Pourquoi les musiciens n'ont-ils que 12 notes ? et autres considérations mathémusicales

Pierre Monmarché

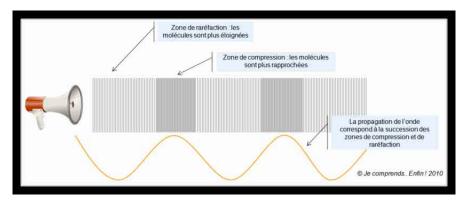
March 20, 2014

Maths et composition musicale

abstraction non figurative \Rightarrow structure claire, épurée ; bref, mathématique.

Contraintes mathématiques fécondes :

- symétries (canons, fugues, etc.), translations, dilatations (Bach, Tavener). . .
- permutations (dodécaphonisme et musique sérielle)
- procédés aléatoires (Cage)
- etc.

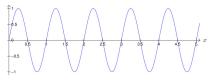

Comment définit-on les notes de musique ?

Comment définit-on les notes de musique ?

- Pourquoi certains accords seraient-ils plus jolis que d'autres ?
- Pourquoi ne pouvait-on pas faire de variété des années 80 au Moyen-Âge ?
- Pourquoi la musique militaire ?
- Pourquoi Patrick Sebastien ?

Qu'est-ce qu'un son ?

Le tympan est sensible aux oscillations de la pression de l'air :



La hauteur d'un son (est-il grave ou aigüe ?) est donné par la fréquence à laquelle se répéte le motif.

En musique, la référence est le la 440 (Hz).

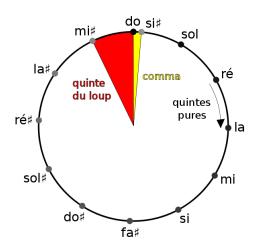
La corde vibrante

• D'après l'équation des ondes, si l'oscillation spatiale est sinusoïdale :

alors l'oscillation temporelle l'est également ; les fréquences sont proportionnelles.

- Un vrai son est une superposition de sinusoïdes.
- Les extrémités de la corde étant fixes, les seules fréquences possibles sont les multiples de la fréquence fondamentale $\nu_0=\frac{\pi}{L}$.

La gamme pythagoricienne


- ν_0 : fondamentale (son le mieux entendu).
- $\nu_1 = 2\nu_0$: octave (note identifiée par le cerveau à la fondamentale).
- $\nu_2 = 3\nu_0 = \frac{3}{2}\nu_1$: quinte.

$$\left(\frac{3}{2}\right)^{12} = 129,75$$

$$2^{7} = 128$$

$$\frac{3^{12}}{2^{19}} \simeq 1,0137$$

La gamme pythagoricienne

De nombreux inconvénients

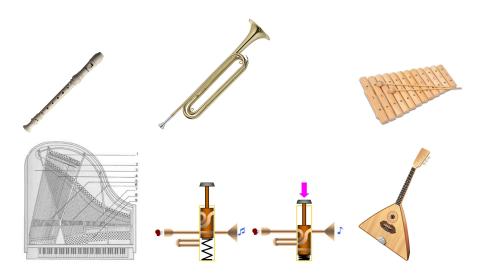
- La quinte du loup.
- 2 La difficultée à moduler ou transposer.
- Des tierces (= 4 quintes) fausses (comma syntonique) :

$$\frac{3^4}{2^5} = \frac{81}{64}$$
$$\frac{5}{4} = \frac{80}{64}.$$

 \Rightarrow Tempéraments.

Des fractions plus jolies que d'autres

• accord majeur = premières harmoniques



- tons voisins, cadences, etc.
- Triton (diabolus in musica) : $\sqrt{2}$.

C'est malgré tout très culturel...

La dimension 1

Les tambours

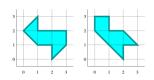
Équation différentielle :

$$\Delta \phi = -\lambda \phi$$

Contrainte : $\phi = 0$ sur le bord

Fréquences admissibles : $\lambda_1 \leq \lambda_2 \leq \dots$ (sans rapport arithmétique !)

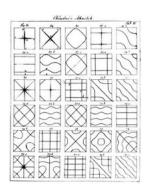
Étude mathématique des tambours


Théorème (Faber-Krahn 1923)

La fondamentale d'un tambour est toujours plus aigüe que la fondamentale du tambour rond de même surface.

Question (Kac 1965)

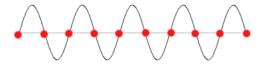
Peut-on entendre la forme d'un tambour ?


Contre exemple (Gordon, Webb et Wolpert, 1991):

En revanche c'est vrai si l'on ne considère que des tambours convexes à frontière analytique (Zelditch, 2000).

Les figures de Chladni

En 1809 le mathématicien Chladni était invité à présenter une étonnante expérience devant Napoléon.


Ça ressemblait à ça.

Explication: les modes propres

Dans l'équation

$$\Delta \phi = -\lambda \phi$$
,

la fonction solution ϕ est appelée mode propre associé à λ . C'est la forme de la membrane pendant l'oscillation.

Les points immobiles d'un tambour forme des lignes dites nodales. Voilà les premiers modes pour un tambour rond.

Références

1. Accoustique et géométrie spectrale :

- Comparaison du spectre d'un violon authentique et d'une banque de son
- Un traitement mathématique accessible des tambours
- Les figures de Chladni, plus détaillées (IDM)
- Partitions spectrales minimales (IDM)
- L'effondrement du pont de Tacoma par résonnance
- La page d'Édouard Oudet

Références

2. Mathématique et composition :

- The lamb (Tavener, 1982)
- L'offrande musicale (Bach ; palindrome, ou ruban de Möebius musical)
- La quinte juste (Kaamelott, Astier)
- Society for Mathematics and Computation in Music