Une démonstration de la
Loi du Logarithme Itéré

La Loi du Logarithme Itéré (LLI) est I'une des trois lois limites fondamentales du calcul
des probabilités classiques aprés la Loi des Grands Nombres et le Théoréeme Central Limite.

La LLI exprime, avec une précision étonnante, le comportement presque str le plus proche
de la convergence en loi du Théoréme Central Limite. L’apparition du logarithme itéré est da
a la conjonction d’un argument de blocs le long de sous-suites géométriques et d’inégalités
exponentielles de type gaussien pour des sommes de variables aléatoires indépendantes.

Soit X une variable aléatoire sur un espace probabilis¢ (€2, A, P), et soit (X,),-, une
suite de copies indépendantes de X (sur (€2, A, P)); poser S,, = X;+---+ X,,, n > 1. La Loi
des Grands Nombres dans sa forme standard indique que si X est intégrable,

lim — = E(X) presque strement,
alors que le Théoréme Central Limite quantifie les fluctuation sous la forme

lim —= = G en loi

S,
n—oo \/ﬁ

dés que 0% = E(X?) < co et E(X) = 0, oit G est une variable aléatoire de loi normale centrée

de variance 2.

Entre ces deux normalisations, la LLI formule que si 0 = y/E(X?) < 0o et E(X) =0,

. Sn .
lim sup =0 presque strement. (1)
n—soo  4/2nloglog(n)

La suite y/2nloglog(n) = y/2nlog(log(n)) n’est définie rigoureusement que pour n > 3,

mais pour ne pas trop compliquer les notations il sera écrit que loglog(n) = 1 pour n = 1,2.
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En considérant —X & la place de X, il est aussi vrai que

o S .
lim inf = —0 presque stirement. (2)
n—oo  /2nloglog(n)

En conséquence de (1) et (2),
5]

lim sup =0 presque stirement, (3)

et la suite (#) est en particulier bornée presque stirement.
1/ 2nloglog(n)

n>1

Cet énoncé a été établi par P. Hartman et A. Wintner [4] apreés les travaux fondateurs
de A. Khintchine [6] et A. Kolmogorov [7], surprenants de technique et de modernité pour
I’époque. La plupart des démonstrations plus récentes, dont celle-ci, reprennent en fait pour
I’essentiel leur schéma.

Une forme plus précise de la LLI, due a V. Strassen 10|, exprime que

lim d( Sn , [—o, +0]) =0 (4)
n—+00 2nloglog(n)
et g
C’(( & ) > = [—0,+0] (5)
v/ 2nloglog(n) / n>1
presque stirement. Dans (4), d(-, [—0, +0]) = inf,cj_o.40] | - —a| est la distance a I'ensemble

|—0,+0], alors que dans (5), pour une suite (a,),-,; de nombres réels, C((a,),~,) désigne
Pensemble de ses valeurs d’adhérence. V. Strassen établit ce résultat par un plonge;nent d’une
suite de variables aléatoires indépendantes de méme loi dans les trajectoires browniennes et
une version de la LLI pour ce processus gaussien spécifique.

La propriété (4) est en fait une conséquence immédiate de (3) (il suffit méme de la

majoration de la limsup, sous la forme de (6) ci-dessous). Si (1) et (2) assurent que +o et
Sn

1/ 2nloglog(n) ) n>1’

(5) réside dans le fait que tous les points de U'intervalle [—o, 0] le sont aussi.

—o sont presque stirement des valeurs d’adhérence de la suite ( la force de

L’objet de cette courte note est de présenter une démonstration simple et compléte des
propriétés (1) et (5). Les différents arguments sont issus des démonstrations classiques de la
LLI, tirées de divers ouvrages et articles comme |7, 5, 9, 8, 2, 1] parmi (beaucoup) d’autres.
La démonstration, sans étre difficile, nécessite néanmoins un peu de soin et de précision.

Les deux premiéres parties sont consacrées a la démonstration de (1), décomposée en
majoration et minoration. La derniére partie établit la forme de Strassen (5) a partir de
I’extension multi-dimensionelle.



Pour des raisons d’homogénéité (travailler avec %), il peut étre supposé que o = 1 (le
cas 0 = 0 ne présente pas d’intérét).

1 Démonstration de la majoration dans (1)

L’objet de cette partie est d’établir que, pour X centrée de variance 1,

: Sn R
lim sup <1 presque siirement. (6)
nsoo  4/2nloglog(n)

La démonstration va s’appuyer sur le lemme de Borel-Cantelli a travers une décomposition
en blocs le long de sous-suites géométriques et une inégalité exponentielle pour sommes de
variables aléatoires indépendantes.

1.1 Troncation et lemme de Borel-Cantelli

Le principe de la démonstration va coupler un argument de troncation et I'outil du lemme
de Borel-Cantelli. Le résultat sera obtenu s’il est possible d’établir que, pour tous € > 0 et
p>1,

ZP( max T¢ > (1+ 2¢) 2ngloglog(ng)) < x (7)
(=1

1<n<ny
n, désignant la partie entiére de p?, £ > 0, et
lim
n—oo  /2nloglog(n)

=0 presque siirement, (8)

ou
T: =Y +---+Y, n>1,

et

€
_ _ >
Yo = XL o/ iomton } E<X’“ ﬂ{|xk|§c\/k/loglog(k)})’ k=1,

ol ¢ = ¢(e) > 0 sera a déterminer plus loin dans la preuve (voir la condition (10)).

En effet, d’aprés le lemme de Borel-Cantelli, la convergence de la série (7) assure que
pour presque tout w € €2, & partir d’un entier ¢y = {y(w), pour tout ¢ > /o,

max 7T (w) < (14 2¢)v/2n,loglog(ny).

1<n<ng

Donc T
max n(w) < (1+2)p
ne-1<n<ne 4 /2nloglog(n)
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puisque /2n,loglog(n,) < p+/2nloglog(n) lorsque ny,_y < n < ny, au moins pour ¢ suffi-
samment grand, de sorte que, presque stirement,
TE
lim sup L < (14 2¢)p.

D’aprés (8), il vaut aussi que

Sn
lim sup < (142¢)p presque stirement.
n—soo  /2nloglog(n)

En choisissant € et p sous la forme 117 et 1+ é ol p et ¢ sont entiers afin d’assurer une réunion
dénombrable d’ensembles négligeables, la propriété (6) sera démontrée.

1.2 Utilisation du lemme de Kronecker

Ce paragraphe établit la convergence (8) a travers une application du lemme classique

. . . Xy —YE
de Kronecker. Celui-ci va en effet assurer la conclusion si Y -, m < 00 presque
oglog

stirement. Par définition des Y;® et centrage des X}, cela sera le cas si

ZW< {kam})

D’aprés Fubini-Tonelli et équidistribution des X,

o0

1

7 \/Qk]oglog( (le| :H_{‘Xk|>c\/k/10g10g })

k=

S GOSN R |

Une majoration aisée montre que pour tout entier N > 1,

Z \/leog log(k \/ log log

pour une certaine constante numérique C' > 0. Comme | X| > ¢y/k/ loglog(k) revient & dire
que k < ¢ X?loglog(X?) pour un certain ¢’ ne dépendant que de ¢, pour N de l'ordre de
X?loglog(X?), il s’ensuit que

C'E(X?) < 0.

( 'ZW {mwloglog(k})

La conclusion annoncée en résulte.



1.3 Une inégalité maximale

Afin de traiter (7) du lemme de Borel-Cantelli, il convient de se débarrasser du maximum
dans la probabilité a ’aide d’une inégalité maximale. Plusieurs outils sont & disposition, par
exemple I'inégalité dite d’Ottaviani.

Lemme 1. Soient Yi,....,Y, des variables aléatoires indépendantes sur un espace probabilisé
(Q, A P), et soient Ty =Y, +---+ Yy, k=1,...,n. Pour tous s,t >0,

>t) > i — >
P(T, >t) > @&PUTT‘ Ty| < s) P(g@nn > s+1).

Démonstration. Considérer les parties de A définies par
Ay ={Ti<s+t,....Tioi <s+t,T, >s+t}, k=1,...,n,

qui forment une partition de réunion {maxj<x<, T > s+ t}. Alors

P(T,>t) > Y P(T,>t,Ax) > Y P(IT, - Til < s, Ay)
k=1 k=1
puisque T, = (T,, — Ty) + T et que Ty > s+t sur Ai. Par indépendance, I’événement Ay ne
dépendant que des variables Yi,..., Yy et T, =Ty = Y1 + - + Y,

P(T, >t) > anp(m —Ty| < 5) P(Ay)

1<k<n

> min P(|T, — Ti| < s) Y _P(Ay)
k=1

> min ]P’(]Tn — Ty < 5) ]P’( max T}, > s—i-t).
1<k<n

1<k<n

La conclusion s’ensuit. O

Ce lemme peut étre appliqué aux variables T7,...,T: intervenant dans (7). D’apres

I'inégalité de Tchebychev, pour tout n =1,..., ny,

g
Ty

1
P(T;, T3 > 5) < 5 30 B() <

k=n+1

puisque E((Y¥)?) < E(X?) = 1. Ainsi, si s = £4/2ny loglog(ny), ces probabilités seront, par
exemple, plus petites que % pour tout ¢ > 1 assez grand, de sorte que
. 1
min P(|T;, —Tr| <s) > —.

1<n<ny 2



Donc, d’aprés le lemme, pour ¢ assez grand,

IP( max T > (1+2¢)+/2ny loglog(n4)>

1<n<ng

< QIP(TT; > (14¢e)v/2ng loglog(ng)).

En conclusion, (7) aura lieu, pour € > 0, p > 1, dés que

o0

Z]P)<vag > (1+¢)y/2nglog log(ng)> < o0. (9)
=1

1.4 Inégalité exponentielle

Les démonstrations de la LLI reposent en essence sur des inégalités exponentielles de
type gaussien pour sommes de variables aléatoires indépendantes, a la source du logarithme
itéré. Il en existe de nombreuses et variées (cf. |7, 9, 8]...). Celle-ci, tirée de [1], est d'un accés
relativement aisé.

Lemme 2. Soient Y, ...,Y, des variables aléatoires centrées indépendantes telles que |Yy| < C
presque sirement pour tout k = 1,...,n, ot C > 0 est une constante positive fixée. Poser
T, =Y+ +Y,. Alors, pour tout o* > maxj<y<, E(Y}?) et tout t > 0,

[2— e/,

t2

P(T,, >t) Sexp<—2 5
a’n

Démonstration. Pour tout réel x, e* <1+ =z + % el*l de sorte que, par centrage, pour tout

A>0ettout k=1,...,n

a?)\?
2

212
a“
A < exp( €>\C>

/\2
Y AlY;
E(eM) < 1+ T E(NH) <14 5

d’apres les hypothéses. En conséquence, par indépendance,

- o’ ’n
)\Tn H (e ,\Y,c < exp( : eAC))
k=1

et d’apres I'inégalité de Markov

22
P(TnZt)SeXp< M+ ;‘"A(f).

Le choix de A = ﬁ conduit a la conclusion annoncée. O



1.5 Fin de la démonstration de (6)

Sur la base de l'inégalité exponentielle du paragraphe précédent, la démonstration de
(9) est presque immeédiate. L’inégalité du Lemme 2 appliquée a ’échantillon de variables
aléatoires centrées indépendantes Y7, ..., Y (pour chaque ¢ > 1 fixé) pour lesquelles

€ T €\2 2
Y| <C =2, )/7—— E((Y, <EX) =1 k=1,...
’ k| < C 10g10g<n£)7 (( k) ) = ( k) ) ; y Ty,
fournit pour ¢ = (1 + ¢)4/2n,log log(ny),
]P)<T’sz > (14+¢)y/2n4log 1og(ng)> < exp ( —(14+e)[2- eQﬂc(He)} log log(ng)>.
Choisir alors ¢ = ¢(g) > 0 suffisamment petit pour que
(1+e)?[2 - 2V249] > q, (10)

de sorte que le membre de droite de I'inégalité précédente définit le terme général d’une série
convergente en ¢ > 1 puisque loglog(n,) ~ log(?).

La démonstration de la convergence de la série (9), et donc de la majoration (6) de la
limite supérieure (1), est ainsi terminée.

2 Démonstration de la minoration dans (1)

L’objet de cette partie est d’établir que, pour X centrée de variance 1,

. S,
lim sup - > 1 presque stirement. (11)

nsoo v/2nloglog(n) —

La démonstration va s’appuyer sur le lemme de Borel-Cantelli dans sa partie indépendante

et une inégalité de déviation modérée.

2.1 Utilisation du lemme de Borel-Cantelli

Il va suffire de démontrer que pour tout € > 0, il existe une sous-suite (ng),., d’entiers
croissant vers l'infini telle que

>1—¢ presque sirement. (12)

: Sn,
lim sup
(=00 \/2n4loglog(ny)



Sn
2n log log(n)

brable d’ensembles négligeables avec ¢ = 113, p > 1 entier.

> 1 — ¢ presque siirement, puis considérer une réunion dénom-

Ainsi limsup,,_, .

Si la sous-suite choisie est telle que limy_, ., ”fl—zl = 0, il suffira de démontrer que

Sne - Snza

lim sup >1—c¢ presque stirement (13)
00 2ny log log(ny)
. . Sn .
puisque d’aprés (6) la suite ( L ) est presque stirement bornée.

\/2712—1 log log(ng—1) >1

Par indépendance des variables S, — Sy, ,, ¢ > 1, la propriété (13) aura lieu si

il@( S = Sy )21—5) = o0 (14)

= 2ny log log(ny

d’aprés le lemme de Borel-Cantelli (dans sa version indépendante donc).

2.2  Une inégalité de déviation modérée

La démonstration de (14) va s’appuyer sur une inégalité de minoration présentée ici sous
la forme d’une asymptotique de déviations modérées (issue du théoréme central limite).

Rappeler que S, = X;+---+ X,,, n > 1, ol (Xn)n21 est une suite de variables aléatoires
indépendantes de méme loi, centrées réduites.

Considérer un réel u > 0 et des entiers p, ¢ > 1. Alors, par indépendance et équidistribu-
q
Homzr) 2 (5 2)
pq p

Spg = (Xt + Xp) + (Xprr + -+ Xop) + -+ (Xpg-p1 + -+ + Xipg)-

tion,

puisque

Sip=ups q=qu {>1, sont des suites d’entiers tendant vers l'infini, alors, pour u = \/iﬁ
out > 0 est fixé, par le théoréme central limite,
lirninfl logP(M >t> > logP(G >t) (15)
=00y N -

ou G suit la loi normale N(0,1).

Soit donc ¢ fixé, 0 < e < % Pour un o > 0 & déterminer plus loin en fonction de e, poser,
pour chaque ¢ > 1,

alt 2
S e — = | Z loglog(¢*
Pe {QIOglog(ﬂ)}’ de Lé og log (¢ )]
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(parties entiéres). Définir alors une suite (n¢),., par la relation de récurrence
ne = peqet+mne, =2, ng =1
Il est aisé de constater que ny ~ ¢¢ quand ¢ — co. En effet, en posant v, = 2%, £ > 1,

i
(g _ 1)6—1
Vp = Up + —gé Vp_1

ot la suite u, = %7, £ > 1, tend vers 1. La suite (vg),., est donc bornée, et tend ainsi

également vers 1. En particulier

1 2
VDeqe ~ 7o 2n,log log(ny) et G~ - log log(ny).

Fort de ces observations, en application de (15) pour ¢t = (1 — 2¢)/a,

1 Snz - SWA
liminf —— log P >1-3¢
t=o0 loglog(ny) 2 log log(ny)

S,
> —hmmf—lo P —24£ > (1 —2¢ \/5)
Q =00 (p & (\/peqé ( )
> —logIP’(G > (1-2¢)Va).
o
La minoration traditionnelle
1 1 1 u?
P(G > u ><___> 5 w0,
(Gzw) 2357z

conduit a constater que pour « suffisamment grand (dépendant de € < %),

zlog]P’(G > (1 - 25)\/5) > —(1-2¢),

de sorte que

. . 1 Sng - Sng_l
liminf ———— logP >1-3¢) > —(1—2¢). (16)
too0 loglog(ny) 2n, log log(ny)

2.3 Fin de la démonstration de (11)

La minoration (16) du paragraphe précédent va assurer simplement la divergence des
séries (14), et conclure ainsi la démonstration de (11). En effet, pour tout ¢ assez grand,

]P’( Smg - Sng_1 >1— 35) > e—(l—a) loglog(ng)).

V/2n,log log(ny

Comme n; ~ ¢, le membre de droite définit le terme général d’une série divergente, de sorte

que, € > 0 étant arbitraire, la propriété (14) est satisfaite.

Par ailleur
stre (12) est etabhe et ainsi (11).



3 Extension multi-dimensionnelle et forme de Strassen

Le résultat de Strassen (5) sur 'ensemble d’adhérence

C <( Sn > ) = [-1,+1] presque siirement,
2nloglog(n)/ n>1

est présentée ici a travers l'extension a des vecteurs aléatoires de la LLI réelle (1). Il est pos-

sible d’en donner une démonstration directe sur la base de 'argument de déviation modérée
du paragraphe précédent ainsi que développé dans [1].

La LLI s’étend assez simplement au cas multi-dimensionnel sous la forme suivante.
Soit X = (XM ..., X@) un vecteur aléatoire sur (2, 4,P) a valeurs dans R?, tel que
E(||X]]?) < oo et E(X) = 0, ou || - || désigne la norme euclidienne dans R?. 1l est supposé
que la matrice de covariance I' = (E((X® (X))
'=M!M.

1<ij<d est non-dégénérée, de racine carrée

Soit comme précédemment, sur (22, A, P), (X,),-, une suite de copies indépendantes de
X, et S, =X +---+ X, n>1. Alors, avec

K = M(BY) = {Ma;|2]| <1}

ot B4 est la boule euclidienne unité fermée dans R?, la forme de Strassen (4) et (5) dans R?
exprime que

n—00 2nloglog

lim d( S B ,K> =0 (17)

(Vo)) = (18

presque strement (avec les notations correspondantes au cas réel).

La démonstration de ces propriétés, tirée de [3], va résulter du cas uni-dimensionnel a
travers des arguments de compacité et de projection. Quitte & travailler avec M ~1X, il peut
étre supposé que la matrice de covariance de X est l'identité et que K = B

Il est utile, et sera librement employé ci-dessous, de noter au départ que P(€2;) = 1 ou

Ql — {Supnzl HSn“

oo < oo} (d’apres la LLI coordonnée par coordonnée).
n log log(n

Toujours d’aprés la LLI réelle, pour chaque y € R,

Sn
lim sup ) = VvVE({(y, X)?) = ||y|| presque strement. (19)

n—oo  4/2nloglog(n)
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Par densité dénombrable dans R?, il existe ainsi un ensemble mesurable 2, avec P(€2y) = 1
sur lequel cette propriété a lieu pour tout y € R

Comme dans le cas uni-dimensionnel, la propriété (17) sera acquise dés que

Sy
lim sup 51 <1 presque siirement. (20)

nsoo 4/2nloglog(n) —

Si ceci n’est pas le cas, il existe un ensemble de probabilité positive )y sur lequel la limite
supérieure est strictement plus grande que 1. Soit alors wy € 2o N2 NQy ; il existe n > 0 et
une sous-suite infinie d’entiers (nz),, tels que, pour tout k > 1,

|:Sn, (wo)
\V/2ny log log(ny)

> 1+ 3n.

I existe ensuite une suite (z,,),~, d’¢léments de norme 1 dans R? telle que

<an ) Snk (w0>>
/2y, log log(ny,)

pour tout k > 1. Par compacité, la suite (z,,),~, admet un point limite z = z(wp) € R? de

> 1+ 2n

norme 1, et donc, pour une infinité d’entiers k,

(z(wo), Sny (wo))
V/2ny, log log(ng)

Ceci entre toutefois en contradiction avec (19) appliqué a y = z(wp). L’assertion (20) s’ensuit.

> 1+n.

En vertu de (19), cette limite supérieure est en fait égale a 1.

En ce qui concerne (18), si y est de norme 1 dans R¢,

2 2
| e[l
V/2nloglog(n) v/2nloglog(n) 2nloglog(n)
de sorte que, d’aprés (20) et (19),
o Sn, .
lim inf ‘ — yH =0  presque strement.
n—oo || /2nloglog(n)

Ainsi, tout point de la sphére unité S?! de R est presque stirement un point limite de la
suite (——22— . Par densité dénombrable,
( 1/ 2nloglog(n) ) n>1

C (( S ) > o g4t presque siirement. (21)
n>1

V/2nloglog(n)
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Mais ce résultat est vrai en toute dimension d. Il peut étre ainsi appliqué a un vecteur
aléatoire X = (X, Z) dans R4 ou Z est réelle centrée réduite indépendante de X. Comme,
par la projection

. d+1 _ md d
7rd+17d.(x,z)6]R =R XRI—)SL’ER,

Tar1,4(SY) = B? et, avec les notations correspondantes, 7rd+1,d(fS;) = S,, l'inclusion (21)
dans R4 ainsi projetée sur R? donne lieu & la conclusion avec B¢ en lieu et place de S% 1.
L’inégalité presque stre (20) entrainant l'inclusion inverse, la conclusion (18) s’ensuit.

L’application de ce résultat dans R? projeté sur R donne en particulier lieu & la partie
(5) de Strassen sur I’ensemble d’adhérence de la LLI réelle.

L’ensemble de ces conclusions termine donc une démonstration compléte de la LLI.
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