A proof of the
Law of the Iterated Logarithm

The Law of the Iterated Logarithm (LIL)is the third fundamental limit law of probability
theory, after the Law of Large Numbers and the Central Limit Theorem.

The LIL describes, with a surprising accuracy, the almost sure behavior closest to the
weak convergence of the Central Limit Theorem. The iterated logarithm is due to the
conjonction of a block-type argument along geometric sequences and exponential inequalities
of Gaussian type for sums of independent random variables.

Let X be a random variable on a probability space (Q2,.A,P), and let (X,),, be a
sequence of independent copies of X (on (2, A4, P)); set S, = Xy +---+ X,,, n > 1. The
standard Law of Large Numbers expresses that if X is integrable,

Sn
lim — = E(X) almost surely,

n—oo M

while the Central Limit Theorem quantiﬁes the fluctuations in the form

lim — = G in distribution

n—00 \/_

whenever 02 = E(X?) < oo and E(X) = 0, where G is a normal random variable with mean
zero and variance o2
Interpolating the preceding behaviors, the LIL expresses in its classical standard form
that, if 0 = \/E(X?) < oo and E(X) = 0,
Sh

lim sup = o almost surely. (1)
n—oo  1/2nloglog(n)

The sequence /2nloglog(n) = v/2nlog(log(n)) is rigorously defined only for n > 3, but to
ease the notation, it will be ertten that loglog(n) =1 for n =1, 2.
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With —X instead of X, it is also true that

lim inf S = —o  almost surely. (2)
n—oo /2nloglog(n)

As a consequence of (1) and (2),

Sn
lim sup 5] =0 almost surely, (3)
n—oo  4/2nloglog(n)

and the sequence(#) is in particular almost surely bounded.
1/ 2nloglog(n)

n>1

This statement has been established by P. Hartman and A. Wintner [4] after the founding
works by A. Khintchine [6] and A. Kolmogorov [7], surprisingly technical and modern for
their time. Most of the more recent proofs, including this one, actually essentially follow the
same pattern.

A more precise form, due to V. Strassen [10], describes that

lim d( SR +a]) _ 0 (4)

n—oo \ /2nloglog(n)

and

c(( S ) ) — [~0,+0] (5)
V/2nloglog(n) / n>1

almost surely. In (4), d(-,[—0,4+0]) = infoc[_s 401 | - —a| is the distance to the set [—o, +0],
and in (5), for a sequence (an),-; of real numbers, C((ay),>;) is the cluster set of the
limiting points of the sequence. V. Strassen establishes this result by embedding a sequence
of independent identically distributed random variables into the Brownian trajectories and
a version of the LIL for this specific Gaussian process.

Property (4) is actually an immediate consequence of (3) (even only the upper bound on

the limsup, in the form of (6) below, is enough). If (1) and (2) ensure that +o0 et —o are
Sn

v/ 2nloglog(n) ) n>1’

all points of the interval [—o, +0] are also in the cluster set.

almost sure limit points of the sequence ( the strength of (5) expresses that

The aim of this note is to present a simple and complete proof of (1) and (5). The
various arguments are drawn from the classical proofs of the LIL, for example from the
books and articles [7, 5, 9, 8, 2, 1] among (many) others. The proof, while not difficult,
requires nevertheless some care and precision.

The first sections are devoted to the proof of (1), splitted into upper and lower bounds.
The last section establishes Strassen’s form of the LIL via the multi-dimensional extension.

By homogeneity (work with %), it may be supposed that ¢ = 1 (the case ¢ = 0 is of no
interest).



1 Proof of the upper bound in (1)

The purpose of this section is to establish that, for X centered with variance 1,

lim sup S <1 almost surely. (6)
n—oo  4/2nloglog(n)

The proof relies on the application of the Borel-Cantelli lemma via a block decomposition
along geometric sequences and an exponential inequality for sums of independent random
variables.

1.1 Truncation and Borel-Cantelli lemma

The principle of the proof couples a truncation argument and the Borel-Cantelli lemma. The
result (6) will be achieved whenever for all € > 0 and p > 1,

o0

ZP( max T > (1 + 2¢) 2ng10glog(ng)> < o0 (7)

1<n<ny
/=1

with n, the integer part of p’, £ > 0, and

lim S — T =0  almost surely, (8)
n—oo  /2nloglog(n)

where
T5:Y1€+"'+era n217

and

€
_ _ >
Yo = XL o/ iomton } E<X’“ L <o/ loglog(k)})’ k=1,

where ¢ = ¢(g) > 0 is to be specified later on in the proof (see the condition (10)).

Indeed, by the Borel-Cantelli lemma, the convergence of the series in (7) ensures that for
almost every w € €, starting from some integer ¢y = {o(w), for all £ > ¢,

max T (w) < (1 + 2¢)+/2n,loglog(ny).

1<n<ny

Hence T
max n(w) < (142¢)p
ne-1<n<ng 4 /2nloglog(n)

since \/2nyloglog(ny) < p+/2nloglog(n) when n,_1 < n < ny, at least for ¢ large enough,

so that, almost surely,

Ta
lim sup = < (14 2¢)p.

n—oo  4/2nloglog(n)
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By (8), it also holds true that

S
lim sup < (1+2¢)p  almost surely.
n—oo  4/2nloglog(n)

Choosing € et p of the form 119 et 1+ % where p et ¢ are integers so to ensure a countable

union of negligible sets, property (6) will be established.

1.2 Use of the Kronecker lemma

This section establishes the convergence (8) by the classical Kronecker lemma. The latter will
Xy —YE

\/ 2k log log (k)
definition of the Y,’’s and centering of the X} ’s, this will be the case if

ensure the conclusion whenever the series >~ | < 0o converges almost surely. By

T B )
Z leoglog < k‘ {\Xk\>c k/loglog(kz)} < 0

By equidistribution of the X}’s and the Fubini-Tonelli theorem,

Z \/Qk;]oglog (le| IL{ch|>c\/k/loglog(k)}>

S GONE R )

An easy upper bound shows that for N > 1,

a N
> <o
— 2/<;log log(k) log log (V)

for some numerical constant C' > 0. Since |X| > c¢y/k/loglog(k) amounts to say that
k < ¢ X?loglog(X?) for some ¢ only depending on ¢, for N of the order of X?loglog(X?),
it follows that

E(X?) < oo.

(X1 e o)) < ©

The announced conclusion is established.

1.3 A maximal inequality

In order to handle (7), it is necessary to get rid of the maximum in the probability by means
of a maximal inequality. Several tools and inequalities are available, for example the classical
Ottaviani inequality.



Lemma 1. Let Yy,...,Y, be independent random variables on a probability space (2, A, P),
and set T, =Y+ ---+Y,, k=1,...,n. Fors,t >0,

P(T, > t) > min P(|T, — T}| < s) P(lréllgx;(nTk > s5+1).

1<k<n

Proof. Consider the subsets in A defined by
A, = {T1 <s+t,... T 1 <s+t,T; 25+t}, k=1,...,n,

which form a partition of {maxj<x<, Ty > s+ t}. Then

P(T,>t) > Y P(T, >t Ay) > Y P(IT, - Ti| < s, Ay)
k=1 k=1
since T,, = (T,, — T}) + T}, and T}, > s+t on A,. By independence, the measurable set Ay
only depending on the variables Yi,.... Y, and T, = T, = Y1 + -+ -+ Y,

P(T, >1t) > ip(m —Ty| < s) P(Ay)
k=1

> min P(|T, — Ti| < s) Y _P(Ay)
k=1

1<k<n
> min P(|Tn — Ty < s) ]P’( max 1 > s —|—t).
1<k<n 1<k<n
The conclusion follows. O]
This lemma may be applied to the random variables T7,...,T7 which are involved in
(7). By Chebychev’s inequality, for every n = 1,...,ny,

€ € 1 S (=
BT, -T2 ) < 5 30 B <
k=n+1
since E((Y¢)?) < E(X?) = 1. Therefore, if s = 1/2n,loglog(n,), these probabilities will be,

for example, less than or equal to % for every ¢ > 1 large enough so that

Ty

min P(|T;, - T <s) > 1

1<n<n, 2

Hence, from the lemma, for ¢ large enough,

IP( max 1. > (1+2¢)+/2ny loglog(ng)>

1<n<ny
< QIP’(T,Z > (14¢e)y/2ng loglog(n@).

As a conclusion, (7) holds true as soon as

o0

ZP(TTZ > (1+¢) anloglog(ng)) < . 9)
/=1



1.4 Exponential inequality

The proofs of the LIL rely in essence on exponential inequalities of Gaussian type for sums of
independent random variables, at the origin of the iterated logarithm. There are numerous
and diverse such exponential inequalities (cf. [7, 9, 8]...). The one below, taken from [1], is
easy to access.

Lemma 2. Let Yi,...,Y, be independent centered random variables such that |Yi| < C
almost surely for every k = 1,...,n, where C > 0 is a fixed positive constant. Set T, =
Yy + -+ Y,. Then, for every o® > maxj<p<, E(Y??) and t > 0,

t° 2
P(T, >t) < exp ( ~ 5o [2 - eCt/e "])

Proof. For every x € R, e* <1+ x+ % el*l so that, by centering, for every A > 0 and every
k=1,...,n,

22 2)2 2)2
E(eM) < 1_{_?]E(Yk2€/\|yk‘> < 1_|_O‘TGAC < exp <a2 e/\C)

by the hypotheses. As a consequence, by independence,

n 2)\2
(™) = [T B < exp (S5 ).

k=1

and by Markov’s inequality

2)\2
P(T, >t) < exp(—)ﬂH—%e)‘C).

The choice of A = ﬁ leads to the announced claim. O

1.5 End of the proof of (6)

On the basis of the exponential inequality of the preceding paragraph, the proof of (9) is
almost immediate. The inequality of Lemma 2 applied to the sample of independent centered
random variables Y, ..., Y (for each fixed £ > 1) for which

€ / o £\2 2
Y| <C =2 _ E((Y, <EX)=1 k=1,...
| k| = ¢ loglog(ng)7 (( k) ) = ( k) ’ ; y T,

and to t = (1 + &)4/2n,loglog(n,) leads to
ng
]P(Z Y > (1+¢e)v/2ngloglog(ny) )
k=1
< exp ( —(14e)[2- 62\/5‘3(1*5)} log log(ng)>.

6



Choose then ¢ = ¢(¢) > 0 small enough in order that

(1+e)?[2 - 2V249] > q, (10)
so that the right-hand side of the previous inequality defines the general term of a convergent
series in ¢ > 1 since loglog(n,) ~ log(¥).

The proof of the convergence of the series (9), and thus of the upper bound (6) in the
limsup (1), is therefore completed.

2 Proof of the lower bound in (1)

The object of this section is to establish that, for X centered of variance 1,

Sn
lim sup > 1 almost surely. (11)
n—oo  /2nloglog(n)

The proof rests on the Borel-Cantelli lemma in its independent part and on an moderate
deviation inequality.

2.1 Use of the Borel-Cantelli lemma

It will be enough to show that for every e > 0, there exists a sequence of integers (rn¢),,
increasing to infinity such that

Sn
lim sup L >1—¢ almost surely. (12)

(00 2ny log log(ny)

Thus lim sup,,_, o, \/#bg(n) > 1 — ¢ almost surely, and consider next a countable union of

negligible sets with ¢ = %, p > 1 integer.

ne

If the subsequence is chosen so that lim, ., n—j = 0, it will actually be enough to prove

that s s
limsup ————-"“2 > 1—¢  almost surely (13)
(=00 /204 loglog(ny)
since according to (6) the sequence ( 72 SI"‘Z‘II ( )) is almost surely bounded.
Myg—1 10g1log(ng—1 >1

By independence of the random variables S,,, — S,,_,, ¢ > 1, property (13) will hold true
if

C SW B Sne—1
Y P >1—¢) = (14)
— \/2n,loglog(ny)

according to the Borel-Cantelli lemma (in its independent version thus).
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2.2 A moderate deviation inequality

The proof of (14) will be established by a minoration inequality in the form of an asymptotics
of moderate deviations (from the central limit theorem).

Recall S, = X1 +---+ X,,, n > 1, where (Xn)n21 is a sequence of independent identically
distributed random variables, with mean zero and variance one.

Consider © > 0 and integers p, ¢ > 1. Then, by independence and equidistribution,
q
(=)= o)
pq p

Spg = (Xi4 -+ Xp) + (Xppa 4+ Xop) + -+ + (K1 + - + Xpg).

since

If p=ops qg=qu £ > 1, are sequences of integers tending to infinity, then, for v = \/L;,
where t > 0 is fixed, by the central limit theorem,
lim infl log]P’(M > t) > loglP(G > t) (15)
=0y N/ -

where G is standard normal N(0, 1).

Let then ¢ be fixed, 0 < € < % For o > 0 to be specified below as a function of €, set,
for each ¢ > 1,

a 2
S I — 2 lool £
De {QIOglog(ﬂ)}’ Qe Lé og log (¢ )]

(integer parts). Define then a sequence of integers (n;),~, by the recurrence relation
ng = pqu+n€—17 6227 ny = 1.
It is easy to see that n, ~ ¢ as ¢ — co. Indeed, letting v, = 7, 0>1,

(€= 1)1

Ve = Uz—l- ﬂ

V-1

where the sequence uy = 27, £ > 1, is converging to 1. The sequence (vy) ¢>1 1s thus bounded,
and converges also to 1. In particular,

1 2
VPeqe ~ ﬁ 2ny log log(ny) and qe ~ o log log(n).



Together with these observations, as an application of (15) for t = (1 — 2¢)/«,

. . 1 S’I’Lg - Sng_l
liminf ——— logP >1-— 3¢
(=00 loglog(ny) 2n, log log(ny)

2 1 S,
> Z liminf — logP[ =24 > (1 — 2¢ a)
S a l=oo qp & (\/pé% = Ve

> élogP(G > (1-2¢)Va).

The traditional lower bound

P(G > u) > (l_i)

~\u ol

1 2

_u
2

[ e s
V2T

leads to observe that for « large enough (depending on e < %),

u >0,

%logP(G > (1- 25)\/5) > —(1-2e),

so that, as a consequence,

1 Sn - Sn _
liminf —— logIP’( S S . 35) > —(1—2). (16)
t>00 loglog(ny) 2n, log log(ny)

2.3 End of the proof of (11)

The lower bound (16) from the preceding paragraph easily ensures the divergence of the
series (14), and will conclude in this way the proof of (11). Indeed, for every ¢ large enough,

]P( Sng - Sng_1 >1— 35) > e—(l—a) loglog(n@).

\/2nyloglog(n,

Since ny ~ (¢, the right-hand side defines the general term of a divergent series, so that,
e > 0 being arbitrary, (14) holds true.

On the other hand "i—;l — 0, as expected to conclude the proof. The almost sure
inequality (12) is established, and therefore also (11).

3 Multi-dimensional extension and Strassen’s form

Strassen’s result (5) on the cluster set

C (( S ) ) = [-1,+1] almost surely,
v/ 2nloglog(n) / n>1
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is presented here via the extension of the real LIL (1) to random vectors. It is possible to
provide a direct proof on the basis of the moderate deviation argument of the last section as
developed in [1].

The LIL is rather easily extended to random vectors in the following statement. Let X =
(XMW .. X@) be a random vector on (€2, A, P) with values in R?, such that E(||X||?) < oo
and E(X) = 0, where || - | denotes the Euclidean norm in R¢. It is supposed that the

covariance matrix I' = (E((X (X)) is non-degenerate, with square root I' = A*A.

1<ij<d
Let, as before, on (2, A,P), be (X,),-, a sequence of independent copies of X, and
S,=X1+---+X,,n>1. Then, with

K = AB?) = {Az;|z| <1}

where B? is the closed Euclidian unit ball in R?, the Strassen formulation (4) and (5) in R?

expresses that

lim d( S ,K) =0 (17)
n—oo \ y/2nloglog(n)

and

((Joremm).n) - (19

almost surely (with the corresponding notation).

The proof of these properties, following [3], may be presented as a consequence of the
one-dimensional result together with compactness and projection arguments. Working with
A~1X, it may be assumed that the covariance matrix of X is the identity matrix and that
K = B4,

It is worthwhile observing to start with (and will be freely used below) that P(€2;) = 1

15wl < 0o} (by the LIL coordinatewise).

where 2; = 4 su —
! { Pnz1 2n log log(n)

Again by the real LIL, for each y € R¢,

lim sup (Y, Sn) = VE((y, X)?) = almost surely. 19
Y Yy Y

n—oo  4/2nloglog(n)

By countable density in R?, there exists a measurable set 2, with P(€2;) = 1 on which this
property holds true for every y € R%.

As in the one-dimensional setting, property (17) will be achieved as soon as

lim sup 5] <1  almost surely. (20)

nsoo  4/2nloglog(n) —
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If this is not the case, there is an measurable set )y of positive probability on which the
limsup is strictly greater than 1. Let then wy € Qy N Ny ; there exists n > 0 and an
infinite subsequence of integers (ny) r>1 such that, for every k > 1,

|1Sn, (wo)
/21y, log log(ny,)

There exists then a sequence (z,, )., of norm 1 elements of R? such that

{2 Sy (w0))
\V/2ny log log(ng)

for all & > 1. By compactness, the sequence (2, ), admits a limit point z = 2(w,) € R? of

> 1+ 3n.

> 142y

norm 1, and thus, for infinitely many integers k,

(2(wo), Sny (wo))
\/2ny log log(ng)

This is however in contradiction with (19) applied to y = z(wp). The claim (20) follows. Due

> 1+mn.

to (19), this limsup is actually equal to 1.

Concerning (18), if y is of norm 1 in RY,

2 2
T DN
2nloglog(n) 2n log log(n) 2nloglog(n)
so that, following (20) and (19),
o Sn
lim inf —yll =0 almost surely.
n—oo || {/2nloglog(n)

Therefore, any point of the unit sphere S%! of R? is almost surely a limit point of the

Sn ) - By countable density,

sequence
q ( 2n log log(n) n>

C(( S ) ) o g4t almost surely. (21)
V/2nloglog(n) / n>1

But this result holds true in any dimension d. It may thus be applied to a random vector
X = (X, Z) in R4 where Z is real centered with variance 1, independent from X. Since
by the projection
Tar1a: (7,2) ERM =R xR — 2 € RY,

Tar1,4(S?) = B? and, with the corresponding notation, 7Td+17d(§;) = S, the inclusion (21) in
R thus projected on R? yields the conclusion with B¢ in place of S~!. The almost sure
inequality (20) ensuring the reverse inclusion, the conclusion (18) follows.
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The application of this result in R? projected on R yields in particular part (5) of
Strassen’s form on the cluster set of the real LIL.

All of these statements therefore conclude a complete proof of the LIL.
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