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1. Basic facts on holomorphic and meromorphic functions

• The Cauchy-Riemann equation ([4] Chapter 2.3)

• Harmonic Funtions ([4] Chapter 2.5)

• Line integrals and Green’s Theorem ([4] Chapter 3.1 and 3.2)

• The mean value property and the maximum principle ([4] Chapter 3.4 and 3.5)

• Complex line integrals and Cauchy’s theorem ([4] Chapter 4.3 and 4.4)

• Liouville’s, Morera’s and Goursat’s theorem ([4] Chapter 4.5, 4.6 and 4.7 no proofs)

• Power series expansion of an analytic function ( [4] Chapter 5.4 and 5.5)

• The zeros of an analytic function ([4] Chapter 5.7)

• Analytic Continuation ([4] Chapter 5.8)

• Laurent Decomposition and Laurent series expansion ([4] Chapter 6.1)

• Singularities of an analytic function ([4] Chapter 6.2)

• The residue theorem ([4] Chapter 7.1)

2.Manifolds, surfaces and the classification of topological surfaces

• The Implicit function theorem and the local inversion theorem

• Definition of manifold and atlases

• The classification of topological two dimensional orientable, compact surfaces (see [3] Chapter 2.1)

• Definition of the fundamental group

• Universal covering

• The universal covering of a compact orientable surface

3. Riemann surfaces definitions and first facts The main point of this talk is to show that plane
curves are examples of Riemann surfaces. See [5]Chapter 1.

4. Maps between Riemann Surfaces and the Hurwitz formula

• Definition of holomorphic and meromorphic functions on a RS

• Examples ([5] Chapter 2.2, except complex tori)

• Holomorphic maps between RS ([5] Chapter 2.3 except complex tori)
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• Hurwitz’s theorem and the degree ([5] Chapter 2.4)

5. Complex tori (for french speaking only)

• Complex tori ([5] Chapter 2.2 on tori and meromorphic functions on it)

• Maps between complex tori and automorphisms of complex tori ([5] Chapter 3.1, and in particular
Proposition 1.12)

• Every torus is a projective cubic ([1] pp 100-104)

6. Covering spaces and monodromy

• More elementary examples of RS: Hyperelliptic curve ([5] Chapter 3.1)

• Coverings and monodromy ([5] Chapter 3.4)

• If a Riemann surface has a holomorphic map of degree 2 onto P1 then it is a hyperelliptic curve ([5]
Proposition 4.11)

7.Integration on Riemann surfaces [5] Chapter 4. Main goal : the Residue Theorem and its appli-
cations (Theorem 3.17, [5]).

8. Divisors and meromorphic functions

• Divisors and linear equivalence ([5] Chapter 5.1 and 5.2)

9. Projective geometry and algebraic curves

• Basic Projective Geometry ([5] Chapter 3.5)

• Bezout’s theorem ([5] Chapter 5.2)

• Plücker formula ([5] Chapter 5.2)

• Curves with nodes and Plücker formula for this case ([5] page 70).

10. Spaces of meromorphic functions and forms associated to a divisor Main goal : defined
LpDq and Lp1qpDq and prove that they are finite dimensional. Then state Riemann-Roch theorem and test
its statement for known cases.

• Spaces of functions and forms associated to a Divisor ([5] Chapter 5.3)

• The statement of the Riemann-Roch Theorem ([5] Theorem 3.11 Chapter 6)

• Test the statement for divisors on P1.

11. Divisors and maps to projective spaces

• [5] Chapter 5.4
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• Algebraic curves ([5] Chapter 4.1)

• Examples

12. Applications of the Riemann Roch Theorem

• [5] Chapter 7.1

• Definition of the canonical map ([5] Chapter 7.2)

13. A sketch of proof of the Riemann Roch

• Laurent tail divisors and the Mittag-Leffer problem ([5] Chapter 6.2)

• The Riemann-Roch Theorem and Serre duality ([5] Chapter 6.3) (no proof)

14. Abel’s theorem

• Homology periods and the Jacobian ([5]Chapter 8.1)

• The Abel-Jacobi map ([5]Chapter 8.2)

• Sketch of proof of necessity in Abel’s theorem ([5]Chapter 8.3)

• Sketch of proof of sufficiency in Abel’s theorem ([5]Chapter 8.4)

• Picard’s group

• Abel’s theorem for curves of genus one ([5]Chapter 8.5)

11. Sheaves and Cech cohomology

• Sheaves, presheaves and maps ([5]Chapter 9.1 and 9.2)

• Cech cohomology and examples of computation ([5]Chapter 9.3 and 9.4)

12. Algebraic Sheaves See [5] Chapter 10 (no proofs required)
13. Invertible sheaves, line bundles and H1 [5]Chapter 11.1, 11.2 and 11.3.
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