2 =
1

2
L(F 2) and Γ(F )− d = (L + 2d Id)(F 2 − 1), (6)

and
∫
RN Γ(F )dγN = d

∫
RN F

2dγN .

As follows from the expression (1) of F , F 2 may be represented as an orthogonal sum

F 2 =
2d∑
k=0

Fk

of chaos elements of degree less than or equal to 2d. Indeed,

F 2 =
N∑

i1,...,id=1;j1,...,jd

ai1,...,ik aj1,...,jk xi1 · · ·xid xj1 · · ·xjd ,

and if xik = xj` , since h2(x) = 1√
2
(x2−1), the sum decomposes into 2 orthogonal elements of

degree less than or equal to 2d. Using that each Fk is an eigenfunction of −L with eigenvalue

k, 0 ≤ k ≤ 2d,∫
RN

L(F 2)(L+2d Id)(F 2 − 1)dγN

=

∫
RN

L(F 2)
[
L(F 2) + 2dF 2 − 2d)

]
dγN

=

∫
RN

( 2d∑
k=0

(−k)Fk

)( 2d∑
k=0

(−k + 2d)Fk − 2d

)
dγN

= −
2d∑
k=0

(2d− k)k

∫
RN

F 2
k dγN

≤ 0.

Hence, by (6), ∫
RN

[
Γ(F )− dF 2

][
Γ(F )− d

]
dγN ≤ 0.

As a consequence,∫
RN

[
Γ(F )− d

]2
dγN =

∫
RN

[
Γ(F )− dF 2

][
Γ(F )− d

]
dγN

+

∫
RN

[
dF 2 − d

][
Γ(F )− d

]
dγN

≤
∫
RN

[
dF 2 − d

][
Γ(F )− d

]
dγN .

(7)
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Now, since
∫
RN Γ(F )dγN = d

∫
RN F

2dγN ,∫
RN

[
dF 2 − d

][
Γ(F )− d

]
dγN

= d

∫
RN

F 2 Γ(F )dγN − d2
∫
RN

F 2dγN − d
∫
RN

Γ(F )dγN + d2

= d

∫
RN

F 2 Γ(F )dγN − 2d2
∫
RN

F 2dγN + d2.

By the diffusion property (4), the integration by parts formula (3), and the eigenfunction

property (5),

3

∫
RN

F 2 Γ(F )dγN =

∫
RN

Γ
(
F 3, F )dγN =

∫
RN

F 3(−LF )dγN = d

∫
RN

F 4dγN

so that ∫
RN

[
dF 2 − d

][
Γ(F )− d

]
dγN =

d2

3

∫
RN

F 4dγN − 2d2
∫
RN

F 2dγN + d2.

Together with (7), the inequality of Proposition 2 follows.
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