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56 years ago Freeman J. Dyson ∗ the Prince-

ton physicist and number theorist, considers

N particles of mass mj on a one dimensio-

nal chain such that Kj is the elastic modulus

of the spring between particles j and j +1. If

xj(t) is the displacement from the equilibrium

of particle j at time t the equations of the mo-

tion of the system are, with x0 = xN+1 = 0,

with j = 1, . . . , N :

mjx
′′
j = Kj(xj+1 − xj) + Kj−1(xj−1 − xj)

Therefore the numbers m1, . . . , mN , K0, . . . , KN

are given. Introducing λ2j−1 =
Kj
mj

, λ2j =

Kj
mj+1

we get constants λ1, . . . , λ2N−2.

∗’The dynamics of a disordered linear chain’ Phys.
Rev. 1953 92, 1331-1338. I learnt about it by rea-
ding the deep papers by Jens Marklov, Yves Touri-
gny and Lech Wolowski ’Explicit invariant measures
for products of random matrices’ Trans. Amer. Math
Soc. 360 (2008) 3391-3427, and Alain Comtet and
Yves Tourigny ’Excursions of diffusion processes and
continued fractions’ arXiv 0906.4651v1[math.PR] 25
Jun. 2009
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We introduce new functions

u2j−1 =
√

mjxj, u
′
2j =

√
λ2ju2j+1−

√
λ2j−1u2j−1

and the above system is transformed in the

linear differential system u′ = Au or


u′1
u′2...
...

u′2N−1

 =


0

√
λ1 0 0 . . .

−
√

λ1 0
√

λ2 0 . . .
0 −

√
λ2 0

√
λ3 . . .

. . . . . . . . . . . . . . .




u1
u2
...
...

u2N−1


Introduce the Hermitian matrix H = iA. Since

A is antisymmetric with odd order, H has zero

as eigenvalue and the other eigenvalues ±wj

with j = 1,2, . . . , N − 1 are real and go by

pairs. Therefore

u(t) = eitHu(0) = v0 +
N−1∑
j=1

vj cos(wjt)

where vj are constant vectors of R2N−1.
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At last, some continued fractions. Dyson at

this point lets N →∞ such that the empirical

distribution

µN(dt) =
1

N − 1

N−1∑
j=1

δw2
j
(dt)

converges weakly towards a probability µ(dt)

and links µ to a continued fraction in the fol-

lowing way : Defining

Ωµ(x) =
∫ ∞
0

log(1 + tx)µ(dt) = lim
N→∞

ΩµN(x)

by a remarkable combinatorial argument, Dyson

shows that if

Hj(x) =
xλj

1 +
xλj+1

1+
xλj+2

...

then

Ωµ(x) = lim
N→∞

1

N

2N−1∑
j=1

log(1 + Hj(x))

after having explained how to recover µ from

the knowledge of Ωµ by nowadays familiar ar-

guments about Stieltjes transforms.

4



At last, some randomness.

Finally Dyson observes that if λ1, . . . , λn, . . .

are iid random variables with distribution ν ,

all the Hj have the same distribution µx (al-

though they are dependent). A surprizing re-

sult is that Ωµ(x) is not random and is exactly

equal to

Ωµ(x) =
∫ ∞
0

log(1 + t)µx(dt).

Of course recovering µ from µx is very diffi-

cult but Freeman J. Dyson is able to work on

an example that we are going to generalize.
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What is a Kummer distribution of type 2 ?

Given a, p > 0 and b ∈ R the Kummer distri-

butions K(2)(a, b, p) are the members of the

natural exponential family generated by the

density

xa−1

(1 + x)a+b
1(0,∞)(x).

Denote by C(a, b, p) =
∫∞
0

xa−1

(1+x)a+be
−pxdx its

Laplace transform. It satisfies actually an ex-

traordinary formula : if a, a + b, p > 0 then

(∗) C(a, b, p) =

Γ(a)Γ(b)

Γ(a + b)
1F1(a ; 1−b ; p)+Γ(−b)pb

1F1(a+b ; 1+b ; p)

where p 7→ 1F1(a ; b ; p) =
∑∞

n=0
(a)npn

n!(b)n
is the

confluent entire function defined for b /∈ −N.

It implies

C(a + b;−b; p) = C(a; b; p)
Γ(a + b)

Γ(a)
p−b.
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Why extraordinary ?

1. Because nobody knows an elementary proof,

or a probabilistic one.

2. Because if

Z ∼ γb,p(dz) =
pb

Γ(b)
zb−1e−pz1(0,∞)(z)dz

is independent of Y ∼ K(2)(a, b, p) then

Z + Y ∼ K(2)(a + b,−b, p) and an imme-

diate proof is given by computing the La-

place transform of X + Y and by using

(*).

3. Because

if H ∼ γa+b,p(dz) is independent of Y ∼
K(2)(a, b, p) then H

1+Y ∼ K(2)(a + b,−b, p)

and an immediate proof is given by com-

puting the Mellin transform of H
1+Y and

by using (*).

Dyson has discovered (3) in the particular

case b = 0 and a ∈ N∗.
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Stationary distribution of a Markov chain.

Principle.∗ Let E be metric separable space
with its Borel sigma field, let C be the space
of continuous functions from E to E (with
the smallest sigma field such that f 7→ f(x) is
measurable for all x ∈ E) and let F1, . . . , Fn, . . .
be independent iid rv on C with distribution
ν. Consider

Zn(x) = F1 ◦ F2 ◦ . . . Fn(x)

and

Yn(x) = Fn ◦ Fn−1 ◦ . . . F1(x).

Assume that limn→Zn(x) = Z exists almost
surely and does not depend on x. Then the
distribution µ of Z is the unique stationary
distribution of the Markov chain (Yn(x))n≥1.
In particular when (Y, F ) ∈ E × C are inde-
pendent with a F ∼ ν then F (Y ) ∼ Y if and
only if Y ∼ µ.
∗G.L. (1986) ’A contraction principle for certain Mar-
kov chains and its applications.’ Contemp. Math. 50,
263-273. ; James Propp and David Wilson (1996)
’Exact Sampling with Coupled Markov Chains and
Applications to Statistical Mechanics’ Random Struc-
tures and Algorithms 9 223-252.
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Random continued fractions and products of
(2,2) random matrices.

if M =

[
a b
c d

]
is invertible denote

hM(x) =
ax + b

cx + d
.

Clearly hM ◦ hM1
= hMM1

.

Example :

Consider the random Moebius transformations
Fn(x) = Hn

1+x when the Hn are iid and > 0. if
Z is

Z = lim
n→∞F1 ◦F2 ◦F3 . . . Fn(x) =

H1

1 + H2

1+
H3

1+
H4

1+...

the distribution of Z is also the stationary
distribution on (0,∞) of the Markov chain

Yn = Fn ◦ Fn−1 ◦ . . . ◦ F1(x0)

or Yn = Fn(Yn−1). We skip the fact that Z

does exist almost surely.
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Dyson case We now apply this principle in a

first particular case Hn ∼ γa,p for all n with

H1, . . . , Hn, . . . independent. In this case we

know that if H ∼ γa,p and Y are independent

then Y ∼ H
1+Y if and only Y ∼ K(2)(a,0, p).

Now to stick to the aims of the Dyson’s pa-

per we observe that H = xΛ has distribution

γa,1/x if Λ ∼ γa,1 = γa. Therefore with the no-

tations introduced before, if ν = γa the mea-

sure µx is K(2)(a,0,1/x). From this Dyson is

able to get µ explicitely in the particular case

where a ∈ N∗
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Generalisation to more general Kummer dis-

tributions Let a, a + b > 0, p > 0 Now we as-

sume H2n−1 ∼ γa,p and H2n ∼ γa+b,p with

again H1, . . . , Hn, . . . independent. If Gn(x) =
Hn
1+x we apply the above principle to Fn =

G2n−1 ◦ G2n which are iid Moebius transfor-

mations. Suppose that Y ∼∼ K(2)(a, b, p) is

independent of H1 and H2. Thus G2(Y ) ∼
K(2)(a + b,−b, p) and F1(Y ) ∼ Y. Therefore

we can apply the principle and we find that

the distribution of the continued fraction

Z = lim
n→∞Zn(x) = F1 ◦ F2 ◦ . . . Fn(x)

is K(2)(a, b, p). Here again, to come back to

the Dyson’s motivations we find that µx =

K(2)(a, b,1/x). I have not yet undertaken the

calculation of µ...
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A little challenge. In a recent and very rich pa-

per∗, Angelo Koudou and Pierre Vallois have

shown in particular the following result :

Theorem K-V : Let X and Y be independent

positive non Dirac random variables and consi-

der

U =
XY

1 + X + Y
, V = X − U =

X(1 + X)

1 + X + Y

Then U and V are independent if and only if

there exist a, b, p > 0 such that X ∼ K(2)(a +

b,−b, p) and such that Y ∼ β(2)(a, b). Under

these circumstances U ∼ K(2)(a, b, p) and V ∼
γb,p.

Actually their proof of the characterisation

adds an extra hypothesis of existence of C2

densities for all variables. Another point is

that their direct result gives another proof-

without the extraordinary formula- of our point

(3) which has been so useful.

∗(2009) ’Some independence properties of the type
Matsumoto-Yor’ Preprint.

12



Here are the details. Exchanging the roles

of (a, b) and (a + b,−b) point (3) says : if

X1 ∼ γ(a, p) and Y1 ∼ K(2)(a + b,−b, p) and

are independent then X1
1+Y1

∼ K(2)(a, b, p). In

the other hand a consequence of Theorem

K-V is this : let X1 ∼ γ(a, p) X ′
1 ∼ γ(b, p) and

X ∼ K(2)(a+b,−b, p) be independent and de-

fine Y = X1/X ′
1. Trivially Y ∼ β(2)(a, b). Now

taking U and V as in Theorem K-V, we get

U ×
1

V
=

Y

1 + X
=

X1

1 + X
×

1

X ′
1

Now since from Theorem K-V V ∼ X ′
1, since

U and V are independent since X1
1+X and X ′

1

are independent we can claim that U ∼ X1
1+X

(a way to prove the claim is to take the Mellin

transforms of U
V and X1

1+X ×
1

X ′
1

: the fact that

the Mellin transform of V ∼ X ′
1 is analytic

gives us permission to simplify). Finally, since

Theorem K-V says that U ∼ K(2)(a, b, p) we

get a new proof of the point (3).
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Questions

1. Can we use the principle through the dis-

tribution of the generalised Dyson ran-

dom continued fractions to prove comple-

tely the Koudou Vallois characterization ?

2. We have mentioned that the knowledge

of the distribution µx of the continued

fraction Hj(x) gives the knowledge of asymp-

totic distribution µ of the eigenvalues of

the random matrix iA where A an anti-

symmetric Jacobi matrix with iid entries.

Dyson performs this calculation when the

Λj are γn distributed where n is an inte-

ger. The answer involves polynomials of

degree n. Therefore replacing n by the po-

sitive number a > 0 is probably not trivial.

3. More generally, we have seen that the

case Λ2n−1 ∼ γa and Λ2n ∼ γb leads to

explicit distribution µx of the Kummer(2)

type. Finding the corresponding µ is even

a more general interesting problem.
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4. If W1, . . . , Wn, . . . are independent such that

W2n−1 ∼ γa,p and W2n ∼ γb,p it is known ∗ that

the random continued fraction

1

W1 + 1
W2+

1
W3...

as a generalized inverse Gaussian distribution

(GIG). The quoted paper by Marklov et al.

is devoted to the case where the Wj are re-

placed by Wje
iα and the very interesting dis-

tribution obtained there which is spread in a

cone of the complex plane gets probabilistic

interpretations in Comtet and Tourigny. The

point I want to make is the following : writing

1/Wj = xΛj with p = x shows that the last

random continued fraction is of the Dyson

type, and that µx is also known here and is

a GIG distribution. Therefore the explicit cal-

culation of µ from the knowledge of µx is a

problem which has to be solved.
∗G.L. and V. Seshadri, (1983) ’A characterization of
the generalized inverse Gaussian distribution by conti-
nued fractions.’ Z. Wahrsheinlichkeitstheorie und
Verv. Geb. 62, 485-489.
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5. The case ∗where Λj takes two values 0 or

1 has been investigated : in this case µx is

a Denjoy distribution, a quite singular distri-

bution. Dyson methods for recovering µ from

the knowledge of Ωµ are postulating that µ

has a density. This is probably not the case

anymore and these methods have to be adap-

ted for finding µ there.

∗Chassaing, Ph., Letac, G. and Mora, M. (1984) ’Bro-
cot sequences and random walks on SL(2, C).’ Pro-
bability on Groups. Lecture notes in mathematics,
Springer. 1034, 37-50.
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Three non Dysonian random continued frac-

tions

Dysonians random continued fractions can be

seen as the infinite iterations of Moebius trans-

forms of the form hM(z) = xΛ
1+xΛz where

M =

[
xΛ 0
xΛ 1

]

Since hλM = hM note that M =

[
xA 0
xA B

]
is

Dysonian as well.
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1. I should mentioned here that the paper

by Koudou and Vallois contains also other

results leading to interesting continued frac-

tions. They fix a constant δ > 0 and consider

the Moebius random functions generated by

Mj =

[
0 δYj

1 + Yj 1

]
where the random ’inputs’ Yn have beta dis-

tributions of type two, namely

β
(2)
α,p (dx) =

1

B(α, p)

xα−1

(1 + x)α+p
1(0,∞)(x)dx

and the continued fractions have distributions

of the form

Cxa−1(1 + x)b(δ + x)c1(0,∞)(x)dx
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2. The paper by Asci et al. ∗ considers conti-

nued fractions generated by

Mj =

[
1 0

Wj 1

]
The random inputs Wj have beta distribu-

tions of type two and the continued fractions

have distributions of the form

1

B(a, b)
xa−1(1−x)b−1

2F1(p, q; r;x)1(0,1)(x)dx

where 2F1(p, q; r;x) is the Gauss hypergeome-

tric function. The proof of this uses a fasci-

nating formula about 3F2(a, b, c; d, e; 1) disco-

vered by Thomae in 1879.

∗Asci, C., Letac, G. and Piccioni, M. (2008) ’Beta-
hypergeometric distributions and random continued
fractions.’ Statist. Probab. Lett., 78, issue 13, 1711-
1721.
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3. The paper by Marklof et al observes the

following : if w = a + ib with b > 0, consider

the Cauchy distribution Cw(dx) = 1
π

bdx
b2+(x−a)2

.

Now let X1, . . . , Xn, . . . be independent ran-

dom variables such that Xn ∼ Cwn. Define

X = X1 −
1

X2 − 1
X3−...

, w = w1 −
1

w2 − 1
w3−...

.

Then X ∼ Cw. This is a non Dysonian example

since

Mj =

[
Xj −1
1 0

]
.

Furthermore X is not positive.
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