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56 years ago Freeman J. Dyson * the Prince-
ton physicist and number theorist, considers
N particles of mass m; On a one dimensio-
nal chain such that K is the elastic modulus
of the spring between particles 5y and 5+ 1. If
z;(t) is the displacement from the equilibrium
of particle 5 at time t the equations of the mo-
tion of the system are, with g = zny41 = 0,
with y=1,..., N :

2

mjay = Kj(zjp1 —2j) + Kj_1(zj—1 — ;)

T herefore the numbers mq,...,my, Ko,..., Ky
are given. Introducing Apj_1 = -, Ap; =
K J

j
M we get constants Aq,..., Aon_o.

*"The dynamics of a disordered linear chain’ Phys.
Rev. 1953 92, 1331-1338. I learnt about it by rea-
ding the deep papers by Jens Marklov, Yves Touri-
gny and Lech Wolowski "Explicit invariant measures
for products of random matrices’ Trans. Amer. Math
Soc. 360 (2008) 3391-3427, and Alain Comtet and
Yves Tourigny 'Excursions of diffusion processes and
continued fractions’ arXiv 0906.4651v1[math.PR] 25
Jun. 2009



We introduce new functions

_ ;o
UDj—1 = /T, Upj = /A2;jUDj+1—1/A2j—1U2;—1

and the above system is transformed in the

linear differential system «' = Awu or

y, 0 VA 0 0 ...
2 =21 0 VA 0 ...
' — | 0 VA 0 Az ...
_u/QN_l_ i o« o . o« o . o« o . o« o . cee ]

Introduce the Hermitian matrix H = 7A. Since
A is antisymmetric with odd order, H has zero
as eigenvalue and the other eigenvalues :I:wj
with 3 = 1,2,...,N — 1 are real and go by
pairs. T herefore

N-1

u(t) = ™y (0) = vy + > v; cos(w;t)
j=1

where v; are constant vectors of R2N—-1
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At last, some continued fractions. Dyson at
this point lets N — oo such that the empirical
distribution

pn(dt) =

1 N-1
5 5(dt
N_lj; w2(d)

converges weakly towards a probability u(dt)
and links p to a continued fraction in the fol-
lowing way : Defining

Qu(@) = [ " 10g(1 + to)u(d) = lim (@)

by a remarkable combinatorial argument, Dyson
shows that if

T\
H. — J
j(z) L
1_|_x>\j+2
then
12N—1
P = |lim — log(1 + H;
W(@) = Jim 3" log(1 + H;(x)

J=1
after having explained how to recover pu from
the knowledge of €2, by nowadays familiar ar-
guments about Stieltjes transforms.



At last, some randomness.

Finally Dyson observes that if Aq,..., A\n,...
are iid random variables with distribution v ,
all the H; have the same distribution g (al-
though they are dependent). A surprizing re-
sult is that €2, (z) is not random and is exactly
equal to

Qu(@) = |~ 109(1 + )puz(d).

Of course recovering u from uy is very diffi-
cult but Freeman J. Dyson is able to work on
an example that we are going to generalize.



What is a Kummer distribution of type 27
Given a,p > 0 and b € R the Kummer distri-
butions K(2)(a,b,p) are the members of the
natural exponential family generated by the
density

wa—l

(1+ x)a,—|—b1(0,00) ().

Denote by C(a,b,p) = [5° (1_T_C;Bla+be_pxd:v its

Laplace transform. It satisfies actually an ex-
traordinary formula : if a,a 4+ b,p > 0 then

(x)  Cla,b,p) =

(a)l (b)
[ (a+ D)

where p— 1Fi(a;b;p) =32, %";)(zfz is the

confluent entire function defined for b ¢ —N.
It implies

1F1(a;1=b;p)+T(=b)p° 1 F1(a+b; 14b ; p)

I‘(a—l—b) —b
p .

C(a+b; —b;p) = C(a;b; p) F(a)



Why extraordinary 7

1. Because nobody knows an elementary proof,
or a probabilistic one.

2. Because if
b

p
(b)
is independent of Y ~ K2 (a,b,p) then
Z4+Y ~ K2 (a4 b,—b,p) and an imme-

diate proof is given by computing the La-
place transform of X 4+ Y and by using

().

3. Because

Z ~ vy pldz) = zb_le_pzl(ojoo)(z)dz

if H ~ vq4pp(d2) is independent of Y ~
K (a,b,p) then oo ~ K(2)(a +b, b, p)
and an immediate proof is given by com-
puting the Mellin transform of 1_|_Y and

by using (*).

Dyson has discovered (3) in the particular
case b =0 and a € N*.



Stationary distribution of a Markov chain.

Principle.” Let E be metric separable space
with its Borel sigma field, let C be the space
of continuous functions from E to E (with
the smallest sigma field such that f— f(x) is
measurable for all x € EF) and let Fy,..., Fp,...
be independent iid rv on C' with distribution
v. Consider

Zn(x) = F1oFso...Fp(x)
and
Yo(x) =FpoF,,_10...F{(x).

Assume that lim,— Z,(x) = Z exists almost
surely and does not depend on x. Then the
distribution p of Z is the unique stationary
distribution of the Markov chain (Yn(x))n>1-
In particular when (Y, F) € E x C are inde-
pendent with a FF ~ v then F(Y) ~ Y if and
only if Y ~ p.

*G.L. (1986) 'A contraction principle for certain Mar-
kov chains and its applications.” Contemp. Math. 50,
263-273.; James Propp and David Wilson (1996)
'Exact Sampling with Coupled Markov Chains and

Applications to Statistical Mechanics’ Random Struc-
tures and Algorithms 9 223-252.



Random continued fractions and products of
(2,2) random matrices.

if M = [ ‘C‘ Z] is invertible denote
axr + b
h — .
M () R

Clearly hMOhMl = hMMl'
Example :

Consider the random Moebius transformations
Fn(z) = -2 when the H,, are iid and > 0. if

14+«
Z 1S
Z = lim FioFs0F;3...Fy(z) = Hh
1+—
e

the distribution of Z is also the stationary
distribution on (0,c0) of the Markov chain

Y, =F,0F,_10...0F;(xqp)

or Y, = Fn(Y,,_1). We skip the fact that Z
does exist almost surely.



Dyson case We now apply this principle in a
first particular case Hy ~ ~vq,p for all n with
Hq,...,Hyp,... independent. In this case we
know that if H ~ ~v4p and Y are independent
then Y ~ 2 if and only ¥ ~ K2)(q,0,p).
Now to stick to the aims of the Dyson’'s pa-
per we observe that H = x/A has distribution
Ya,1/z it A ~ 74,1 = 7a- Therefore with the no-
tations introduced before, if v = v, the mea-
sure ug is K(2)(a,0,1/z). From this Dyson is
able to get u explicitely in the particular case
where a € N*
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Generalisation to more general Kummer dis-
tributions Let a,a +b6 > 0,p > 0 Now we as-
sume Hoy 1 ~ Ya,p and Hop ~ 7v44pp With
again Hq,...,Hp,... independent. If Gy (x)
ﬁfbx we apply the above principle to F,
Go,—1 0 Go, Which are iid Moebius transfor-
mations. Suppose that Y ~~ K(2)(a,b,p) is
independent of Hy and Hs. Thus G>(Y) ~
K®2)(a 4+ b,—b,p) and F{(Y) ~ Y. Therefore
we can apply the principle and we find that
the distribution of the continued fraction

n—ao

is K(2)(a,b,p). Here again, to come back to
the Dyson’s motivations we find that u, =
K@) (a,b,1/z). I have not yet undertaken the
calculation of pu...
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A little challenge. In a recent and very rich pa-
per*, Angelo Koudou and Pierre Vallois have
shown in particular the following result :

Theorem K-V : Let X and Y be independent
positive non Dirac random variables and consi-
der
[ — XY | — x U:X(l—l—X)
14+X+4+Y 14+X4+Y
Then U and V are independent if and only if
there exist a,b,p > 0 such that X ~ K(Q)(a —+
b, —b,p) and such that Y ~ 3(2)(q,b). Under
these circumstances U ~ K(2)(qa,b,p) and V ~

Vb,p-

Actually their proof of the characterisation
adds an extra hypothesis of existence of C?
densities for all variables. Another point is
that their direct result gives another proof-
without the extraordinary formula- of our point
(3) which has been so useful.

*(2009) 'Some independence properties of the type
Matsumoto-Yor' Preprint.
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Here are the details. Exchanging the roles
of (a,b) and (a + b,—b) point (3) says : if
X1 ~ v(a,p) and Y; ~ K3 (a 4+ b, —b,p) and
are independent then 13&/1 ~ K2)(a,b,p). In
the other hand a consequence of Theorem
K-V is this : let X3 ~ ~v(a,p) X7 ~ ~v(b,p) and
X ~ K®2)(a+b, —b,p) be independent and de-
fine Y = X1/X/. Trivially Y ~ 8(2)(a,b). Now
taking U and V as in Theorem K-V, we get

1 Y X1 1

Vo 14+X 14X x

Now since from Theorem K-V V ~ X! since

U and V are independent since 1{&)( and X}

are independent we can claim that U ~ 1)4(——1)(
(a way to prove the claim IS to take the Mellin

transforms of % and 1_|_X )%, the fact that

the Mellin transform of V.~ X] is analytic
gives us permission to simplify). Finally, since
Theorem K-V says that U ~ K(2)(a,b,p) we
get a new proof of the point (3).
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Questions

1. Can we use the principle through the dis-
tribution of the generalised Dyson ran-
dom continued fractions to prove comple-
tely the Koudou Vallois characterization ?

2. We have mentioned that the knowledge
of the distribution u; of the continued
fraction Hj(a:) gives the knowledge of asymp-
totic distribution p of the eigenvalues of
the random matrix 1A where A an anti-
symmetric Jacobi matrix with iid entries.
Dyson performs this calculation when the
N; are ~n distributed where n is an inte-
ger. The answer involves polynomials of
degree n. Therefore replacing n by the po-
sitive number a > 0O is probably not trivial.

3. More generally, we have seen that the
case No,_1 ~ v¢ and Ao, ~ v, leads to
explicit distribution gz of the Kummer(2)
type. Finding the corresponding u is even
a more general interesting problem.
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4. If W4,...,Wh,... are independent such that
Wop_1 ~ va,p and Wpy, ~ v, it is known * that
the random continued fraction

1

1
W1+W2+ﬁ

as a generalized inverse Gaussian distribution
(GIG). The quoted paper by Marklov et al.
Is devoted to the case where the W, are re-
placed by W;e'* and the very interesting dis-
tribution obtained there which is spread in a
cone of the complex plane gets probabilistic
interpretations in Comtet and Tourigny. The
point I want to make is the following : writing
1/W; = x/\; with p = = shows that the last
random continued fraction is of the Dyson
type, and that u; is also known here and is
a GIG distribution. Therefore the explicit cal-
culation of u from the knowledge of u; is a

problem which has to be solved.

*G.L. and V. Seshadri, (1983) 'A characterization of
the generalized inverse Gaussian distribution by conti-
nued fractions.” Z. Wahrsheinlichkeitstheorie und
Verv. Geb. 62, 485-4809.
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5. The case *where A; takes two values O or
1 has been investigated : in this case ug IS
a Denjoy distribution, a quite singular distri-
bution. Dyson methods for recovering pu from
the knowledge of €2, are postulating that u
has a density. This is probably not the case
anymore and these methods have to be adap-
ted for finding u there.

*Chassaing, Ph., Letac, G. and Mora, M. (1984) 'Bro-
cot sequences and random walks on SL(2,C)." Pro-
bability on Groups. Lecture notes in mathematics,
Springer. 1034, 37-50.
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Three non Dysonian random continued frac-
tions

Dysonians random continued fractions can be

seen as the infinite iterations of Moebius trans-

forms of the form hy;(z) = %:{c\/\z where

| zN O
M_[:I:/\ 1]

Since hyp; = hys note that M = [mA 0 ] IS

A B
Dysonian as well.
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1. I should mentioned here that the paper
by Koudou and Vallois contains also other
results leading to interesting continued frac-
tions. They fix a constant 6 > 0 and consider
the Moebius random functions generated by

0 5
. — J
=1y, Y

where the random ’'inputs’ Y;, have beta dis-
tributions of type two, namely

a—1

(2) Jr) — 1 x

75l = Blapy (L + oy tp

and the continued fractions have distributions
of the form

Cz" (1 + 2)°(6 + )1 (g o) (2)dz

1(0,00) (ZE)dCIZ
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2. The paper by Asci et al. * considers conti-
nued fractions generated by

1 O
M= [WJ‘ 1 ]

The random inputs Wj have beta distribu-
tions of type two and the continued fractions
have distributions of the form

1 a1 h—1
T l1—=x Fi(p,q;r,x)1 x)dx
B ) R giria)lon (@)
where > F1(p,q; r; x) is the Gauss hypergeome-
tric function. The proof of this uses a fasci-
nating formula about 3F5(a,b,c;d,e; 1) disco-
vered by Thomae in 18709.

*Asci, C., Letac, G. and Piccioni, M. (2008) 'Beta-
hypergeometric distributions and random continued
fractions.’ Statist. Probab. Lett., 78, issue 13, 1711-
1721.
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3. The paper by Marklof et al observes the

following : if w = a + b with b > 0, consider
. . . _ 1 bd

the Cauchy distribution Cy(dx) = Eszx"f_a)Q.

Now let Xq,...,Xpn,... be independent ran-

dom variables such that X, ~ Cy,,. Define

P 1 1
= 1 — 1 , W — w1 —
X2~ x5 W2~ e

Then X ~ (. Thisis a non Dysonian example
since

X; -1 |

1 O

Furthermore X is not positive.

M; =
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