Topics in Differential Complex Geometry

Eveline Legendre - eveline.legendre@math.univ-toulouse.fr

Abstract:

The aim of these lectures is to introduce classical objects and tools of Complex and Kähler Geometry. We will cover (but sometimes very partially) the following topics:

- 1. Basics of Complex Geometry
 - Basics of several complex variables and complex manifolds. (2,5 courses)
 - Notion of almost complex structures and decomposition of the tangent bundle (1 course)
 - Vector bundles and holomorphic vector bundles (sections, constructions and examples). (2 courses)
 - Dolbeaut cohomology (only the definition and few examples) (0,5 course)
 - Basics of sheaves theory and Čech cohomology. (3 courses)
- 2. Curvature, existence of sections and projective embedding.
 - Hermitian metrics on complex vector bundles. (1 course)
 - Chern connection, curvature and the first Chern class of line bundles (from the Chern-Weil Theory point of view). (2 courses)
 - Notion of ampleness of line bundles, link with existence of sections and discussion on the Kodaira Embedding Theorem. (1 course)

Prerequisites: differential geometry, complex analysis of one variable.

References:

D. Huybrechts, Complex geometry, Universitext, Springer, 2005.

J.-P. Demailly, *Complex Analytic and Differential Geometry*, available online: https://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf

P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley Classics Library, 1994.

C. Voisin, Hodge Theory and Complex Algebraic Geometry I, Cambridge University Press, 2010.