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The mixture model

We have at our disposal a sample S = (X1, . . . ,Xn) of i.i.d. random
variables (Xi ∈ Rd), having a common density f .
In an unsupervised classification context, f can be considered of the
form

f =
K∑
j=1

πjφ(.− µj),

where φ is a known density, πj ∈ [0, 1], µj ∈ Rd and K are
unknown parameters.

Classical statistical issues
• estimation of the sequences (πj) and (µj)j (EM algorithms),
• estimation of the component number K (model selection task).
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A testing point of view

In this talk, we want to assess the component number K . Our aim
is to test

H0 : f ∈ F0 =
{
x ∈ R 7→ φ(x − µ); µ ∈ Rd

}
.

against

H1 : f ∈ F1 = {x ∈ R 7→ (1− ε)φ(x − µ1) + εφ(x − µ2);

ε ∈]0, 1[ and µ1, µ2 ∈ Rd
}
.

In particular, we want to
• construct a test,
• control the first kind error by a fixed level α,
• find condition on (ε, µ1, µ2) for which the two hypotheses can
be separated with a prescribed error.
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A testing point of view

This question has already been addressed in the literature
• Test based on the likelihood ratio,
• Seminal contribution by Y. Ingster.
• The Higher-Criticism proposed by Donoho and Jin (2004).
• ...

In all these contributions, it is assumed that µ = µ1 = 0 is a known
parameter and d = 1.

We want to adopt a non-asymptotic point of view.

In this talk, we will focus on the Gaussian case (φ = φG , the
density of a standard Gaussian random variable).
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Statistical setting

Given X1, . . . ,Xn ∼ f , our aim is to test

H0 : f ∈ F0 =
{
x ∈ Rd 7→ φ(x); µ ∈ Rd

}
.

against

H1 : f ∈ F1 =
{
x ∈ Rd 7→ (1− ε)φ(x) + εφ(x − µ);

ε ∈]0, 1[ and µ ∈ Rd
}
.

In particular, the mean under H0 is supposed to be known (and is
the same in the first component of H1).
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A lower bound

Lemme
Let F ⊂ F1 a subset of alternatives, and π a probability measure
on F . Then

inf
ψα

sup
f ∈F

Pf (ψα = 0) ≥ 1− α− 1
2
(
EH0 [L2

π(X)]− 1
)1/2

,

where L2
π(X) the likelihood ratio dPπ/dP0 and the infimum is

taken over all α-level tests.

In particular, for some appropriate constant C (α, β),

EH0 [L2
π(X)] ≤ C (α, β)⇒ inf

ψα
sup
f ∈F

Pf (ψα = 0) ≥ β.

See, e.g., Ingster (1995) or Baraud (2002) for more details.
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A lower bound

In our setting, we can construct a measure π such that

EH0L
2
π(X) ≤ E

1 + ε2

exp

‖µ‖2
d

d∑
j=1

Zj

− 1

n

,

where the Zj denote i.i.d. Rademacher random variables (with
param. 1/2).

In particular
• If ε >> 1/

√
n, ‖µ‖ is allowed to tends to 0 with n.

• If ε << 1/
√
n, we can only deal with the case where

‖µ‖ → +∞ with n.
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A lower bound

Proposition
Let α, β ∈]0, 1[ be fixed. Then,

inf
Ψα

sup
f ∈F1, ε‖µ‖≥ρ

Pf (Ψα = 0) ≥ β,

for all

ρ < ρ† := cα,β
d1/4
√
n
.

In some sense, testing is impossible if ε‖µ‖ ≤ cα,βd
1/4n−1/2. We

recover the asymptotic bound obtained by Cai et al. (2011) for
d = 1.

Question : Is this bound optimal in dimension d ?



A testing procedure

The sample X is splited in two different parts A = (A1, . . . ,An/2)
and Y = (Y1, . . . ,Yn/2) (we assume w.l.o.g. n is even and write
n/2 = n in the sequel). Set

Zi =

〈
Yi ,

Ān

‖An‖

〉
:= 〈Yi , vn〉 ∀i ∈ {1, . . . , n}.

Conditionally to A,
• the Zi are i.i.d. standard Gaussian random variables under H0.
• Zj ∼ (1− ε)N (0, 1) + εN (〈µ, vn〉, 1) under H1.

Provided vn is a ’good’ approximation of µ, we retrieve the classical
uni-dimensional setting investigated in e.g. Cai et al. (2011).

In the following define Z(1) ≤ · · · ≤ Z(n) the ordered sample.



A test based on the ordered statistics

Assume that n ≥ 2 and consider the subset Kn of {1, 2, . . . , n/2}
defined as

Kn = {2j , 0 ≤ j ≤ [log2(n/2)]}.

Our test statistics is defined as

Ψα := sup
k∈Kn

{
1Z(n−k+1)>qαn,k

}
,

where, for all u ∈]0, 1[, qu,k is the (1− u)-quantile of Z(n−k+1)

under the null hypothesis and

αn = sup
{
u ∈]0, 1[,PH0

(
∃k ∈ Kn,X(n−k+1) > qu,k

)
≤ α

}
.

The terms qαn,k and αn can be approximated (via Monte-Carlo
simulations for instance) under the assumption that the Zi ’s have
common density φ.
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Control of the power

The test Ψα is in fact an aggregated testing procedure. In particular

PH1(Ψα = 0) = PH1

(
sup
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{
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}
= 0
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 ,

≤ inf
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,

In some sense, we can ’play’ with the spacing k and adapt to the
possible values of ‖µ‖ (see below).
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Control of the power

Proposition
Let α, β ∈]0, 1[ be fixed. Then, the testing procedure Ψα

introduced above is of level α. Moreover, there exists a positive
constant Cα,β

sup
f ∈F1, ε‖µ‖≥ρ

Pf (Ψα = 0) ≤ β,

for all ρ ∈ R+ such that

ρ ≥ ρ? := Cα,β
d1/4
√
n

√
ln ln(n).

We recover the lower bound obtained above up to a logarithmic
term.
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A test based on the ordered statistics

The order statistics are denoted by X(1) ≤ X(2) ≤ . . . ≤ X(n). In
particular, remark that

• the spacing of these order statistics are free with respect to the
mean under H0. For some k < l ∈ {1, . . . , n}, the mean value
affects the spatial position of a given X(k), but not X(l) −X(k).

• the distribution of the variables X(l) − X(k) is known under H0.
• it has a different behavior under H1, provided k and l are
well-chosen.

Our testing procedure is based on theses properties.



A test based on the ordered statistics

The order statistics are denoted by X(1) ≤ X(2) ≤ . . . ≤ X(n). In
particular, remark that
• the spacing of these order statistics are free with respect to the
mean under H0. For some k < l ∈ {1, . . . , n}, the mean value
affects the spatial position of a given X(k), but not X(l) −X(k).

• the distribution of the variables X(l) − X(k) is known under H0.
• it has a different behavior under H1, provided k and l are
well-chosen.

Our testing procedure is based on theses properties.



A test based on the ordered statistics

The order statistics are denoted by X(1) ≤ X(2) ≤ . . . ≤ X(n). In
particular, remark that
• the spacing of these order statistics are free with respect to the
mean under H0. For some k < l ∈ {1, . . . , n}, the mean value
affects the spatial position of a given X(k), but not X(l) −X(k).

• the distribution of the variables X(l) − X(k) is known under H0.

• it has a different behavior under H1, provided k and l are
well-chosen.

Our testing procedure is based on theses properties.



A test based on the ordered statistics

The order statistics are denoted by X(1) ≤ X(2) ≤ . . . ≤ X(n). In
particular, remark that
• the spacing of these order statistics are free with respect to the
mean under H0. For some k < l ∈ {1, . . . , n}, the mean value
affects the spatial position of a given X(k), but not X(l) −X(k).

• the distribution of the variables X(l) − X(k) is known under H0.
• it has a different behavior under H1, provided k and l are
well-chosen.

Our testing procedure is based on theses properties.



A test based on the ordered statistics

The order statistics are denoted by X(1) ≤ X(2) ≤ . . . ≤ X(n). In
particular, remark that
• the spacing of these order statistics are free with respect to the
mean under H0. For some k < l ∈ {1, . . . , n}, the mean value
affects the spatial position of a given X(k), but not X(l) −X(k).

• the distribution of the variables X(l) − X(k) is known under H0.
• it has a different behavior under H1, provided k and l are
well-chosen.

Our testing procedure is based on theses properties.



A test based on the ordered statistics

Assume that n ≥ 2 and consider the subset Kn of {1, 2, . . . , n/2}
defined as

Kn = {2j , 0 ≤ j ≤ [log2(n/2)]}.

Our test statistics is defined as

Ψα := sup
k∈Kn

{
1X(n−k+1)−X(k)>qαn,k

}
,

where, for all u ∈]0, 1[, qu,k is the (1− u)-quantile of
X(n−k+1) − X(k) under the null hypothesis and

αn = sup
{
u ∈]0, 1[,PH0

(
∃k ∈ Kn,X(n−k+1) − X(k) > qu,k

)
≤ α

}
.

The terms qαn,k and αn can be approximated (via Monte-Carlo
simulations for instance) under the assumption that the Xi ’s have
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Outline

In the following, we will concentrate our attention on two different
schemes :
• The dense regime : the term |µ1 − µ2|is supposed to be
bounded under H1. In some sense, it will be impossible to
detect mixtures where ε < 1/

√
n.

• The sparse regime : the term |µ2 − µ1| is allow to grow as
ε→ 0 (asymptotic setting)... which allows to consider smaller
values for ε.

Main aim : Find optimal separation conditions on these
parameters.
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Guideline

We suppose in this section that µ2 > µ1 and

µ2 − µ1 ≤ M,

for some constant M. We will
• establish a lower bound (in the Gaussian case),
• propose a consider upper bound associated to a variance-based
test,

• prove that our procedure is optimal (up to a log term).



Lower bound

Lemme
Let α, β ∈]0, 1[ be fixed and assume that |µ2 − µ1| ≤ M for some
constant M > 0. Then, there exists C = C (α, β,M) > 0 such that

inf
ψα

sup
ε(µ2−µ1)2>C/

√
n

Pf (ψα = 0) ≥ β.

Some remarks
• testing is impossible if ε(µ2 − µ1)2 is smaller than C/

√
n.

• different result in the case where the mean µ under H0 is
available.
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• testing is impossible if ε(µ2 − µ1)2 is smaller than C/

√
n.

• different result in the case where the mean µ under H0 is
available.



Upper bound (heuristic)

Under H1, the Xi can be writen as

Xi = (µ2 − µ1)Vi + ηi , ∀i ∈ {1 . . . n},

where Vi ∼ Ber(ε) and ηi has density φ(.− µ1).

In particular

Var(Xi ) = Var(ηi ) + ε(1− ε)(µ2 − µ1)2.

Let σ2 = Var(ηi ) and ΨV ,α the test defined as

ΨV ,α = 1{S2
n>σ

2+cα/
√
n},

where cα is s.t. PH0(S2
n − σ2 > cα/

√
n) ≤ α.

This test reaches the lower bound presented above (up to a
constant).
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Upper bound for our procedure

Proposition
There exists Cα,β s.t.

sup
ε(µ2−µ1)2>Cα,β

√
log log n/

√
n

Pf (Ψα = 0) ≤ β.

Remarks
• The proof is based on a control of the deviation of the ordered
statistics and associated quantiles.

• The logarithmic loss is due to the adaptation step.
• This results holds for all symmetric and derivable density φ.



The asymptotic setting

ε ∼
n→+∞

n−δ and µ2 − µ1 ∼
n→+∞

n−r

avec 0 < δ ≤ 1
2 et 0 < r < 1

2 .

Proposition

The detection boundary in the dense regime is r∗(δ) = 1
4 −

δ
2

• the detection is possible when r < r∗(δ) = 1
4 −

δ
2

(for n large enough, the power of our test is greater than
1− β)

• the detection is impossible if r > r∗(δ).

Proof.

ε(µ2 − µ1)2 >
C√
n
⇔ 1

nδ
1
n2r &

1√
n
.

2
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Sparse mixtures : asymptotic setting
In this section, we consider mixtures for which

ε <<
1√
n

quand n→ +∞.

Proposition (Reminder)
Let α, β ∈]0, 1[ be fixed and assume that µ2 − µ1 ≤ M for some
given constant M > 0. Then there exists C = C (α, β,M) > 0 such
that

inf
ψα

sup
ε(µ2−µ1)2>C/

√
n

Pf (ψα = 0) ≥ β.

According to this result, it is ’necessary to consider situations for
which

|µ1 − µ2| → +∞ as n→ +∞.



Gaussian asymptotic setting

Assume that

φ(x) = φG (x) =
1√
2π

e−x
2/2 ∀x ∈ R.

In the literature, the sparse asymptotic regime is expressed as

ε ∼
n→+∞

n−δ and µ2 − µ1 ∼
n→+∞

√
2r log(n)

where 1
2 < δ < 1 and 0 < r < 1.



The sparse case

Proposition
Assume that r > r∗(δ) with

r∗(δ) =


δ − 1

2 if 1
2 < δ < 3

4

(1−
√
1− δ)2 if 3

4 ≤ δ < 1
.

Then, setting f (.) = (1− ε)φG (.− µ1) + εφG (.− µ2), we have, for
n large enough,

Pf (Ψα = 0) ≤ β.

In such a case, the separation ’conditions’ are the same when the
mean µ under H0 is known (see e.g. Donoho and Jin (2004) for a
description of this rate)

The ’adaptive’ scheme appears to be necessary in this context.
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Numerical study

Our testing procedure is compared to
• the Kolmogorov-Smirnov test.

• the Higher Criticism Let p̂i = P(Z − X̄ > Xi ) where
Z ∼ N (0, 1) for all i ∈ {1, . . . , n} and
p̂(1) ≤ p̂(2) ≤ . . . ≤ p̂(n).This test is based on the statistic

ĤC = max
1≤i≤n

√
n
(
i
n − p̂(i)

)√
p̂(i)(1− p̂(i))

.

Then, define ψ̂HC ,α = 1
ĤC>q̂HC ,α

where q̂HC ,α is the

(1− α)-quantile of ĤC under H0.

We used N = 100000 Monte-Carlo replications of size n = 100 for a
Gaussian mixture with ε ∈ {0.05, 0.15, 0.25, 0.35} and µ ∈ [0, 10]. .
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Numerical study (Gaussian case)

Figure : Power function of the three considered testing procedures (continuous
line for our test Ψα, dashed line for Higher Criticism and dotted line for the
Kolmogorov-Smirnov test) according to µ, for ε = 0.05 (top-left), 0.15 (top
right), 0.25 (middle left) and 0.35 (middle right).



Numerical study (Laplace case)

Figure : Power function of the three considered testing procedures (continuous
line for our test Ψα, dashed line for Higher Criticism and dotted line for the
Kolmogorov-Smirnov test) according to µ, for ε = 0.05 (top-left), 0.15 (top
right), 0.25 (middle left) and 0.35 (middle right).



Conclusion

Possible extensions
• Complete the investigations for the general case d 6= 1 (sparse
regime and unknown mean under the null).

• generalization to the cases where K ≥ 2,
• take into account a possible heteroscedasticity,

B. Laurent, C. Marteau and C. Maugis-Rabusseau. Non-asymptotic detection
of mixtures with unknown mean. Bernoulli, 22 (2016), pp. 242-274.

B. Laurent, C. Marteau and C. Maugis-Rabusseau. Multidimensional two
component Gaussian mixtures detection. Arxiv :1509.09129
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