
Une démonstration de la
Loi du Logarithme Itéré

La Loi du Logarithme Itéré (LLI) est l’une des trois lois limites fondamentales du calcul
des probabilités classiques après la Loi des Grands Nombres et le Théorème Central Limite.

La LLI exprime, avec une précision étonnante, le comportement presque sûr le plus proche
de la convergence en loi du Théorème Central Limite. L’apparition du logarithme itéré est dû
à la conjonction d’un argument de blocs le long de sous-suites géométriques et d’inégalités
exponentielles de type gaussien pour des sommes de variables aléatoires indépendantes.

Soit X une variable aléatoire sur un espace probabilisé (Ω,A,P), et soit (Xn)n≥1 une
suite de copies indépendantes de X (sur (Ω,A,P)) ; poser Sn = X1 + · · ·+Xn, n ≥ 1. La Loi
des Grands Nombres dans sa forme standard indique que si X est intégrable,

lim
n→∞

Sn
n

= E(X) presque sûrement,

alors que le Théorème Central Limite quantifie les fluctuation sous la forme

lim
n→∞

Sn√
n

= G en loi

dès que σ2 = E(X2) <∞ et E(X) = 0, où G est une variable aléatoire de loi normale centrée
de variance σ2.

Entre ces deux normalisations, la LLI formule que si σ =
√

E(X2) <∞ et E(X) = 0,

lim sup
n→∞

Sn√
2n log log(n)

= σ presque sûrement. (1)

La suite
√

2n log log(n) =
√

2n log(log(n)) n’est définie rigoureusement que pour n ≥ 3,
mais pour ne pas trop compliquer les notations il sera écrit que log log(n) = 1 pour n = 1, 2.
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En considérant −X à la place de X, il est aussi vrai que

lim inf
n→∞

Sn√
2n log log(n)

= −σ presque sûrement. (2)

En conséquence de (1) et (2),

lim sup
n→∞

|Sn|√
2n log log(n)

= σ presque sûrement, (3)

et la suite
(

Sn√
2n log log(n)

)
n≥1

est en particulier bornée presque sûrement.

Cet énoncé a été établi par P. Hartman et A. Wintner [4] après les travaux fondateurs
de A. Khintchine [6] et A. Kolmogorov [7], surprenants de technique et de modernité pour
l’époque. La plupart des démonstrations plus récentes, dont celle-ci, reprennent en fait pour
l’essentiel leur schéma.

Une forme plus précise de la LLI, due à V. Strassen [10], exprime que

lim
n→∞

d

(
Sn√

2n log log(n)
, [−σ,+σ]

)
= 0 (4)

et
C

((
Sn√

2n log log(n)

)
n≥1

)
= [−σ,+σ] (5)

presque sûrement. Dans (4), d(·, [−σ,+σ]) = infa∈[−σ,+σ] | · −a| est la distance à l’ensemble
[−σ,+σ], alors que dans (5), pour une suite (an)n≥1 de nombres réels, C((an)n≥1) désigne
l’ensemble de ses valeurs d’adhérence. V. Strassen établit ce résultat par un plongement d’une
suite de variables aléatoires indépendantes de même loi dans les trajectoires browniennes et
une version de la LLI pour ce processus gaussien spécifique.

La propriété (4) est en fait une conséquence immédiate de (3) (il suffit même de la
majoration de la limsup, sous la forme de (6) ci-dessous). Si (1) et (2) assurent que +σ et
−σ sont presque sûrement des valeurs d’adhérence de la suite

(
Sn√

2n log log(n)

)
n≥1, la force de

(5) réside dans le fait que tous les points de l’intervalle [−σ,+σ] le sont aussi.

L’objet de cette courte note est de présenter une démonstration simple et complète des
propriétés (1) et (5). Les différents arguments sont issus des démonstrations classiques de la
LLI, tirées de divers ouvrages et articles comme [7, 5, 9, 8, 2, 1] parmi (beaucoup) d’autres.
La démonstration, sans être difficile, nécessite néanmoins un peu de soin et de précision.

Les deux premières parties sont consacrées à la démonstration de (1), décomposée en
majoration et minoration. La dernière partie établit la forme de Strassen (5) à partir de
l’extension multi-dimensionelle.
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Pour des raisons d’homogénéité (travailler avec X
σ
), il peut être supposé que σ = 1 (le

cas σ = 0 ne présente pas d’intérêt).

1 Démonstration de la majoration dans (1)

L’objet de cette partie est d’établir que, pour X centrée de variance 1,

lim sup
n→∞

Sn√
2n log log(n)

≤ 1 presque sûrement. (6)

La démonstration va s’appuyer sur le lemme de Borel-Cantelli à travers une décomposition
en blocs le long de sous-suites géométriques et une inégalité exponentielle pour sommes de
variables aléatoires indépendantes.

1.1 Troncation et lemme de Borel-Cantelli

Le principe de la démonstration va coupler un argument de troncation et l’outil du lemme
de Borel-Cantelli. Le résultat sera obtenu s’il est possible d’établir que, pour tous ε > 0 et
ρ > 1,

∞∑
`=1

P
(

max
1≤n≤n`

T εn ≥ (1 + 2ε)
√

2n` log log(n`)
)
< ∞ (7)

n` désignant la partie entière de ρ`, ` ≥ 0, et

lim
n→∞

Sn − T εn√
2n log log(n)

= 0 presque sûrement, (8)

où
T εn = Y ε

1 + · · ·+ Y ε
n , n ≥ 1,

et
Y ε
k = Xk 1

{
|Xk|≤c

√
k/ log log(k)

} − E
(
Xk 1

{
|Xk|≤c

√
k/ log log(k)

}), k ≥ 1,

où c = c(ε) > 0 sera à déterminer plus loin dans la preuve (voir la condition (10)).

En effet, d’après le lemme de Borel-Cantelli, la convergence de la série (7) assure que
pour presque tout ω ∈ Ω, à partir d’un entier `0 = `0(ω), pour tout ` ≥ `0,

max
1≤n≤n`

T εn(ω) ≤ (1 + 2ε)
√

2n` log log(n`).

Donc
max

n`−1<n≤n`

T εn(ω)√
2n log log(n)

≤ (1 + 2ε)ρ
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puisque
√

2n` log log(n`) ≤ ρ
√

2n log log(n) lorsque n`−1 < n ≤ n`, au moins pour ` suffi-
samment grand, de sorte que, presque sûrement,

lim sup
n→∞

T εn√
2n log log(n)

≤ (1 + 2ε)ρ.

D’après (8), il vaut aussi que

lim sup
n→∞

Sn√
2n log log(n)

≤ (1 + 2ε)ρ presque sûrement.

En choisissant ε et ρ sous la forme 1
p
et 1+ 1

q
où p et q sont entiers afin d’assurer une réunion

dénombrable d’ensembles négligeables, la propriété (6) sera démontrée.

1.2 Utilisation du lemme de Kronecker

Ce paragraphe établit la convergence (8) à travers une application du lemme classique
de Kronecker. Celui-ci va en effet assurer la conclusion si

∑∞
k=1

Xk−Y ε
k√

2k log log(k)
<∞ presque

sûrement. Par définition des Y ε
k et centrage des Xk, cela sera le cas si

∞∑
k=1

1√
2k log log(k)

E
(
|Xk|1{|Xk|>c

√
k/ log log(k)

}) < ∞.

D’après Fubini-Tonelli et équidistribution des Xk,
∞∑
k=1

1√
2k log log(k)

E
(
|Xk|1{|Xk|>c

√
k/ log log(k)

})
= E

(
|X|

∞∑
k=1

1√
2k log log(k)

1{
|X|>c
√
k/ log log(k)

}).
Une majoration aisée montre que pour tout entier N ≥ 1,

N∑
k=1

1√
2k log log(k)

≤ C

√
N

log log(N)

pour une certaine constante numérique C > 0. Comme |X| > c
√
k/ log log(k) revient à dire

que k < c′X2 log log(X2) pour un certain c′ ne dépendant que de c, pour N de l’ordre de
X2 log log(X2), il s’ensuit que

E
(
|X|

∞∑
k=1

1√
2k log log(k)

1{
|X|>c
√
k/ log log(k)

}) ≤ C ′ E(X2) < ∞.

La conclusion annoncée en résulte.
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1.3 Une inégalité maximale

Afin de traiter (7) du lemme de Borel-Cantelli, il convient de se débarrasser du maximum
dans la probabilité à l’aide d’une inégalité maximale. Plusieurs outils sont à disposition, par
exemple l’inégalité dite d’Ottaviani.

Lemme 1. Soient Y1, . . . , Yn des variables aléatoires indépendantes sur un espace probabilisé
(Ω,A,P), et soient Tk = Y1 + · · ·+ Yk, k = 1, . . . , n. Pour tous s, t > 0,

P(Tn ≥ t) ≥ min
1≤k≤n

P
(
|Tn − Tk| < s

)
P
(

max
1≤k≤n

Tk ≥ s+ t
)
.

Démonstration. Considérer les parties de A définies par

Ak =
{
T1 < s+ t, . . . , Tk−1 < s+ t, Tk ≥ s+ t

}
, k = 1, . . . , n,

qui forment une partition de réunion {max1≤k≤n Tk ≥ s+ t}. Alors

P
(
Tn ≥ t

)
≥

n∑
k=1

P
(
Tn ≥ t, Ak

)
≥

n∑
k=1

P
(
|Tn − Tk| < s,Ak

)
puisque Tn = (Tn− Tk) + Tk et que Tk ≥ s+ t sur Ak. Par indépendance, l’événement Ak ne
dépendant que des variables Y1, . . . , Yk et Tn − Tk = Yk+1 + · · ·+ Yn,

P
(
Tn ≥ t

)
≥

n∑
k=1

P
(
|Tn − Tk| < s

)
P(Ak)

≥ min
1≤k≤n

P
(
|Tn − Tk| < s

) n∑
k=1

P(Ak)

≥ min
1≤k≤n

P
(
|Tn − Tk| < s

)
P
(

max
1≤k≤n

Tk ≥ s+ t
)
.

La conclusion s’ensuit.

Ce lemme peut être appliqué aux variables T ε1 , . . . , T εn`
intervenant dans (7). D’après

l’inégalité de Tchebychev, pour tout n = 1, . . . , n`,

P
(
|T εn`
− T εn| ≥ s

)
≤ 1

s2

n∑̀
k=n+1

E
(
(Y ε

k )2
)
≤ n`

s2

puisque E((Y ε
k )2) ≤ E(X2

k) = 1. Ainsi, si s = ε
√

2n` log log(n`), ces probabilités seront, par
exemple, plus petites que 1

2
pour tout ` ≥ 1 assez grand, de sorte que

min
1≤n≤n`

P
(
|T εn`
− T εn| < s

)
≥ 1

2
.
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Donc, d’après le lemme, pour ` assez grand,

P
(

max
1≤n≤n`

T εn ≥ (1 + 2ε)
√

2n` log log(n`)
)

≤ 2P
(
T εn`
≥ (1 + ε)

√
2n` log log(n`)

)
.

En conclusion, (7) aura lieu, pour ε > 0, ρ > 1, dès que

∞∑
`=1

P
(
T εn`
≥ (1 + ε)

√
2n` log log(n`)

)
< ∞. (9)

1.4 Inégalité exponentielle

Les démonstrations de la LLI reposent en essence sur des inégalités exponentielles de
type gaussien pour sommes de variables aléatoires indépendantes, à la source du logarithme
itéré. Il en existe de nombreuses et variées (cf. [7, 9, 8]...). Celle-ci, tirée de [1], est d’un accès
relativement aisé.

Lemme 2. Soient Y1, . . . , Yn des variables aléatoires centrées indépendantes telles que |Yk| ≤ C

presque sûrement pour tout k = 1, . . . , n, où C > 0 est une constante positive fixée. Poser
Tn = Y1 + · · ·+ Yn. Alors, pour tout α2 ≥ max1≤k≤n E(Y 2

k ) et tout t > 0,

P(Tn ≥ t) ≤ exp
(
− t2

2α2n

[
2− eCt/α2n

])
.

Démonstration. Pour tout réel x, ex ≤ 1 + x + x2

2
e|x| de sorte que, par centrage, pour tout

λ > 0 et tout k = 1, . . . , n,

E(eλYk) ≤ 1 +
λ2

2
E
(
Y 2
k e

λ|Yk|
)
≤ 1 +

α2λ2

2
eλC ≤ exp

(α2λ2

2
eλC
)

d’après les hypothèses. En conséquence, par indépendance,

E(eλTn) =
n∏
k=1

E(eλYk) ≤ exp
(α2λ2n

2
eλC
)
,

et d’après l’inégalité de Markov

P(Tn ≥ t) ≤ exp
(
− λt+

α2λ2n

2
eλC
)
.

Le choix de λ = t
α2n

conduit à la conclusion annoncée.
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1.5 Fin de la démonstration de (6)

Sur la base de l’inégalité exponentielle du paragraphe précédent, la démonstration de
(9) est presque immédiate. L’inégalité du Lemme 2 appliquée à l’échantillon de variables
aléatoires centrées indépendantes Y ε

1 , . . . , Y
ε
n`

(pour chaque ` ≥ 1 fixé) pour lesquelles

|Y ε
k | ≤ C = 2c

√
n`

log log(n`)
, E

(
(Y ε

k )2
)
≤ E(X2

k) = 1, k = 1, . . . , n`,

fournit pour t = (1 + ε)
√

2n` log log(n`),

P
(
T εn`
≥ (1 + ε)

√
2n` log log(n`)

)
≤ exp

(
− (1 + ε)2

[
2− e2

√
2c(1+ε)

]
log log(n`)

)
.

Choisir alors c = c(ε) > 0 suffisamment petit pour que

(1 + ε)2
[
2− e2

√
2c(1+ε)

]
> 1, (10)

de sorte que le membre de droite de l’inégalité précédente définit le terme général d’une série
convergente en ` ≥ 1 puisque log log(n`) ∼ log(`).

La démonstration de la convergence de la série (9), et donc de la majoration (6) de la
limite supérieure (1), est ainsi terminée.

2 Démonstration de la minoration dans (1)

L’objet de cette partie est d’établir que, pour X centrée de variance 1,

lim sup
n→∞

Sn√
2n log log(n)

≥ 1 presque sûrement. (11)

La démonstration va s’appuyer sur le lemme de Borel-Cantelli dans sa partie indépendante
et une inégalité de déviation modérée.

2.1 Utilisation du lemme de Borel-Cantelli

Il va suffire de démontrer que pour tout ε > 0, il existe une sous-suite (n`)`≥1 d’entiers
croissant vers l’infini telle que

lim sup
`→∞

Sn`√
2n` log log(n`)

≥ 1− ε presque sûrement. (12)
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Ainsi lim supn→∞
Sn√

2n log log(n)
≥ 1− ε presque sûrement, puis considérer une réunion dénom-

brable d’ensembles négligeables avec ε = 1
p
, p ≥ 1 entier.

Si la sous-suite choisie est telle que lim`→∞
n`−1

n`
= 0, il suffira de démontrer que

lim sup
`→∞

Sn`
− Sn`−1√

2n` log log(n`)
≥ 1− ε presque sûrement (13)

puisque d’après (6) la suite
( Sn`−1√

2n`−1 log log(n`−1)

)
`≥1

est presque sûrement bornée.

Par indépendance des variables Sn`
− Sn`−1

, ` ≥ 1, la propriété (13) aura lieu si
∞∑
`=1

P
(

Sn`
− Sn`−1√

2n` log log(n`)
≥ 1− ε

)
= ∞ (14)

d’après le lemme de Borel-Cantelli (dans sa version indépendante donc).

2.2 Une inégalité de déviation modérée

La démonstration de (14) va s’appuyer sur une inégalité de minoration présentée ici sous
la forme d’une asymptotique de déviations modérées (issue du théorème central limite).

Rappeler que Sn = X1 + · · ·+Xn, n ≥ 1, où (Xn)n≥1 est une suite de variables aléatoires
indépendantes de même loi, centrées réduites.

Considérer un réel u > 0 et des entiers p, q ≥ 1. Alors, par indépendance et équidistribu-
tion,

P
(
Spq
pq
≥ u

)
≥
[
P
(
Sp
p
≥ u

)]q
puisque

Spq = (X1 + · · ·+Xp) + (Xp+1 + · · ·+X2p) + · · ·+ (Xp(q−1)+1 + · · ·+Xpq).

Si p = p`, q = q`, ` ≥ 1, sont des suites d’entiers tendant vers l’infini, alors, pour u = t√
p

où t > 0 est fixé, par le théorème central limite,

lim inf
`→∞

1

q`
logP

(
Sp`q`√
p`q`
≥ t

)
≥ logP

(
G ≥ t

)
(15)

où G suit la loi normale N (0, 1).

Soit donc ε fixé, 0 < ε < 1
3
. Pour un α > 0 à déterminer plus loin en fonction de ε, poser,

pour chaque ` ≥ 1,

p` =

[
α ``

2 log log(``)

]
, q` =

[
2

α
log log(``)

]
8



(parties entières). Définir alors une suite (n`)`≥1 par la relation de récurrence

n` = p` q` + n`−1, ` ≥ 2, n1 = 1.

Il est aisé de constater que n` ∼ `` quand `→∞. En effet, en posant v` = n`

``
, ` ≥ 1,

v` = u` +
(`− 1)`−1

``
v`−1

où la suite u` = p`q`
``

, ` ≥ 1, tend vers 1. La suite (v`)`≥1 est donc bornée, et tend ainsi
également vers 1. En particulier

√
p` q` ∼

1√
α

√
2n` log log(n`) et q` ∼

2

α
log log(n`).

Fort de ces observations, en application de (15) pour t = (1− 2ε)
√
α,

lim inf
`→∞

1

log log(n`)
logP

(
Sn`
− Sn`−1√

2n` log log(n`)
≥ 1− 3ε

)
≥ 2

α
lim inf
`→∞

1

q`
logP

(
Sp`q`√
p`q`
≥ (1− 2ε)

√
α

)
≥ 2

α
logP

(
G ≥ (1− 2ε)

√
α
)
.

La minoration traditionnelle

P(G ≥ u) ≥
(1

u
− 1

u3

) 1√
2π

e−
u2

2 , u > 0,

conduit à constater que pour α suffisamment grand (dépendant de ε < 1
3
),

2

α
logP

(
G ≥ (1− 2ε)

√
α
)
≥ −(1− 2ε),

de sorte que

lim inf
`→∞

1

log log(n`)
logP

(
Sn`
− Sn`−1√

2n` log log(n`)
≥ 1− 3ε

)
≥ −(1− 2ε). (16)

2.3 Fin de la démonstration de (11)

La minoration (16) du paragraphe précédent va assurer simplement la divergence des
séries (14), et conclure ainsi la démonstration de (11). En effet, pour tout ` assez grand,

P
(

Sn`
− Sn`−1√

2n` log log(n`
≥ 1− 3ε

)
≥ e−(1−ε) log log(n`)).

Comme n` ∼ ``, le membre de droite définit le terme général d’une série divergente, de sorte
que, ε > 0 étant arbitraire, la propriété (14) est satisfaite.

Par ailleurs n`−1

n`
→ 0 comme souhaité pour conclure la démonstration. L’inégalité presque

sûre (12) est établie, et ainsi (11).
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3 Extension multi-dimensionnelle et forme de Strassen

Le résultat de Strassen (5) sur l’ensemble d’adhérence

C

((
Sn√

2n log log(n)

)
n≥1

)
= [−1,+1] presque sûrement,

est présentée ici à travers l’extension à des vecteurs aléatoires de la LLI réelle (1). Il est pos-
sible d’en donner une démonstration directe sur la base de l’argument de déviation modérée
du paragraphe précédent ainsi que développé dans [1].

La LLI s’étend assez simplement au cas multi-dimensionnel sous la forme suivante.
Soit X = (X(1), . . . , X(d)) un vecteur aléatoire sur (Ω,A,P) à valeurs dans Rd, tel que
E(‖X‖2) <∞ et E(X) = 0, où ‖ · ‖ désigne la norme euclidienne dans Rd. Il est supposé
que la matrice de covariance Γ =

(
E((X(i)(X(j))

)
1≤i,j≤d est non-dégénérée, de racine carrée

Γ = M tM .

Soit comme précédemment, sur (Ω,A,P), (Xn)n≥1 une suite de copies indépendantes de
X, et Sn = X1 + · · ·+Xn, n ≥ 1. Alors, avec

K = M(Bd) =
{
Mx ; ‖x‖ ≤ 1

}
où Bd est la boule euclidienne unité fermée dans Rd, la forme de Strassen (4) et (5) dans Rd

exprime que

lim
n→∞

d

(
Sn√

2n log log(n)
, K

)
= 0 (17)

et
C

((
Sn√

2n log log(n)

)
n≥1

)
= K (18)

presque sûrement (avec les notations correspondantes au cas réel).

La démonstration de ces propriétés, tirée de [3], va résulter du cas uni-dimensionnel à
travers des arguments de compacité et de projection. Quitte à travailler avec M−1X, il peut
être supposé que la matrice de covariance de X est l’identité et que K = Bd.

Il est utile, et sera librement employé ci-dessous, de noter au départ que P(Ω1) = 1 où
Ω1 =

{
supn≥1

‖Sn‖√
2n log log(n)

<∞
}
(d’après la LLI coordonnée par coordonnée).

Toujours d’après la LLI réelle, pour chaque y ∈ Rd,

lim sup
n→∞

〈y, Sn〉√
2n log log(n)

=
√
E(〈y,X〉2) = ‖y‖ presque sûrement. (19)
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Par densité dénombrable dans Rd, il existe ainsi un ensemble mesurable Ω2 avec P(Ω2) = 1

sur lequel cette propriété a lieu pour tout y ∈ Rd.

Comme dans le cas uni-dimensionnel, la propriété (17) sera acquise dès que

lim sup
n→∞

‖Sn‖√
2n log log(n)

≤ 1 presque sûrement. (20)

Si ceci n’est pas le cas, il existe un ensemble de probabilité positive Ω0 sur lequel la limite
supérieure est strictement plus grande que 1. Soit alors ω0 ∈ Ω0 ∩Ω1 ∩Ω1 ; il existe η > 0 et
une sous-suite infinie d’entiers (nk)k≥1 tels que, pour tout k ≥ 1,

‖Snk
(ω0)‖√

2nk log log(nk)
≥ 1 + 3η.

Il existe ensuite une suite (znk
)k≥1 d’éléments de norme 1 dans Rd telle que

〈znk
, Snk

(ω0)〉√
2nk log log(nk)

≥ 1 + 2η

pour tout k ≥ 1. Par compacité, la suite (znk
)k≥1 admet un point limite z = z(ω0) ∈ Rd de

norme 1, et donc, pour une infinité d’entiers k,

〈z(ω0), Snk
(ω0)〉√

2nk log log(nk)
≥ 1 + η.

Ceci entre toutefois en contradiction avec (19) appliqué à y = z(ω0). L’assertion (20) s’ensuit.
En vertu de (19), cette limite supérieure est en fait égale à 1.

En ce qui concerne (18), si y est de norme 1 dans Rd,∥∥∥∥ Sn√
2n log log(n)

− y
∥∥∥∥2 =

∥∥∥∥ Sn√
2n log log(n)

∥∥∥∥2 + 1− 2
〈y, Sn〉√

2n log log(n)

de sorte que, d’après (20) et (19),

lim inf
n→∞

∥∥∥∥ Sn√
2n log log(n)

− y
∥∥∥∥ = 0 presque sûrement.

Ainsi, tout point de la sphère unité Sd−1 de Rd est presque sûrement un point limite de la
suite

(
Sn√

2n log log(n)

)
n≥1

. Par densité dénombrable,

C

((
Sn√

2n log log(n)

)
n≥1

)
⊃ Sd−1 presque sûrement. (21)
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Mais ce résultat est vrai en toute dimension d. Il peut être ainsi appliqué à un vecteur
aléatoire X̃ = (X,Z) dans Rd+1 où Z est réelle centrée réduite indépendante de X. Comme,
par la projection

πd+1,d : (x, z) ∈ Rd+1 = Rd × R 7→ x ∈ Rd,

πd+1,d(S
d) = Bd et, avec les notations correspondantes, πd+1,d(S̃n) = Sn, l’inclusion (21)

dans Rd+1 ainsi projetée sur Rd donne lieu à la conclusion avec Bd en lieu et place de Sd−1.
L’inégalité presque sûre (20) entraînant l’inclusion inverse, la conclusion (18) s’ensuit.

L’application de ce résultat dans R2 projeté sur R donne en particulier lieu à la partie
(5) de Strassen sur l’ensemble d’adhérence de la LLI réelle.

L’ensemble de ces conclusions termine donc une démonstration complète de la LLI.
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