
A proof of the

Law of the Iterated Logarithm

The Law of the Iterated Logarithm (LIL)is the third fundamental limit law of probability

theory, after the Law of Large Numbers and the Central Limit Theorem.

The LIL describes, with a surprising accuracy, the almost sure behavior closest to the

weak convergence of the Central Limit Theorem. The iterated logarithm is due to the

conjonction of a block-type argument along geometric sequences and exponential inequalities

of Gaussian type for sums of independent random variables.

Let X be a random variable on a probability space (Ω,A,P), and let (Xn)n≥1 be a

sequence of independent copies of X (on (Ω,A,P)); set Sn = X1 + · · · + Xn, n ≥ 1. The

standard Law of Large Numbers expresses that if X is integrable,

lim
n→∞

Sn
n

= E(X) almost surely,

while the Central Limit Theorem quantifies the fluctuations in the form

lim
n→∞

Sn√
n

= G in distribution

whenever σ2 = E(X2) <∞ and E(X) = 0, where G is a normal random variable with mean

zero and variance σ2.

Interpolating the preceding behaviors, the LIL expresses in its classical standard form

that, if σ =
√

E(X2) <∞ and E(X) = 0,

lim sup
n→∞

Sn√
2n log log(n)

= σ almost surely. (1)

The sequence
√

2n log log(n) =
√

2n log(log(n)) is rigorously defined only for n ≥ 3, but to

ease the notation, it will be written that log log(n) = 1 for n = 1, 2.
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With −X instead of X, it is also true that

lim inf
n→∞

Sn√
2n log log(n)

= −σ almost surely. (2)

As a consequence of (1) and (2),

lim sup
n→∞

|Sn|√
2n log log(n)

= σ almost surely, (3)

and the sequence
(

Sn√
2n log log(n)

)
n≥1

is in particular almost surely bounded.

This statement has been established by P. Hartman and A. Wintner [4] after the founding

works by A. Khintchine [6] and A. Kolmogorov [7], surprisingly technical and modern for

their time. Most of the more recent proofs, including this one, actually essentially follow the

same pattern.

A more precise form, due to V. Strassen [10], describes that

lim
n→∞

d

(
Sn√

2n log log(n)
, [−σ,+σ]

)
= 0 (4)

and

C

((
Sn√

2n log log(n)

)
n≥1

)
= [−σ,+σ] (5)

almost surely. In (4), d(·, [−σ,+σ]) = infa∈[−σ,+σ] | · −a| is the distance to the set [−σ,+σ],

and in (5), for a sequence (an)n≥1 of real numbers, C((an)n≥1) is the cluster set of the

limiting points of the sequence. V. Strassen establishes this result by embedding a sequence

of independent identically distributed random variables into the Brownian trajectories and

a version of the LIL for this specific Gaussian process.

Property (4) is actually an immediate consequence of (3) (even only the upper bound on

the limsup, in the form of (6) below, is enough). If (1) and (2) ensure that +σ et −σ are

almost sure limit points of the sequence
(

Sn√
2n log log(n)

)
n≥1, the strength of (5) expresses that

all points of the interval [−σ,+σ] are also in the cluster set.

The aim of this note is to present a simple and complete proof of (1) and (5). The

various arguments are drawn from the classical proofs of the LIL, for example from the

books and articles [7, 5, 9, 8, 2, 1] among (many) others. The proof, while not difficult,

requires nevertheless some care and precision.

The first sections are devoted to the proof of (1), splitted into upper and lower bounds.

The last section establishes Strassen’s form of the LIL via the multi-dimensional extension.

By homogeneity (work with X
σ

), it may be supposed that σ = 1 (the case σ = 0 is of no

interest).
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1 Proof of the upper bound in (1)

The purpose of this section is to establish that, for X centered with variance 1,

lim sup
n→∞

Sn√
2n log log(n)

≤ 1 almost surely. (6)

The proof relies on the application of the Borel-Cantelli lemma via a block decomposition

along geometric sequences and an exponential inequality for sums of independent random

variables.

1.1 Truncation and Borel-Cantelli lemma

The principle of the proof couples a truncation argument and the Borel-Cantelli lemma. The

result (6) will be achieved whenever for all ε > 0 and ρ > 1,

∞∑
`=1

P
(

max
1≤n≤n`

T εn ≥ (1 + 2ε)
√

2n` log log(n`)
)
< ∞ (7)

with n` the integer part of ρ`, ` ≥ 0, and

lim
n→∞

Sn − T εn√
2n log log(n)

= 0 almost surely, (8)

where

T εn = Y ε
1 + · · ·+ Y ε

n , n ≥ 1,

and

Y ε
k = Xk 1

{
|Xk|≤c

√
k/ log log(k)

} − E
(
Xk 1

{
|Xk|≤c

√
k/ log log(k)

}), k ≥ 1,

where c = c(ε) > 0 is to be specified later on in the proof (see the condition (10)).

Indeed, by the Borel-Cantelli lemma, the convergence of the series in (7) ensures that for

almost every ω ∈ Ω, starting from some integer `0 = `0(ω), for all ` ≥ `0,

max
1≤n≤n`

T εn(ω) ≤ (1 + 2ε)
√

2n` log log(n`).

Hence

max
n`−1<n≤n`

T εn(ω)√
2n log log(n)

≤ (1 + 2ε)ρ

since
√

2n` log log(n`) ≤ ρ
√

2n log log(n) when n`−1 < n ≤ n`, at least for ` large enough,

so that, almost surely,

lim sup
n→∞

T εn√
2n log log(n)

≤ (1 + 2ε)ρ.
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By (8), it also holds true that

lim sup
n→∞

Sn√
2n log log(n)

≤ (1 + 2ε)ρ almost surely.

Choosing ε et ρ of the form 1
p

et 1 + 1
q

where p et q are integers so to ensure a countable

union of negligible sets, property (6) will be established.

1.2 Use of the Kronecker lemma

This section establishes the convergence (8) by the classical Kronecker lemma. The latter will

ensure the conclusion whenever the series
∑∞

k=1

Xk−Y ε
k√

2k log log(k)
<∞ converges almost surely. By

definition of the Y ε
k ’s and centering of the Xk’s, this will be the case if

∞∑
k=1

1√
2k log log(k)

E
(
|Xk|1{|Xk|>c

√
k/ log log(k)

}) < ∞.

By equidistribution of the Xk’s and the Fubini-Tonelli theorem,

∞∑
k=1

1√
2k log log(k)

E
(
|Xk|1{|Xk|>c

√
k/ log log(k)

})
= E

(
|X|

∞∑
k=1

1√
2k log log(k)

1{
|X|>c
√
k/ log log(k)

}).
An easy upper bound shows that for N ≥ 1,

N∑
k=1

1√
2k log log(k)

≤ C

√
N

log log(N)

for some numerical constant C > 0. Since |X| > c
√
k/ log log(k) amounts to say that

k < c′X2 log log(X2) for some c′ only depending on c, for N of the order of X2 log log(X2),

it follows that

E
(
|X|

∞∑
k=1

1√
2k log log(k)

1{
|X|>c
√
k/ log log(k)

}) ≤ C ′ E(X2) < ∞.

The announced conclusion is established.

1.3 A maximal inequality

In order to handle (7), it is necessary to get rid of the maximum in the probability by means

of a maximal inequality. Several tools and inequalities are available, for example the classical

Ottaviani inequality.
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Lemma 1. Let Y1, . . . , Yn be independent random variables on a probability space (Ω,A,P),

and set Tk = Y1 + · · ·+ Yk, k = 1, . . . , n. For s, t > 0,

P(Tn ≥ t) ≥ min
1≤k≤n

P
(
|Tn − Tk| < s

)
P
(

max
1≤k≤n

Tk ≥ s+ t
)
.

Proof. Consider the subsets in A defined by

Ak =
{
T1 < s+ t, . . . , Tk−1 < s+ t, Tk ≥ s+ t

}
, k = 1, . . . , n,

which form a partition of {max1≤k≤n Tk ≥ s+ t}. Then

P
(
Tn ≥ t

)
≥

n∑
k=1

P
(
Tn ≥ t, Ak

)
≥

n∑
k=1

P
(
|Tn − Tk| < s,Ak

)
since Tn = (Tn − Tk) + Tk and Tk ≥ s + t on Ak. By independence, the measurable set Ak
only depending on the variables Y1, . . . , Yk and Tn − Tk = Yk+1 + · · ·+ Yn,

P
(
Tn ≥ t

)
≥

n∑
k=1

P
(
|Tn − Tk| < s

)
P(Ak)

≥ min
1≤k≤n

P
(
|Tn − Tk| < s

) n∑
k=1

P(Ak)

≥ min
1≤k≤n

P
(
|Tn − Tk| < s

)
P
(

max
1≤k≤n

Tk ≥ s+ t
)
.

The conclusion follows.

This lemma may be applied to the random variables T ε1 , . . . , T
ε
n`

which are involved in

(7). By Chebychev’s inequality, for every n = 1, . . . , n`,

P
(
|T εn`
− T εn| ≥ s

)
≤ 1

s2

n∑̀
k=n+1

E
(
(Y ε

k )2
)
≤ n`

s2

since E((Y ε
k )2) ≤ E(X2

k) = 1. Therefore, if s = ε
√

2n` log log(n`), these probabilities will be,

for example, less than or equal to 1
2

for every ` ≥ 1 large enough so that

min
1≤n≤n`

P
(
|T εn`
− T εn| < s

)
≥ 1

2
.

Hence, from the lemma, for ` large enough,

P
(

max
1≤n≤n`

T εn ≥ (1 + 2ε)
√

2n` log log(n`)
)

≤ 2P
(
T εn`
≥ (1 + ε)

√
2n` log log(n`)

)
.

As a conclusion, (7) holds true as soon as
∞∑
`=1

P
(
T εn`
≥ (1 + ε)

√
2n` log log(n`)

)
< ∞. (9)
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1.4 Exponential inequality

The proofs of the LIL rely in essence on exponential inequalities of Gaussian type for sums of

independent random variables, at the origin of the iterated logarithm. There are numerous

and diverse such exponential inequalities (cf. [7, 9, 8]...). The one below, taken from [1], is

easy to access.

Lemma 2. Let Y1, . . . , Yn be independent centered random variables such that |Yk| ≤ C

almost surely for every k = 1, . . . , n, where C > 0 is a fixed positive constant. Set Tn =

Y1 + · · ·+ Yn. Then, for every α2 ≥ max1≤k≤n E(Y 2
k ) and t > 0,

P(Tn ≥ t) ≤ exp
(
− t2

2α2n

[
2− eCt/α2n

])
.

Proof. For every x ∈ R, ex ≤ 1 + x+ x2

2
e|x| so that, by centering, for every λ > 0 and every

k = 1, . . . , n,

E(eλYk) ≤ 1 +
λ2

2
E
(
Y 2
k e

λ|Yk|
)
≤ 1 +

α2λ2

2
eλC ≤ exp

(α2λ2

2
eλC
)

by the hypotheses. As a consequence, by independence,

E(eλTn) =
n∏
k=1

E(eλYk) ≤ exp
(α2λ2n

2
eλC
)
,

and by Markov’s inequality

P(Tn ≥ t) ≤ exp
(
− λt+

α2λ2n

2
eλC
)
.

The choice of λ = t
α2n

leads to the announced claim.

1.5 End of the proof of (6)

On the basis of the exponential inequality of the preceding paragraph, the proof of (9) is

almost immediate. The inequality of Lemma 2 applied to the sample of independent centered

random variables Y ε
1 , . . . , Y

ε
n`

(for each fixed ` ≥ 1) for which

|Y ε
k | ≤ C = 2c

√
n`

log log(n`)
, E

(
(Y ε

k )2
)
≤ E(X2

k) = 1, k = 1, . . . , n`,

and to t = (1 + ε)
√

2n` log log(n`) leads to

P
( n∑̀

k=1

Y ε
k ≥ (1 + ε)

√
2n` log log(n`)

)
≤ exp

(
− (1 + ε)2

[
2− e2

√
2c(1+ε)

]
log log(n`)

)
.
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Choose then c = c(ε) > 0 small enough in order that

(1 + ε)2
[
2− e2

√
2c(1+ε)

]
> 1, (10)

so that the right-hand side of the previous inequality defines the general term of a convergent

series in ` ≥ 1 since log log(n`) ∼ log(`).

The proof of the convergence of the series (9), and thus of the upper bound (6) in the

limsup (1), is therefore completed.

2 Proof of the lower bound in (1)

The object of this section is to establish that, for X centered of variance 1,

lim sup
n→∞

Sn√
2n log log(n)

≥ 1 almost surely. (11)

The proof rests on the Borel-Cantelli lemma in its independent part and on an moderate

deviation inequality.

2.1 Use of the Borel-Cantelli lemma

It will be enough to show that for every ε > 0, there exists a sequence of integers (n`)`≥1
increasing to infinity such that

lim sup
`→∞

Sn`√
2n` log log(n`)

≥ 1− ε almost surely. (12)

Thus lim supn→∞
Sn√

2n log log(n)
≥ 1− ε almost surely, and consider next a countable union of

negligible sets with ε = 1
p
, p ≥ 1 integer.

If the subsequence is chosen so that lim`→∞
n`−1

n`
= 0, it will actually be enough to prove

that

lim sup
`→∞

Sn`
− Sn`−1√

2n` log log(n`)
≥ 1− ε almost surely (13)

since according to (6) the sequence
( Sn`−1√

2n`−1 log log(n`−1)

)
`≥1

is almost surely bounded.

By independence of the random variables Sn`
−Sn`−1

, ` ≥ 1, property (13) will hold true

if
∞∑
`=1

P
(

Sn`
− Sn`−1√

2n` log log(n`)
≥ 1− ε

)
= ∞ (14)

according to the Borel-Cantelli lemma (in its independent version thus).
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2.2 A moderate deviation inequality

The proof of (14) will be established by a minoration inequality in the form of an asymptotics

of moderate deviations (from the central limit theorem).

Recall Sn = X1 + · · ·+Xn, n ≥ 1, where (Xn)n≥1 is a sequence of independent identically

distributed random variables, with mean zero and variance one.

Consider u > 0 and integers p, q ≥ 1. Then, by independence and equidistribution,

P
(
Spq
pq
≥ u

)
≥
[
P
(
Sp
p
≥ u

)]q
since

Spq = (X1 + · · ·+Xp) + (Xp+1 + · · ·+X2p) + · · ·+ (Xp(q−1)+1 + · · ·+Xpq).

If p = p`, q = q`, ` ≥ 1, are sequences of integers tending to infinity, then, for u = t√
p

where t > 0 is fixed, by the central limit theorem,

lim inf
`→∞

1

q`
logP

(
Sp`q`√
p`q`
≥ t

)
≥ logP(G ≥ t) (15)

where G is standard normal N (0, 1).

Let then ε be fixed, 0 < ε < 1
3
. For α > 0 to be specified below as a function of ε, set,

for each ` ≥ 1,

p` =

[
α ``

2 log log(``)

]
, q` =

[
2

α
log log(``)

]
(integer parts). Define then a sequence of integers (n`)`≥1 by the recurrence relation

n` = p` q` + n`−1, ` ≥ 2, n1 = 1.

It is easy to see that n` ∼ `` as `→∞. Indeed, letting v` = n`

``
, ` ≥ 1,

v` = u` +
(`− 1)`−1

``
v`−1

where the sequence u` = p`q`
``

, ` ≥ 1, is converging to 1. The sequence (v`)`≥1 is thus bounded,

and converges also to 1. In particular,

√
p` q` ∼

1√
α

√
2n` log log(n`) and q` ∼

2

α
log log(n`).
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Together with these observations, as an application of (15) for t = (1− 2ε)
√
α,

lim inf
`→∞

1

log log(n`)
logP

(
Sn`
− Sn`−1√

2n` log log(n`)
≥ 1− 3ε

)
≥ 2

α
lim inf
`→∞

1

q`
logP

(
Sp`q`√
p`q`
≥ (1− 2ε)

√
α

)
≥ 2

α
logP

(
G ≥ (1− 2ε)

√
α
)
.

The traditional lower bound

P(G ≥ u) ≥
(1

u
− 1

u3

) 1√
2π

e−
u2

2 , u > 0,

leads to observe that for α large enough (depending on ε < 1
3
),

2

α
logP

(
G ≥ (1− 2ε)

√
α
)
≥ −(1− 2ε),

so that, as a consequence,

lim inf
`→∞

1

log log(n`)
logP

(
Sn`
− Sn`−1√

2n` log log(n`)
≥ 1− 3ε

)
≥ −(1− 2ε). (16)

2.3 End of the proof of (11)

The lower bound (16) from the preceding paragraph easily ensures the divergence of the

series (14), and will conclude in this way the proof of (11). Indeed, for every ` large enough,

P
(

Sn`
− Sn`−1√

2n` log log(n`
≥ 1− 3ε

)
≥ e−(1−ε) log log(n`)).

Since n` ∼ ``, the right-hand side defines the general term of a divergent series, so that,

ε > 0 being arbitrary, (14) holds true.

On the other hand n`−1

n`
→ 0, as expected to conclude the proof. The almost sure

inequality (12) is established, and therefore also (11).

3 Multi-dimensional extension and Strassen’s form

Strassen’s result (5) on the cluster set

C

((
Sn√

2n log log(n)

)
n≥1

)
= [−1,+1] almost surely,
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is presented here via the extension of the real LIL (1) to random vectors. It is possible to

provide a direct proof on the basis of the moderate deviation argument of the last section as

developed in [1].

The LIL is rather easily extended to random vectors in the following statement. Let X =

(X(1), . . . , X(d)) be a random vector on (Ω,A,P) with values in Rd, such that E(‖X‖2) <∞
and E(X) = 0, where ‖ · ‖ denotes the Euclidean norm in Rd. It is supposed that the

covariance matrix Γ =
(
E((X(i)(X(j))

)
1≤i,j≤d is non-degenerate, with square root Γ = A tA.

Let, as before, on (Ω,A,P), be (Xn)n≥1 a sequence of independent copies of X, and

Sn = X1 + · · ·+Xn, n ≥ 1. Then, with

K = A(Bd) =
{
Ax ; ‖x‖ ≤ 1

}
where Bd is the closed Euclidian unit ball in Rd, the Strassen formulation (4) and (5) in Rd

expresses that

lim
n→∞

d

(
Sn√

2n log log(n)
, K

)
= 0 (17)

and

C

((
Sn√

2n log log(n)

)
n≥1

)
= K (18)

almost surely (with the corresponding notation).

The proof of these properties, following [3], may be presented as a consequence of the

one-dimensional result together with compactness and projection arguments. Working with

A−1X, it may be assumed that the covariance matrix of X is the identity matrix and that

K = Bd.

It is worthwhile observing to start with (and will be freely used below) that P(Ω1) = 1

where Ω1 =
{

supn≥1
‖Sn‖√

2n log log(n)
<∞

}
(by the LIL coordinatewise).

Again by the real LIL, for each y ∈ Rd,

lim sup
n→∞

〈y, Sn〉√
2n log log(n)

=
√
E(〈y,X〉2) = ‖y‖ almost surely. (19)

By countable density in Rd, there exists a measurable set Ω2 with P(Ω2) = 1 on which this

property holds true for every y ∈ Rd.

As in the one-dimensional setting, property (17) will be achieved as soon as

lim sup
n→∞

‖Sn‖√
2n log log(n)

≤ 1 almost surely. (20)
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If this is not the case, there is an measurable set Ω0 of positive probability on which the

limsup is strictly greater than 1. Let then ω0 ∈ Ω0 ∩ Ω1 ∩ Ω2 ; there exists η > 0 and an

infinite subsequence of integers (nk)k≥1 such that, for every k ≥ 1,

‖Snk
(ω0)‖√

2nk log log(nk)
≥ 1 + 3η.

There exists then a sequence (znk
)k≥1 of norm 1 elements of Rd such that

〈znk
, Snk

(ω0)〉√
2nk log log(nk)

≥ 1 + 2η

for all k ≥ 1. By compactness, the sequence (znk
)k≥1 admits a limit point z = z(ω0) ∈ Rd of

norm 1, and thus, for infinitely many integers k,

〈z(ω0), Snk
(ω0)〉√

2nk log log(nk)
≥ 1 + η.

This is however in contradiction with (19) applied to y = z(ω0). The claim (20) follows. Due

to (19), this limsup is actually equal to 1.

Concerning (18), if y is of norm 1 in Rd,∥∥∥∥ Sn√
2n log log(n)

− y
∥∥∥∥2 =

∥∥∥∥ Sn√
2n log log(n)

∥∥∥∥2 + 1− 2
〈y, Sn〉√

2n log log(n)

so that, following (20) and (19),

lim inf
n→∞

∥∥∥∥ Sn√
2n log log(n)

− y
∥∥∥∥ = 0 almost surely.

Therefore, any point of the unit sphere Sd−1 of Rd is almost surely a limit point of the

sequence
(

Sn√
2n log log(n)

)
n≥1

. By countable density,

C

((
Sn√

2n log log(n)

)
n≥1

)
⊃ Sd−1 almost surely. (21)

But this result holds true in any dimension d. It may thus be applied to a random vector

X̃ = (X,Z) in Rd+1 where Z is real centered with variance 1, independent from X. Since

by the projection

πd+1,d : (x, z) ∈ Rd+1 = Rd × R 7→ x ∈ Rd,

πd+1,d(S
d) = Bd and, with the corresponding notation, πd+1,d(S̃n) = Sn, the inclusion (21) in

Rd+1 thus projected on Rd yields the conclusion with Bd in place of Sd−1. The almost sure

inequality (20) ensuring the reverse inclusion, the conclusion (18) follows.
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The application of this result in R2 projected on R yields in particular part (5) of

Strassen’s form on the cluster set of the real LIL.

All of these statements therefore conclude a complete proof of the LIL.
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