Non asymptotic detection of two component mixtures

B. Laurent ${ }^{1}$, C. Marteau ${ }^{2}$ and Cathy Maugis-Rabusseau ${ }^{1}$.

Colloque ANR MixStatSeq - Toulouse 2016

1. INSA de Toulouse - IMT
2. Université Lyon I - Institut Camille Jordan

Outline

(1) Introduction
(2) The multidimensional case
(3) Unknown mean under H_{0}

The dense regime
The sparse regime
(4) Numerical simulation
(5) Conclusion

Outline

(1) Introduction
(2) The multidimensional case
(3) Unknown mean under H_{0}

The dense regime The sparse regime
(4) Numerical simulation
(5) Conclusion

The mixture model

We have at our disposal a sample $\mathcal{S}=\left(X_{1}, \ldots, X_{n}\right)$ of i.i.d. random variables $\left(X_{i} \in \mathbb{R}^{d}\right)$, having a common density f. In an unsupervised classification context, f can be considered of the form

$$
f=\sum_{j=1}^{K} \pi_{j} \phi\left(.-\mu_{j}\right)
$$

where ϕ is a known density, $\pi_{j} \in[0,1], \mu_{j} \in \mathbb{R}^{d}$ and K are unknown parameters.

The mixture model

We have at our disposal a sample $\mathcal{S}=\left(X_{1}, \ldots, X_{n}\right)$ of i.i.d. random variables $\left(X_{i} \in \mathbb{R}^{d}\right)$, having a common density f.
In an unsupervised classification context, f can be considered of the form

$$
f=\sum_{j=1}^{K} \pi_{j} \phi\left(.-\mu_{j}\right)
$$

where ϕ is a known density, $\pi_{j} \in[0,1], \mu_{j} \in \mathbb{R}^{d}$ and K are unknown parameters.
Classical statistical issues

- estimation of the sequences $\left(\pi_{j}\right)$ and $\left(\mu_{j}\right)_{j}$ (EM algorithms),
- estimation of the component number K (model selection task).

A testing point of view

In this talk, we want to assess the component number K. Our aim is to test

$$
H_{0}: f \in \mathcal{F}_{0}=\left\{x \in \mathbb{R} \mapsto \phi(x-\mu) ; \mu \in \mathbb{R}^{d}\right\}
$$

A testing point of view

In this talk, we want to assess the component number K. Our aim is to test

$$
H_{0}: f \in \mathcal{F}_{0}=\left\{x \in \mathbb{R} \mapsto \phi(x-\mu) ; \mu \in \mathbb{R}^{d}\right\}
$$

against

$$
\begin{aligned}
H_{1}: f \in \mathcal{F}_{1}=\{x \in \mathbb{R} & \mapsto(1-\varepsilon) \phi\left(x-\mu_{1}\right)+\varepsilon \phi\left(x-\mu_{2}\right) ; \\
& \varepsilon \in] 0,1\left[\text { and } \mu_{1}, \mu_{2} \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

A testing point of view

In this talk, we want to assess the component number K. Our aim is to test

$$
H_{0}: f \in \mathcal{F}_{0}=\left\{x \in \mathbb{R} \mapsto \phi(x-\mu) ; \mu \in \mathbb{R}^{d}\right\}
$$

against

$$
\begin{aligned}
H_{1}: f \in \mathcal{F}_{1}=\{x \in \mathbb{R} & \mapsto(1-\varepsilon) \phi\left(x-\mu_{1}\right)+\varepsilon \phi\left(x-\mu_{2}\right) ; \\
& \varepsilon \in] 0,1\left[\text { and } \mu_{1}, \mu_{2} \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

In particular, we want to

- construct a test,
- control the first kind error by a fixed level α,
- find condition on $\left(\epsilon, \mu_{1}, \mu_{2}\right)$ for which the two hypotheses can be separated with a prescribed error.

A testing point of view

This question has already been addressed in the literature

- Test based on the likelihood ratio,
- Seminal contribution by Y. Ingster.
- The Higher-Criticism proposed by Donoho and Jin (2004).

In all these contributions, it is assumed that $\mu=\mu_{1}=0$ is a known parameter and $d=1$.

We want to adopt a non-asymptotic point of view.
In this talk, we will focus on the Gaussian case ($\phi=\phi_{G}$, the density of a standard Gaussian random variable).

References

[1]J-M. Azais, E. Gassiat and C. Mercadier. The likelihood-ratio test for general mixture models with or without structural parameters, ESAIM Probab. Stat., 13, (2009) 301-327.
[2] T. Cai, X. Jeng and J. Jin. Optimal detection of heterogeneous and heteroscedastic mixture, J.R. Stat. Soc. Ser. B, 73, (2011) 629-662.
[3] D. Donoho and J. Jin. Higher Criticism for detecting sparse heterogeneous mixtures, Annals of Statistics, 32, (2004) 962-994.
[4] M. Fromont et B. Laurent. Adaptive goodness-of-fit tests in a density model. The Annals of Statistics, 34 (2006), No 2. p.1-45.
[5] B. Garel. Recent asymptotic results in testing for mixtures, Comput. Statist.
Data. Anal., 51 (2007) 5295-5304.
[6] Y. Ingster. Minimax detection of a signal for I^{n}-balls, Mathematical Methods of Statistics, 7 (1999), 401-428.

Outline

(1) Introduction

(2) The multidimensional case
(3) Unknown mean under H_{0}

The dense regime The sparse regime
(4) Numerical simulation
(5) Conclusion

Statistical setting

Given $X_{1}, \ldots, X_{n} \sim f$, our aim is to test

$$
H_{0}: f \in \mathcal{F}_{0}=\left\{x \in \mathbb{R}^{d} \mapsto \phi(x) ; \mu \in \mathbb{R}^{d}\right\}
$$

Statistical setting

Given $X_{1}, \ldots, X_{n} \sim f$, our aim is to test

$$
H_{0}: f \in \mathcal{F}_{0}=\left\{x \in \mathbb{R}^{d} \mapsto \phi(x) ; \mu \in \mathbb{R}^{d}\right\}
$$

against

$$
\begin{aligned}
& H_{1}: f \in \mathcal{F}_{1}=\left\{x \in \mathbb{R}^{d}\right. \mapsto(1-\varepsilon) \phi(x)+\varepsilon \phi(x-\mu) ; \\
&\varepsilon \in] 0,1\left[\text { and } \mu \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

Statistical setting

Given $X_{1}, \ldots, X_{n} \sim f$, our aim is to test

$$
H_{0}: f \in \mathcal{F}_{0}=\left\{x \in \mathbb{R}^{d} \mapsto \phi(x) ; \mu \in \mathbb{R}^{d}\right\}
$$

against

$$
\begin{aligned}
& H_{1}: f \in \mathcal{F}_{1}=\left\{x \in \mathbb{R}^{d}\right. \mapsto(1-\varepsilon) \phi(x)+\varepsilon \phi(x-\mu) ; \\
&\varepsilon \in] 0,1\left[\text { and } \mu \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

In particular, the mean under H_{0} is supposed to be known (and is the same in the first component of H_{1}).

A lower bound

Lemme

Let $\mathcal{F} \subset \mathcal{F}_{1}$ a subset of alternatives, and π a probability measure on \mathcal{F}. Then

$$
\inf _{\psi_{\alpha} \sup _{f \in \mathcal{F}}} \mathbb{P}_{f}\left(\psi_{\alpha}=0\right) \geq 1-\alpha-\frac{1}{2}\left(\mathbb{E}_{H_{0}}\left[L_{\pi}^{2}(\mathbf{X})\right]-1\right)^{1 / 2},
$$

where $L_{\pi}^{2}(\mathbf{X})$ the likelihood ratio $d \mathbb{P}_{\pi} / d \mathbb{P}_{0}$ and the infimum is taken over all α-level tests.

A lower bound

Lemme

Let $\mathcal{F} \subset \mathcal{F}_{1}$ a subset of alternatives, and π a probability measure on \mathcal{F}. Then

$$
\inf _{\psi_{\alpha}} \sup _{f \in \mathcal{F}} \mathbb{P}_{f}\left(\psi_{\alpha}=0\right) \geq 1-\alpha-\frac{1}{2}\left(\mathbb{E}_{H_{0}}\left[L_{\pi}^{2}(\mathbf{X})\right]-1\right)^{1 / 2}
$$

where $L_{\pi}^{2}(\mathrm{X})$ the likelihood ratio $d \mathbb{P}_{\pi} / d \mathbb{P}_{0}$ and the infimum is taken over all α-level tests.

In particular, for some appropriate constant $C(\alpha, \beta)$,

$$
\mathbb{E}_{H_{0}}\left[L_{\pi}^{2}(\mathbf{X})\right] \leq C(\alpha, \beta) \Rightarrow \inf _{\psi_{\alpha}} \sup _{f \in \mathcal{F}} \mathbb{P}_{f}\left(\psi_{\alpha}=0\right) \geq \beta
$$

See, e.g., Ingster (1995) or Baraud (2002) for more details.

A lower bound

In our setting, we can construct a measure π such that

$$
\mathbb{E}_{H_{0}} L_{\pi}^{2}(\mathbf{X}) \leq \mathbb{E}\left(1+\epsilon^{2}\left(\exp \left[\frac{\|\mu\|^{2}}{d} \sum_{j=1}^{d} Z_{j}\right]-1\right)\right)^{n}
$$

where the Z_{j} denote i.i.d. Rademacher random variables (with param. 1/2).

A lower bound

In our setting, we can construct a measure π such that

$$
\mathbb{E}_{H_{0}} L_{\pi}^{2}(\mathbf{X}) \leq \mathbb{E}\left(1+\epsilon^{2}\left(\exp \left[\frac{\|\mu\|^{2}}{d} \sum_{j=1}^{d} Z_{j}\right]-1\right)\right)^{n}
$$

where the Z_{j} denote i.i.d. Rademacher random variables (with param. 1/2).

In particular

- If $\epsilon \gg 1 / \sqrt{n},\|\mu\|$ is allowed to tends to 0 with n.

A lower bound

In our setting, we can construct a measure π such that

$$
\mathbb{E}_{H_{0}} L_{\pi}^{2}(\mathbf{X}) \leq \mathbb{E}\left(1+\epsilon^{2}\left(\exp \left[\frac{\|\mu\|^{2}}{d} \sum_{j=1}^{d} Z_{j}\right]-1\right)\right)^{n}
$$

where the Z_{j} denote i.i.d. Rademacher random variables (with param. 1/2).

In particular

- If $\epsilon \gg 1 / \sqrt{n},\|\mu\|$ is allowed to tends to 0 with n.
- If $\epsilon \ll 1 / \sqrt{n}$, we can only deal with the case where $\|\mu\| \rightarrow+\infty$ with n.

A lower bound

Proposition

Let $\alpha, \beta \in] 0,1[$ be fixed. Then,

$$
\inf _{\Psi_{\alpha}} \sup _{f \in \mathcal{F}_{1}, \epsilon\|\mu\| \geq \rho} \mathbb{P}_{f}\left(\Psi_{\alpha}=0\right) \geq \beta,
$$

for all

$$
\rho<\rho^{\dagger}:=c_{\alpha, \beta} \frac{d^{1 / 4}}{\sqrt{n}} .
$$

In some sense, testing is impossible if $\epsilon\|\mu\| \leq c_{\alpha, \beta} d^{1 / 4} n^{-1 / 2}$. We recover the asymptotic bound obtained by Cai et al. (2011) for $d=1$.

Question : Is this bound optimal in dimension d ?

A testing procedure

The sample \mathbf{X} is splited in two different parts $A=\left(A_{1}, \ldots, A_{n / 2}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n / 2}\right)$ (we assume w.l.o.g. n is even and write $n / 2=n$ in the sequel). Set

$$
Z_{i}=\left\langle Y_{i}, \frac{\bar{A}_{n}}{\left\|A_{n}\right\|}\right\rangle:=\left\langle Y_{i}, v_{n}\right\rangle \quad \forall i \in\{1, \ldots, n\}
$$

Conditionally to A,

- the Z_{i} are i.i.d. standard Gaussian random variables under H_{0}.
- $Z_{j} \sim(1-\epsilon) \mathcal{N}(0,1)+\epsilon \mathcal{N}\left(\left\langle\mu, v_{n}\right\rangle, 1\right)$ under H_{1}.

Provided v_{n} is a 'good' approximation of μ, we retrieve the classical uni-dimensional setting investigated in e.g. Cai et al. (2011).

In the following define $Z_{(1)} \leq \cdots \leq Z_{(n)}$ the ordered sample.

A test based on the ordered statistics

Our test statistics is defined as

$$
\Psi_{\alpha}:=\sup _{k \in \mathcal{K}_{n}}\left\{1_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}
$$

A test based on the ordered statistics

Assume that $n \geq 2$ and consider the subset \mathcal{K}_{n} of $\{1,2, \ldots, n / 2\}$ defined as

$$
\mathcal{K}_{n}=\left\{2^{j}, 0 \leq j \leq\left[\log _{2}(n / 2)\right]\right\} .
$$

Our test statistics is defined as

$$
\Psi_{\alpha}:=\sup _{k \in \mathcal{K}_{n}}\left\{1_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}
$$

A test based on the ordered statistics

Assume that $n \geq 2$ and consider the subset \mathcal{K}_{n} of $\{1,2, \ldots, n / 2\}$ defined as

$$
\mathcal{K}_{n}=\left\{2^{j}, 0 \leq j \leq\left[\log _{2}(n / 2)\right]\right\} .
$$

Our test statistics is defined as

$$
\Psi_{\alpha}:=\sup _{k \in \mathcal{K}_{n}}\left\{1_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\},
$$

where, for all $u \in] 0,1\left[, q_{u, k}\right.$ is the $(1-u)$-quantile of $Z_{(n-k+1)}$ under the null hypothesis and

$$
\alpha_{n}=\sup \{u \in] 0,1\left[, \mathbb{P}_{H_{0}}\left(\exists k \in \mathcal{K}_{n}, Z_{(n-k+1)}>q_{u, k}\right) \leq \alpha\right\}
$$

A test based on the ordered statistics

Assume that $n \geq 2$ and consider the subset \mathcal{K}_{n} of $\{1,2, \ldots, n / 2\}$ defined as

$$
\mathcal{K}_{n}=\left\{2^{j}, 0 \leq j \leq\left[\log _{2}(n / 2)\right]\right\} .
$$

Our test statistics is defined as

$$
\Psi_{\alpha}:=\sup _{k \in \mathcal{K}_{n}}\left\{1_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\},
$$

where, for all $u \in] 0,1\left[, q_{u, k}\right.$ is the $(1-u)$-quantile of $Z_{(n-k+1)}$ under the null hypothesis and

$$
\alpha_{n}=\sup \{u \in] 0,1\left[, \mathbb{P}_{H_{0}}\left(\exists k \in \mathcal{K}_{n}, Z_{(n-k+1)}>q_{u, k}\right) \leq \alpha\right\}
$$

The terms $q_{\alpha_{n}, k}$ and α_{n} can be approximated (via Monte-Carlo simulations for instance) under the assumption that the X_{i} 's have common density ϕ.

Control of the power

The test Ψ_{α} is in fact an aggregated testing procedure. In particular

Control of the power

The test Ψ_{α} is in fact an aggregated testing procedure. In particular

$$
\mathbb{P}_{H_{1}}\left(\Psi_{\alpha}=0\right)=\mathbb{P}_{H_{1}}\left(\sup _{k \in \mathcal{K}_{n}}\left\{1_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}=0\right),
$$

Control of the power

The test Ψ_{α} is in fact an aggregated testing procedure. In particular

$$
\begin{aligned}
\mathbb{P}_{H_{1}}\left(\Psi_{\alpha}=0\right) & =\mathbb{P}_{H_{1}}\left(\sup _{k \in \mathcal{K}_{n}}\left\{1_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}=0\right), \\
& =\mathbb{P}_{H_{1}}\left(\bigcap_{k \in \mathcal{K}_{n}}\left\{1_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}=0\right),
\end{aligned}
$$

Control of the power

The test Ψ_{α} is in fact an aggregated testing procedure. In particular

$$
\begin{aligned}
\mathbb{P}_{H_{1}}\left(\Psi_{\alpha}=0\right) & =\mathbb{P}_{H_{1}}\left(\sup _{k \in \mathcal{K}_{n}}\left\{\mathbf{1}_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}=0\right) \\
& =\mathbb{P}_{H_{1}}\left(\bigcap_{k \in \mathcal{K}_{n}}\left\{\mathbf{1}_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}=0\right) \\
& \leq \inf _{k \in \mathcal{K}_{n}} \mathbb{P}_{H_{1}}\left(\left\{\mathbf{1}_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}=0\right)
\end{aligned}
$$

Control of the power

The test Ψ_{α} is in fact an aggregated testing procedure. In particular

$$
\begin{aligned}
\mathbb{P}_{H_{1}}\left(\Psi_{\alpha}=0\right) & =\mathbb{P}_{H_{1}}\left(\sup _{k \in \mathcal{K}_{n}}\left\{1_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}=0\right) \\
& =\mathbb{P}_{H_{1}}\left(\bigcap_{k \in \mathcal{K}_{n}}\left\{1_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}=0\right) \\
& \leq \inf _{k \in \mathcal{K}_{n}} \mathbb{P}_{H_{1}}\left(\left\{1_{Z_{(n-k+1)}>q_{\alpha_{n}, k}}\right\}=0\right)
\end{aligned}
$$

In some sense, we can 'play' with the spacing k and adapt to the possible values of $\|\mu\|$ (see below).

Control of the power

Proposition

Let $\alpha, \beta \in] 0,1\left[\right.$ be fixed. Then, the testing procedure Ψ_{α} introduced above is of level α. Moreover, there exists a positive constant $C_{\alpha, \beta}$

$$
\sup _{f \in \mathcal{F}_{1}, \epsilon\|\mu\| \geq \rho} \mathbb{P}_{f}\left(\Psi_{\alpha}=0\right) \leq \beta
$$

for all $\rho \in \mathbb{R}^{+}$such that

$$
\rho \geq \rho^{\star}:=C_{\alpha, \beta} \frac{d^{1 / 4}}{\sqrt{n}} \sqrt{\ln \ln (n)} .
$$

We recover the lower bound obtained above up to a logarithmic term.

Outline

(1) Introduction

(2) The multidimensional case
(3) Unknown mean under H_{0}

The dense regime The sparse regime
(4) Numerical simulation
(5) Conclusion

Statistical setting

Given $X_{1}, \ldots, X_{n} \sim f$, our aim is to test ($d=1$)

$$
H_{0}: f \in \mathcal{F}_{0}=\{x \in \mathbb{R} \mapsto \phi(x-\mu) ; \mu \in \mathbb{R}\} .
$$

Statistical setting

Given $X_{1}, \ldots, X_{n} \sim f$, our aim is to test $(d=1)$

$$
H_{0}: f \in \mathcal{F}_{0}=\{x \in \mathbb{R} \mapsto \phi(x-\mu) ; \mu \in \mathbb{R}\} .
$$

against

$$
\begin{gathered}
H_{1}: f \in \mathcal{F}_{1}=\left\{x \in \mathbb{R}^{d} \mapsto(1-\varepsilon) \phi\left(x-\mu_{1}\right)+\varepsilon \phi\left(x-\mu_{2}\right) ;\right. \\
\varepsilon \in] 0,1\left[\text { and } \mu_{1}, \mu_{2} \in \mathbb{R}\right\} .
\end{gathered}
$$

Statistical setting

Given $X_{1}, \ldots, X_{n} \sim f$, our aim is to test $(d=1)$

$$
H_{0}: f \in \mathcal{F}_{0}=\{x \in \mathbb{R} \mapsto \phi(x-\mu) ; \mu \in \mathbb{R}\} .
$$

against

$$
\begin{gathered}
H_{1}: f \in \mathcal{F}_{1}=\left\{x \in \mathbb{R}^{d} \mapsto(1-\varepsilon) \phi\left(x-\mu_{1}\right)+\varepsilon \phi\left(x-\mu_{2}\right) ;\right. \\
\varepsilon \in] 0,1\left[\text { and } \mu_{1}, \mu_{2} \in \mathbb{R}\right\} .
\end{gathered}
$$

The parameters $\epsilon, \mu, \mu_{1}, \mu_{2}$ are unknown.

A test based on the ordered statistics

The order statistics are denoted by $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$. In particular, remark that

A test based on the ordered statistics

The order statistics are denoted by $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$. In particular, remark that

- the spacing of these order statistics are free with respect to the mean under H_{0}. For some $k<I \in\{1, \ldots, n\}$, the mean value affects the spatial position of a given $X_{(k)}$, but not $X_{(I)}-X_{(k)}$.

A test based on the ordered statistics

The order statistics are denoted by $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$. In particular, remark that

- the spacing of these order statistics are free with respect to the mean under H_{0}. For some $k<I \in\{1, \ldots, n\}$, the mean value affects the spatial position of a given $X_{(k)}$, but not $X_{(I)}-X_{(k)}$.
- the distribution of the variables $X_{(I)}-X_{(k)}$ is known under H_{0}.

A test based on the ordered statistics

The order statistics are denoted by $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$. In particular, remark that

- the spacing of these order statistics are free with respect to the mean under H_{0}. For some $k<I \in\{1, \ldots, n\}$, the mean value affects the spatial position of a given $X_{(k)}$, but not $X_{(I)}-X_{(k)}$.
- the distribution of the variables $X_{(I)}-X_{(k)}$ is known under H_{0}.
- it has a different behavior under H_{1}, provided k and I are well-chosen.

A test based on the ordered statistics

The order statistics are denoted by $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$. In particular, remark that

- the spacing of these order statistics are free with respect to the mean under H_{0}. For some $k<I \in\{1, \ldots, n\}$, the mean value affects the spatial position of a given $X_{(k)}$, but not $X_{(I)}-X_{(k)}$.
- the distribution of the variables $X_{(I)}-X_{(k)}$ is known under H_{0}.
- it has a different behavior under H_{1}, provided k and I are well-chosen.
Our testing procedure is based on theses properties.

A test based on the ordered statistics

Our test statistics is defined as

$$
\Psi_{\alpha}:=\sup _{k \in \mathcal{K}_{n}}\left\{\mathbf{1}_{X_{(n-k+1)}-X_{(k)}>q_{\alpha_{n}, k}}\right\}
$$

A test based on the ordered statistics

Assume that $n \geq 2$ and consider the subset \mathcal{K}_{n} of $\{1,2, \ldots, n / 2\}$ defined as

$$
\mathcal{K}_{n}=\left\{2^{j}, 0 \leq j \leq\left[\log _{2}(n / 2)\right]\right\} .
$$

Our test statistics is defined as

$$
\Psi_{\alpha}:=\sup _{k \in \mathcal{K}_{n}}\left\{\mathbf{1}_{X_{(n-k+1)}-X_{(k)}>q_{\alpha_{n}, k}}\right\}
$$

A test based on the ordered statistics

Assume that $n \geq 2$ and consider the subset \mathcal{K}_{n} of $\{1,2, \ldots, n / 2\}$ defined as

$$
\mathcal{K}_{n}=\left\{2^{j}, 0 \leq j \leq\left[\log _{2}(n / 2)\right]\right\} .
$$

Our test statistics is defined as

$$
\Psi_{\alpha}:=\sup _{k \in \mathcal{K}_{n}}\left\{\mathbf{1}_{X_{(n-k+1)}-X_{(k)}>q_{\alpha_{n}, k}}\right\}
$$

where, for all $u \in] 0,1\left[, q_{u, k}\right.$ is the $(1-u)$-quantile of $X_{(n-k+1)}-X_{(k)}$ under the null hypothesis and
$\alpha_{n}=\sup \{u \in] 0,1\left[, \mathbb{P}_{H_{0}}\left(\exists k \in \mathcal{K}_{n}, X_{(n-k+1)}-X_{(k)}>q_{u, k}\right) \leq \alpha\right\}$.

A test based on the ordered statistics

Assume that $n \geq 2$ and consider the subset \mathcal{K}_{n} of $\{1,2, \ldots, n / 2\}$ defined as

$$
\mathcal{K}_{n}=\left\{2^{j}, 0 \leq j \leq\left[\log _{2}(n / 2)\right]\right\} .
$$

Our test statistics is defined as

$$
\Psi_{\alpha}:=\sup _{k \in \mathcal{K}_{n}}\left\{\mathbf{1}_{X_{(n-k+1)}-X_{(k)}>q_{\alpha_{n}, k}}\right\}
$$

where, for all $u \in] 0,1\left[, q_{u, k}\right.$ is the $(1-u)$-quantile of $X_{(n-k+1)}-X_{(k)}$ under the null hypothesis and
$\alpha_{n}=\sup \{u \in] 0,1\left[, \mathbb{P}_{H_{0}}\left(\exists k \in \mathcal{K}_{n}, X_{(n-k+1)}-X_{(k)}>q_{u, k}\right) \leq \alpha\right\}$.
The terms $q_{\alpha_{n}, k}$ and α_{n} can be approximated (via Monte-Carlo simulations for instance) under the assumption that the X_{i} 's have common density ϕ.

Outline

In the following, we will concentrate our attention on two different schemes :

- The dense regime : the term $\left|\mu_{1}-\mu_{2}\right|$ is supposed to be bounded under H_{1}. In some sense, it will be impossible to detect mixtures where $\epsilon<1 / \sqrt{n}$.
- The sparse regime : the term $\left|\mu_{2}-\mu_{1}\right|$ is allow to grow as $\epsilon \rightarrow 0$ (asymptotic setting)... which allows to consider smaller values for ϵ.

Main aim : Find optimal separation conditions on these parameters.

Outline

(1) Introduction

(2) The multidimensional case
(3) Unknown mean under H_{0}

The dense regime The sparse regime
(4) Numerical simulation
(5) Conclusion

Guideline

We suppose in this section that $\mu_{2}>\mu_{1}$ and

$$
\mu_{2}-\mu_{1} \leq M
$$

for some constant M. We will

- establish a lower bound (in the Gaussian case),
- propose a consider upper bound associated to a variance-based test,
- prove that our procedure is optimal (up to a log term).

Lower bound

Lemme

Let $\alpha, \beta \in] 0,1\left[\right.$ be fixed and assume that $\left|\mu_{2}-\mu_{1}\right| \leq M$ for some constant $M>0$. Then, there exists $C=C(\alpha, \beta, M)>0$ such that

$$
\inf _{\psi_{\alpha}} \sup _{\epsilon\left(\mu_{2}-\mu_{1}\right)^{2}>C / \sqrt{n}} P_{f}\left(\psi_{\alpha}=0\right) \geq \beta .
$$

Lower bound

Lemme

Let $\alpha, \beta \in] 0,1\left[\right.$ be fixed and assume that $\left|\mu_{2}-\mu_{1}\right| \leq M$ for some constant $M>0$. Then, there exists $C=C(\alpha, \beta, M)>0$ such that

$$
\inf _{\psi_{\alpha} \in\left(\mu_{2}-\mu_{1}\right)^{2}>C / \sqrt{n}} \sup _{f}\left(\psi_{\alpha}=0\right) \geq \beta .
$$

Some remarks

- testing is impossible if $\epsilon\left(\mu_{2}-\mu_{1}\right)^{2}$ is smaller than C / \sqrt{n}.
- different result in the case where the mean μ under H_{0} is available.

Upper bound (heuristic)

Under H_{1}, the X_{i} can be writen as

$$
X_{i}=\left(\mu_{2}-\mu_{1}\right) V_{i}+\eta_{i}, \forall i \in\{1 \ldots n\}
$$

where $V_{i} \sim \operatorname{Ber}(\epsilon)$ and η_{i} has density $\phi\left(.-\mu_{1}\right)$.

Upper bound (heuristic)

Under H_{1}, the X_{i} can be writen as

$$
X_{i}=\left(\mu_{2}-\mu_{1}\right) V_{i}+\eta_{i}, \forall i \in\{1 \ldots n\}
$$

where $V_{i} \sim \operatorname{Ber}(\epsilon)$ and η_{i} has density $\phi\left(.-\mu_{1}\right)$. In particular

$$
\operatorname{Var}\left(X_{i}\right)=\operatorname{Var}\left(\eta_{i}\right)+\epsilon(1-\epsilon)\left(\mu_{2}-\mu_{1}\right)^{2}
$$

Upper bound (heuristic)

Under H_{1}, the X_{i} can be writen as

$$
X_{i}=\left(\mu_{2}-\mu_{1}\right) V_{i}+\eta_{i}, \forall i \in\{1 \ldots n\}
$$

where $V_{i} \sim \operatorname{Ber}(\epsilon)$ and η_{i} has density $\phi\left(.-\mu_{1}\right)$. In particular

$$
\operatorname{Var}\left(X_{i}\right)=\operatorname{Var}\left(\eta_{i}\right)+\epsilon(1-\epsilon)\left(\mu_{2}-\mu_{1}\right)^{2}
$$

Let $\sigma^{2}=\operatorname{Var}\left(\eta_{i}\right)$ and $\Psi_{V, \alpha}$ the test defined as

$$
\Psi_{V, \alpha}=\mathbf{1}_{\left\{S_{n}^{2}>\sigma^{2}+c_{\alpha} / \sqrt{n}\right\}},
$$

where c_{α} is s.t. $\mathbb{P}_{H_{0}}\left(S_{n}^{2}-\sigma^{2}>c_{\alpha} / \sqrt{n}\right) \leq \alpha$.
This test reaches the lower bound presented above (up to a constant).

Upper bound for our procedure

Proposition

There exists $C_{\alpha, \beta}$ s.t.

$$
\sup _{\epsilon\left(\mu_{2}-\mu_{1}\right)^{2}>C_{\alpha, \beta} \sqrt{\log \log n} / \sqrt{n}} P_{f}\left(\Psi_{\alpha}=0\right) \leq \beta .
$$

Remarks

- The proof is based on a control of the deviation of the ordered statistics and associated quantiles.
- The logarithmic loss is due to the adaptation step.
- This results holds for all symmetric and derivable density ϕ.

The asymptotic setting

$$
\varepsilon \underset{n \rightarrow+\infty}{\sim} n^{-\delta} \text { and } \mu_{2}-\mu_{1} \underset{n \rightarrow+\infty}{\sim} n^{-r}
$$

avec $0<\delta \leq \frac{1}{2}$ et $0<r<\frac{1}{2}$.

Proposition

The detection boundary in the dense regime is $r^{*}(\delta)=\frac{1}{4}-\frac{\delta}{2}$

- the detection is possible when $r<r^{*}(\delta)=\frac{1}{4}-\frac{\delta}{2}$ (for n large enough, the power of our test is greater than $1-\beta$)
- the detection is impossible if $r>r^{*}(\delta)$.

The asymptotic setting

$$
\varepsilon \underset{n \rightarrow+\infty}{\sim} n^{-\delta} \text { and } \mu_{2}-\mu_{1} \underset{n \rightarrow+\infty}{\sim} n^{-r}
$$

avec $0<\delta \leq \frac{1}{2}$ et $0<r<\frac{1}{2}$.

Proposition

The detection boundary in the dense regime is $r^{*}(\delta)=\frac{1}{4}-\frac{\delta}{2}$

- the detection is possible when $r<r^{*}(\delta)=\frac{1}{4}-\frac{\delta}{2}$ (for n large enough, the power of our test is greater than $1-\beta$)
- the detection is impossible if $r>r^{*}(\delta)$.

Proof.

$$
\epsilon\left(\mu_{2}-\mu_{1}\right)^{2}>\frac{C}{\sqrt{n}} \Leftrightarrow \frac{1}{n^{\delta}} \frac{1}{n^{2 r}} \gtrsim \frac{1}{\sqrt{n}} .
$$

Outline

(1) Introduction

(2) The multidimensional case
(3) Unknown mean under H_{0}

The dense regime
The sparse regime
(4) Numerical simulation
(5) Conclusion

Sparse mixtures : asymptotic setting

In this section, we consider mixtures for which

$$
\epsilon \ll \frac{1}{\sqrt{n}} \text { quand } n \rightarrow+\infty
$$

Proposition (Reminder)

Let $\alpha, \beta \in] 0,1\left[\right.$ be fixed and assume that $\mu_{2}-\mu_{1} \leq M$ for some given constant $M>0$. Then there exists $C=C(\alpha, \beta, M)>0$ such that

$$
\inf _{\psi_{\alpha}} \sup _{\epsilon\left(\mu_{2}-\mu_{1}\right)^{2}>C / \sqrt{n}} P_{f}\left(\psi_{\alpha}=0\right) \geq \beta .
$$

According to this result, it is 'necessary to consider situations for which

$$
\left|\mu_{1}-\mu_{2}\right| \rightarrow+\infty \text { as } n \rightarrow+\infty .
$$

Gaussian asymptotic setting

Assume that

$$
\phi(x)=\phi_{G}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \forall x \in \mathbb{R} .
$$

In the literature, the sparse asymptotic regime is expressed as

$$
\varepsilon \underset{n \rightarrow+\infty}{\sim} n^{-\delta} \text { and } \mu_{2}-\mu_{1} \underset{n \rightarrow+\infty}{\sim} \sqrt{2 r \log (n)}
$$

where $\frac{1}{2}<\delta<1$ and $0<r<1$.

The sparse case

Proposition

Assume that $r>r^{*}(\delta)$ with

$$
r^{*}(\delta)=\left\{\begin{array}{ll}
\delta-\frac{1}{2} & \text { if } \frac{1}{2}<\delta<\frac{3}{4} \\
(1-\sqrt{1-\delta})^{2} & \text { if } \frac{3}{4} \leq \delta<1
\end{array} .\right.
$$

Then, setting $f()=.(1-\varepsilon) \phi_{G}\left(.-\mu_{1}\right)+\varepsilon \phi_{G}\left(.-\mu_{2}\right)$, we have, for n large enough,

$$
\mathbb{P}_{f}\left(\Psi_{\alpha}=0\right) \leq \beta .
$$

In such a case, the separation 'conditions' are the same when the mean μ under H_{0} is known (see e.g. Donoho and Jin (2004) for a description of this rate)

The 'adaptive' scheme appears to be necessary in this context.

Outline

(1) Introduction

(2) The multidimensional case
(3) Unknown mean under H_{0}

The dense regime The sparse regime
(4) Numerical simulation
(5) Conclusion

Numerical study

Our testing procedure is compared to

- the Kolmogorov-Smirnov test.

Numerical study

Our testing procedure is compared to

- the Kolmogorov-Smirnov test.
- the Higher Criticism Let $\hat{p}_{i}=\mathbb{P}\left(Z-\bar{X}>X_{i}\right)$ where $Z \sim \mathcal{N}(0,1)$ for all $i \in\{1, \ldots, n\}$ and $\hat{p}_{(1)} \leq \hat{p}_{(2)} \leq \ldots \leq \hat{p}_{(n)}$.

Numerical study

Our testing procedure is compared to

- the Kolmogorov-Smirnov test.
- the Higher Criticism Let $\hat{p}_{i}=\mathbb{P}\left(Z-\bar{X}>X_{i}\right)$ where $Z \sim \mathcal{N}(0,1)$ for all $i \in\{1, \ldots, n\}$ and $\hat{p}_{(1)} \leq \hat{p}_{(2)} \leq \ldots \leq \hat{p}_{(n)}$. This test is based on the statistic

$$
\widehat{H C}=\max _{1 \leq i \leq n} \frac{\sqrt{n}\left(\frac{i}{n}-\hat{p}_{(i)}\right)}{\sqrt{\hat{p}_{(i)}\left(1-\hat{p}_{(i)}\right)}} .
$$

Numerical study

Our testing procedure is compared to

- the Kolmogorov-Smirnov test.
- the Higher Criticism Let $\hat{p}_{i}=\mathbb{P}\left(Z-\bar{X}>X_{i}\right)$ where $Z \sim \mathcal{N}(0,1)$ for all $i \in\{1, \ldots, n\}$ and $\hat{p}_{(1)} \leq \hat{p}_{(2)} \leq \ldots \leq \hat{p}_{(n)}$. This test is based on the statistic

$$
\widehat{H C}=\max _{1 \leq i \leq n} \frac{\sqrt{n}\left(\frac{i}{n}-\hat{p}_{(i)}\right)}{\sqrt{\hat{p}_{(i)}\left(1-\hat{p}_{(i)}\right)}} .
$$

Then, define $\hat{\psi}_{H C, \alpha}=\mathbf{1}_{\widehat{H C}>\hat{q}_{H C, \alpha}}$ where $\hat{q}_{H C, \alpha}$ is the $(1-\alpha)$-quantile of $\widehat{H C}$ under H_{0}.

Numerical study

Our testing procedure is compared to

- the Kolmogorov-Smirnov test.
- the Higher Criticism Let $\hat{p}_{i}=\mathbb{P}\left(Z-\bar{X}>X_{i}\right)$ where $Z \sim \mathcal{N}(0,1)$ for all $i \in\{1, \ldots, n\}$ and
$\hat{p}_{(1)} \leq \hat{p}_{(2)} \leq \ldots \leq \hat{p}_{(n)}$. This test is based on the statistic

$$
\widehat{H C}=\max _{1 \leq i \leq n} \frac{\sqrt{n}\left(\frac{i}{n}-\hat{p}_{(i)}\right)}{\sqrt{\hat{p}_{(i)}\left(1-\hat{p}_{(i)}\right)}} .
$$

Then, define $\hat{\psi}_{H C, \alpha}=\mathbf{1}_{\widehat{H C}>\hat{q}_{H C, \alpha}}$ where $\hat{q}_{H C, \alpha}$ is the $(1-\alpha)$-quantile of $\widehat{H C}$ under H_{0}.

We used $N=100000$ Monte-Carlo replications of size $n=100$ for a Gaussian mixture with $\varepsilon \in\{0.05,0.15,0.25,0.35\}$ and $\mu \in[0,10]$.

Numerical study (Gaussian case)

Figure: Power function of the three considered testing procedures (continuous line for our test Ψ_{α}, dashed line for Higher Criticism and dotted line for the Kolmogorov-Smirnov test) according to μ, for $\varepsilon=0.05$ (top-left), 0.15 (top right), 0.25 (middle left) and 0.35 (middle right).

Numerical study (Laplace case)

Figure : Power function of the three considered testing procedures (continuous line for our test Ψ_{α}, dashed line for Higher Criticism and dotted line for the Kolmogorov-Smirnov test) according to μ, for $\varepsilon=0.05$ (top-left), 0.15 (top right), 0.25 (middle left) and 0.35 (middle right).

Conclusion

Possible extensions

- Complete the investigations for the general case $d \neq 1$ (sparse regime and unknown mean under the null).
- generalization to the cases where $K \geq 2$,
- take into account a possible heteroscedasticity,
B. Laurent, C. Marteau and C. Maugis-Rabusseau. Non-asymptotic detection of mixtures with unknown mean. Bernoulli, 22 (2016), pp. 242-274.
B. Laurent, C. Marteau and C. Maugis-Rabusseau. Multidimensional two component Gaussian mixtures detection. Arxiv :1509.09129

Non asymptotic detection of two component mixtures

B. Laurent ${ }^{3}$, C. Marteau ${ }^{4}$ and Cathy Maugis-Rabusseau ${ }^{1}$.

Colloque ANR MixStatSeq - Toulouse 2016
3. INSA de Toulouse - IMT
4. Université Lyon I - Institut Camille Jordan

