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Testing issues

Hypothesis testing
central problem of statistical inference
witness the recent ASA’s statement on p-values (Wasserstein, 2016)
dramatically differentiating feature between classical and Bayesian
paradigms
wide open to controversy and divergent opinions, includ. within the
Bayesian community
non-informative Bayesian testing case mostly unresolved, witness the
Jeffreys–Lindley paradox

Berger (2003), Mayo & Cox (2006), Gelman (2008)

B

2/ 40



Bayesian modelling

I Standard Bayesian approach to testing : consider two families of
models, one for each of the hypotheses under comparison,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

Priors θ1 ∼ π1(θ1) and θ2 ∼ π2(θ2) ,

m1(x) =

∫
Θ1

f1(x |θ1)π1(θ1) dθ1 and m2(x) =

∫
Θ2

f2(x |θ2)π1(θ2) dθ2
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m1(x) =

∫
Θ1

f1(x |θ1)π1(θ1) dθ1 and m2(x) =

∫
Θ2

f2(x |θ2)π1(θ2) dθ2

either through Bayes factor or posterior probability, respectively :

B12 =
m1(x)

m2(x)
, P(M1|x) =

ω1m1(x)

ω1m1(x) + ω2m2(x)
;

the latter depends on the prior weights ωi = π(Θi )
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Bayesian decision

Bayesian decision step
comparing Bayes factor B12 with threshold value of one or
comparing posterior probability P(M1|x) with bound 1/2

When comparing more than two models, model with highest posterior
probability is the one selected, but highly dependent on the prior
modelling.
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Bayes factor : self-contained concept

Outside decision-theoretic environment :
eliminates choice of π(Θ0)

but depends on the choice of (π0, π1)

Bayesian/marginal equivalent to the likelihood ratio
Jeffreys’ scale of evidence :

if log10(B
π
10) between 0 and 0.5, evidence against H0 weak,

if log10(B
π
10) 0.5 and 1, evidence substantial,

if log10(B
π
10) 1 and 2, evidence strong and

if log10(B
π
10) above 2, evidence decisive

Quite arbitrary really ! : consequence of 0-1 loss function
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Bayesian testing of hypotheses

Bayesian model selection as comparison of k potential statistical
models towards the selection of model that fits the data “best"
mostly accepted perspective : it does not primarily seek to identify
which model is “true", but compares fits

tools like Bayes factor naturally include a penalisation addressing
model complexity, mimicked by Bayes Information (BIC) and
Deviance Information (DIC) criteria .
Under quite genreal conditions : consistent criterion for testing or
model selection
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Some difficulties

long-lasting impact of prior modeling, i.e., choice of prior
distributions on parameters of both models, despite overall
consistency proof for Bayes factor
discontinuity in valid use of improper priors since they are not
justified in most testing situations, leading to many alternative and
ad hoc solutions, where data is either used twice or split in artificial
ways [or further tortured into confession]
binary (accept vs. reject) outcome more suited for immediate
decision (if any) than for model evaluation, in connection with
rudimentary loss function 0− 1 [atavistic remain of Neyman-Pearson
formalism]
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Some additional difficulties

related impossibility to ascertain simultaneous misfit or to detect
outliers
no assessment of uncertainty associated with decision itself besides
posterior probability
difficult computation of marginal likelihoods in most settings with
further controversies about which algorithm to adopt
time for a paradigm shift ?
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Paradigm shift

New proposal for a paradigm shift ( !) in the Bayesian processing of
hypothesis testing and of model selection

convergent and naturally interpretable solution
more extended use of improper priors

Simple representation of the testing problem as a
two-component mixture estimation problem where the weights
are formally equal to 0 or 1
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Paradigm shift

Simple representation of the testing problem as a
two-component mixture estimation problem where the weights
are formally equal to 0 or 1

Approach inspired from consistency result of Rousseau and
Mengersen (2011) on estimated overfitting mixtures
Mixture representation not directly equivalent to the use of a
posterior probability
Calibration of posterior distribution of the weight of a model,
moving from the notion of posterior probability of a model
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Encompassing mixture model

Idea : Given two statistical models,

M1 : xi
ind.∼ f1(xi |θ1) , θ1 ∈ Θ1 and M2 : xi

ind.∼ f2(x |θ2) , θ2 ∈ Θ2 , i ≤ n

embed both within an encompassing mixture

Mα : xi
ind.∼ αf1(x |θ1) + (1− α)f2(x |θ2) , 0 ≤ α ≤ 1, i ≤ n (1)

Note : Both models correspond to special cases of (1), one for α = 1 and
one for α = 0
Draw inference on mixture representation (1), as if each observation was
individually and independently produced by the mixture model
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Inferential motivations

Sounds like approximation to the real model, but several definitive
advantages to this paradigm shift :

Bayes estimate of the weight α replaces posterior probability of
model M1, equally convergent indicator of which model is “true",
while avoiding artificial prior probabilities on model indices, ω1 and
ω2

interpretation of estimator of α at least as natural as handling the
posterior probability, while avoiding zero-one loss setting : proportion
of individuals from each model
α and its posterior distribution provide measure of proximity to the
models, while being interpretable as data propensity to stand within
one model
further allows for alternative perspectives on testing and model
choice, like predictive tools, cross-validation, and information indices
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Computational motivations

avoids highly problematic computations of the marginal likelihoods,
since standard algorithms are available for Bayesian mixture
estimation
straightforward extension to a finite collection of models, with a
larger number of components, which considers all models at once
and eliminates least likely models by simulation
eliminates difficulty of label switching that plagues both Bayesian
estimation and Bayesian computation, since components are no
longer exchangeable
posterior distribution of α evaluates more thoroughly strength of
support for a given model than the single figure outcome of a
posterior probability
variability of posterior distribution on α allows for a more thorough
assessment of the strength of this support
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Noninformative motivations

additional feature missing from traditional Bayesian answers : a
mixture model acknowledges possibility that, for a finite dataset,
both models or none could be acceptable
standard (proper and informative) prior modeling can be reproduced
in this setting, but non-informative (improper) priors also are
manageable therein, provided both models first reparameterised
towards shared parameters, e.g. location and scale parameters
in special case when all parameters are common

Mα : x ∼ αf1(x |θ) + (1− α)f2(x |θ) , 0 ≤ α ≤ 1

if θ is a location parameter, a flat prior π(θ) ∝ 1 is available
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Weakly informative motivations

using the same parameters or some identical parameters on both
components highlights that opposition between the two components
is not an issue of enjoying different parameters
those common parameters are nuisance parameters, to be integrated
out [unlike Lindley’s paradox]
prior model weights ωi rarely discussed in classical Bayesian
approach, even though linear impact on posterior probabilities. Here,
prior modeling only involves selecting a prior on α, e.g.,
α ∼ B(a0, a0)

while a0 impacts posterior on α, it always leads to mass
accumulation near 1 or 0, i.e. favours most likely model
sensitivity analysis straightforward to carry
approach easily calibrated by parametric boostrap providing
reference posterior of α under each model
natural Metropolis–Hastings alternative
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Poisson/Geometric

choice betwen Poisson P(λ) and Geometric G eo(p) distribution

mixture with common parameter λ

Mα : αP(λ) + (1− α)G eo(1/1+λ)

Allows for Jeffreys prior since resulting posterior is proper
independent Metropolis–within–Gibbs with proposal distribution on
λ equal to Poisson posterior (with acceptance rate larger than 75%)
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Beta prior

When α ∼ Be(a0, a0) prior, full conditional posterior

α ∼ Be(n1(ζ) + a0, n2(ζ) + a0)

Exact Bayes factor opposing Poisson and Geometric

B12 = nnx̄n

n∏
i=1

xi ! Γ

(
n + 2 +

n∑
i=1

xi

)/
Γ(n + 2)

although arbitrary from a purely mathematical viewpoint
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Parameter estimation : λ then α
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Posterior means of λ and medians of α for 100 Poisson P(4) datasets of size
n = 1000, for a0 = .0001, .001, .01, .1, .2, .3, .4, .5. Each posterior approximation is
based on 104 Metropolis-Hastings iterations.
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Consistency
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Posterior means (sky-blue) and medians (grey-dotted) of α, over 100 Poisson P(4)

datasets for sample sizes from 1 to 1000.

18/ 40



Behaviour of Bayes factor
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Comparison between P(M1|x) (red dotted area) and posterior medians of α (grey
zone) for 100 Poisson P(4) datasets with sample sizes n between 1 and 1000, for
a0 = .001, .1, .5
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Normal-normal comparison

comparison of a normal N (θ1, 1) with a normal N (θ2, 2)
distribution

mixture with identical location parameter θ
αN (θ, 1) + (1− α)N (θ, 2)

Jeffreys prior π(θ) = 1 can be used, since posterior is proper
Reference (improper) Bayes factor

B12 = 2n−1/2
/
exp 1/4

n∑
i=1

(xi − x̄)2 ,
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Consistency
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Comparison with posterior probability
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Plots of ranges of log(n) log(1− E[α|x]) (gray color) and log(1− p(M1|x)) (red
dotted) over 100 N (0, 1) samples as sample size n grows from 1 to 500. and α is the
weight of N (0, 1) in the mixture model. The shaded areas indicate the range of the
estimations and each plot is based on a Beta prior with a0 = .1, .2, .3, .4, .5, 1 and
each posterior approximation is based on 104 iterations.
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Comments

convergence to one boundary value as sample size n grows
impact of hyperarameter a0 slowly vanishes as n increases, but
present for moderate sample sizes
when simulated sample is neither from N (θ1, 1) nor from N (θ2, 2),
behaviour of posterior varies, depending on which distribution is
closest
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Logit or Probit ?

binary dataset, R dataset about diabetes in 200 Pima Indian women
with body mass index as explanatory variable
comparison of logit and probit fits could be suitable. We are thus
comparing both fits via our method

M1 : yi | xi , θ1 ∼ B(1, pi ) where pi =
exp(xiθ1)

1 + exp(xiθ1)

M2 : yi | xi , θ2 ∼ B(1, qi ) where qi = Φ(xiθ2)
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Common parameterisation

Local reparameterisation strategy that rescales parameters of the probit
model M2 so that the MLE’s of both models coincide. Choudhuty et al., 2007

Φ(xiθ2) ≈ exp(kxiθ2)

1 + exp(kxiθ2)

and use best estimate of k to bring both parameters into coherency

(k0, k1) = ( cθ01/cθ02, cθ11/cθ12) ,

reparameterise M1 and M2 as

M1 :yi | xi , θ ∼ B(1, pi ) where pi =
exp(xiθ)

1 + exp(xiθ)

M2 :yi | xi , θ ∼ B(1, qi ) where qi = Φ(xi (κ−1θ)) ,

with κ−1θ = (θ0/k0, θ1/k1).
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Prior modelling

Under default g -prior

θ ∼ N2(0, n(XTX )−1)

full conditional posterior distributions given allocations

π(θ | y,X , ζ) ∝
exp

{∑
i Iζi =1yixiθ

}∏
i ;ζi =1[1 + exp(xiθ)]

exp
{
−θT (XTX )θ

/
2n
}

×
∏

i ;ζi =2

Φ(xi (κ−1θ))yi (1− Φ(xi (κ−1θ)))(1−yi )

hence posterior distribution clearly defined
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Results

Logistic Probit
a0 α θ0 θ1

θ0
k0

θ1
k1

.1 .352 -4.06 .103 -2.51 .064

.2 .427 -4.03 .103 -2.49 .064

.3 .440 -4.02 .102 -2.49 .063

.4 .456 -4.01 .102 -2.48 .063

.5 .449 -4.05 .103 -2.51 .064

Histograms of posteriors of α in favour of logistic model where a0 = .1, .2, .3, .4, .5
for (a) Pima dataset, (b) Data from logistic model, (c) Data from probit model
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Survival analysis

Testing hypothesis that data comes from a
1 log-Normal(φ, κ2),
2 Weibull(α, λ), or
3 log-Logistic(γ, δ)

distribution

Corresponding mixture given by the density

α1 exp{−(log x − φ)2/2κ2}/
√
2πxκ+

α2
α

λ
exp{−(x/λ)α}((x/λ)α−1+

α3(δ/γ)(x/γ)δ−1/(1 + (x/γ)δ)2

where α1 + α2 + α3 = 1
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Reparameterisation

Looking for common parameter(s) :

φ = µ+ γβ = ξ

σ2 = π2β2/6 = ζ2π2/3

where γ ≈ 0.5772 is Euler-Mascheroni constant.

Allows for a noninformative prior on the common location scale
parameter,

π(φ, σ2) = 1/σ2
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Recovery
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Boxplots of the posterior distributions of the Normal weight α1 under the two
scenarii : truth = Normal (left panel), truth = Gumbel (right panel), a0=0.01, 0.1,
1.0, 10.0 (from left to right in each panel) and n = 10, 000 simulated observations.
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Asymptotic consistency

Posterior consistency holds for mixture testing procedure [under minor
conditions]

Two different cases
the two models, M1 and M2, are well separated
model M1 is a submodel of M2.
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I. Posterior concentration rate : fθ,α = αf1,θ1 + (1− α)f2,θ2

Let π be the prior and xn = (x1, · · · , xn) a sample with true density f ∗

proposition
Assume that, for all c > 0, there exist Θn ⊂ Θ1 ×Θ2 and B > 0 such that

π [Θc
n] ≤ n−c , Θn ⊂ {‖θ1‖+ ‖θ2‖ ≤ nB}

and that there exist H ≥ 0 and L, δ > 0 such that, for j = 1, 2,

sup
θ,θ′∈Θn

‖fj,θj − fj,θ′j
‖1 ≤ LnH‖θj − θ′j‖, θ = (θ1, θ2), θ

′
= (θ

′
1, θ
′
2) ,

∀‖θj − θ∗j ‖ ≤ δ; KL(fj,θj , fj,θ∗j ) . ‖θj − θ∗j ‖ .

Then, when f ∗ = fθ∗,α∗ , with α∗ ∈ [0, 1], there exists M > 0 such that

π
h
(α, θ); ‖fθ,α − f ∗‖1 > M

p
log n/n|xn

i
= op(1) .
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II. Recovery of the parameters : Separated models –
fθ,α = αf1,θ1 + (1− α)f2,θ2

Assumption : Models are separated, i.e. identifiability holds :

∀α, α′ ∈ (0, 1), ∀θj , θ
′
j , j = 1, 2 fθ,α = f

θ
′
,α
′ ⇒ α = α

′
, θ = θ

′

Further
inf

θ1∈Θ1
inf

θ2∈Θ2
‖f1,θ1 − f2,θ2‖1 > 0

and, for θ∗j ∈ Θj , if Pθj weakly converges to Pθ∗j , then

θj −→ θ∗j

in the Euclidean topology
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∀α, α′ ∈ (0, 1), ∀θj , θ
′
j , j = 1, 2 fθ,α = f

θ
′
,α
′ ⇒ α = α

′
, θ = θ

′

theorem
Under above assumptions, then for all ε > 0,

π [|α− α∗| > ε|xn] = op(1)
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II. Recovery of the parameters : Separated models –
fθ,α = αf1,θ1 + (1− α)f2,θ2

Assumption : Models are separated, i.e. identifiability holds :

∀α, α′ ∈ (0, 1), ∀θj , θ
′
j , j = 1, 2 fθ,α = f

θ
′
,α
′ ⇒ α = α

′
, θ = θ

′

theorem
If

θj → fj,θj is C 2 around θ∗j , j = 1, 2,
f1,θ∗1 − f2,θ∗2 ,∇f1,θ∗1 ,∇f2,θ∗2 are linearly independent in y and
there exists δ > 0 such that

∇f1,θ∗1 , ∇f2,θ∗2 , sup
|θ1−θ∗1 |<δ

|D2f1,θ1 |, sup
|θ2−θ∗2 |<δ

|D2f2,θ2 | ∈ L1

then
π
h
|α− α∗| > M

p
log n/n

˛̨
xn
i

= op(1).
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II. Recovery of the parameters : Separated models –
fθ,α = αf1,θ1 + (1− α)f2,θ2

Assumption : Models are separated, i.e. identifiability holds :

∀α, α′ ∈ (0, 1), ∀θj , θ
′
j , j = 1, 2 fθ,α = f

θ
′
,α
′ ⇒ α = α

′
, θ = θ

′

theorem allows for interpretation of α under the posterior : If data xn is
generated from model M1 then posterior on α concentrates around
α = 1
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Embedded case

Here M1 is a submodel of M2, i.e.

θ2 = (θ1, ψ) and θ2 = (θ1, ψ0 = 0)

corresponds to f2,θ2 ∈M1
Same posterior concentration rate√

log n/n

for estimating α when α∗ ∈ (0, 1) and ψ∗ 6= 0.
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Null case

Case where ψ∗ = 0, i.e., f ∗ is in model M1

Two possible paths to approximate f ∗ : either α goes to 1 (path 1)
or ψ goes to 0 (path 2)
New identifiability condition : Pθ,α = P∗ only if

α = 1, θ1 = θ∗1 , θ2 = (θ∗1 , ψ) or α ≤ 1, θ1 = θ∗1 , θ2 = (θ∗1 , 0)

Prior
π(α, θ) = πα(α)π1(θ1)πψ(ψ), θ2 = (θ1, ψ)

with common (prior on) θ1
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Assumptions

• [B1] Regularity : Assume that θ1 → f1,θ1 and θ2 → f2,θ2 are 3 times
continuously differentiable and that

F ∗
(
sup|θ1−θ∗1 |<δ |D

r f1,θ∗1 |
s

f s
1,θ∗1

)
< +∞, r ≤ 3

• [B2] Integrability :
∃S0 ⊂ S ∩ {|ψ| > δ0 > 0} s.t. Leb(S0) > 0, and s.t. ∀ψ ∈ S0,

F ∗
(
sup|θ1−θ∗1 |<δ f2,θ1,ψ

f 4
1,θ∗1

)
< +∞, F ∗

(
sup|θ1−θ∗1 |<δ f

3
2,θ1,ψ

f 3
1,θ1∗

)
< +∞,
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Assumptions

• [B1] Regularity : Assume that θ1 → f1,θ1 and θ2 → f2,θ2 are 3 times
continuously differentiable and that

F ∗
(
sup|θ1−θ∗1 |<δ |D

r f1,θ∗1 |
s

f s
1,θ∗1

)
< +∞, r ≤ 3

• [B2] Integrability :
∃S0 ⊂ S ∩ {|ψ| > δ0 > 0} s.t. Leb(S0) > 0, and s.t. ∀ψ ∈ S0,

F ∗
(
sup|θ1−θ∗1 |<δ f2,θ1,ψ

f 4
1,θ∗1

)
< +∞, F ∗

(
sup|θ1−θ∗1 |<δ f

3
2,θ1,ψ

f 3
1,θ1∗

)
< +∞,

[B3] Stronger identifiability : Set

∇f2,θ∗1 ,ψ∗(x) =
(
∇θ1 f2,θ∗1 ,ψ∗(x)T,∇ψf2,θ∗1 ,ψ∗(x)T)T .

Then for all ψ ∈ S with ψ 6= 0, if η0 ∈ R, η1 ∈ Rd1

η0(f1,θ∗1 − f2,θ∗1 ,ψ) + ηT
1∇θ1 f1,θ∗1 = 0 ⇔ η1 = 0, η2 = 0
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Consistency

theorem
In the model : fθ1,ψ,α = αf1,θ1 + (1− α)f2,θ1,ψ and

xn = (x1, · · · , xn)
i.i.d∼ f1,θ∗1 , If B1− B3 hold , then

π
h
(α, θ); ‖fθ,α − f ∗‖1 > M

p
log n/n|xn

i
= op(1).

If α ∼ B(a1, a2), with a2 < d2, and if the prior dens. πθ1,ψ is C o and
> 0 at (θ∗1 , 0), then Mn −→∞

π
ˆ
α < 1−Mn(log n)γ/

√
n|xn˜ = op(1), γ = max((d1 + a2)/(d2 − a2), 1)/2,
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M-open case

When the true model behind the data is neither of the tested models,
what happens ?

issue mostly bypassed by classical Bayesian procedures
theoretically produces an α∗ away from both 0 and 1
possible (recommended ?) inclusion of a Bayesian non-parametric
model within alternatives
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Towards which decision ?

And if we have to make a decision ?

soft consider behaviour of posterior under prior predictives
or posterior predictive [e.g., prior predictive does not exist]
boostrapping behaviour
comparison with Bayesian non-parametric solution

hard rethink the loss function
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Thank You
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