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Abstract. In the continuous time framework, a new definition is proposed for the

Metropolis algorithm (X̃t)t≥0 associated to an a priori given exploratory Markov
process (Xt)t≥0 and to a tarjet probability distribution π. It should be the mini-

mizer for the relative entropy of the trajectorial law of (X̃t)t∈[0,T ] with respect to
the law of (Xt)t∈[0,T ], when both processes start with π as initial law and when

π is assumed to be reversible for (X̃t)t≥0. This definition doesn’t depend on the
time horizon T > 0 and the corresponding minimizing process is not difficult to
describe. Even if this procedure can be made general, the details were only worked
out in situation of finite jump processes and of compact manifold-valued diffusion
processes (a sketch is also given for Markov processes admitting both a diffusive
part and a jump part). The proofs rely on an alternative approach to general Gir-
sanov transformations in the spirit of Kunita. The case of ϕ-relative entropies is
also investigated, in particular to make a link with a previous work of Billera and
Diaconis on the traditional Metropolis algorithm in the discrete time setting.

1. Introduction

The Metropolis algorithm is a very popular Monte Carlo procedure to sample
approximatively according to a given law π (cf. for instance Metropolis et al., 1953,
Hammersley and Handscomb, 1965, Fishman, 1996 or Liu, 2008). In discrete time
and finite state space, it starts with a Markov kernel K and transform it into a
kernel Kπ which is reversible with respect to π. Under mild assumptions, Kπ is
ergodic so that π can be approached by simulating a Markov chain whose transitions
are didacted by Kπ. Billera and Diaconis (2001) took a geometrical point of view
on the construction of Kπ by introducing a distance d on the set of Markov kernels
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and by showing that Kπ is a minimizer for the distance from K to the set of Markov
kernels which are reversible with respect to π. The goal of this paper is extend this
point of view to continuous time, in particular via new entropy-type discrepancies
among generators.

We begin by recalling more precisely the main result of Billera and Diaconis
(2001). Let S be a finite set and denote by K the set of S × S Markov matrices.
We assume that we are given π a positive probability measure on S and K ∈ K.
The associated Metropolis kernel Kπ is defined by

∀ x, y ∈ S, Kπ(x, y) :=

{
min

{
K(x, y), π(y)

π(x)K(y, x)
}

, if x 6= y,

1 −∑z∈S\{x}Kπ(x, z) , if x = y.

Consider the distance d on K defined by

∀ K,K ′ ∈ K, d(K ′,K) :=
∑

x∈S

π(x)
∑

y∈S\{x}

|K ′(x, y) −K(x, y)|

and K(π) the subset of K consisting of Markov matrices M which are reversible
with respect to π, namely satisfying

∀ x, y ∈ S, π(x)M(x, y) = π(y)M(y, x).

Let us also denote K(π,K) the subset of K(π) consisting of Markov matrices M
whose off-diagonal entries are less or equal than those of K.
Billera and Diaconis (2001) proved the following result:

Theorem 1.1. With respect to d, the Metropolis kernel Kπ minimizes the distance
from K to K(π) and it is the unique minimizer of the distance from K to K(π,K).

The arguments of Billera and Diaconis (2001) enable to extend immediately this
result to the corresponding continuous time setting. Let L be the set of (Markov)
generators on S, i.e the S × S matrices whose off-diagonal entries are nonnegative
and such that the sums along the lines are zero. Let π be fixed as above and L ∈ L
be given. Define the distance d on L by the same formula as before and similarly
consider L(π) (respectively L(π, L)) the subset of L consisting of generators which
are reversible with respect to π (resp. and whose off-diagonal entries are dominated
by those of L). Finally the associated Metropolis generator Lπ is defined by

∀ x, y ∈ S, Lπ(x, y) :=

{
min

{
L(x, y), π(y)

π(x)L(y, x)
}

, if x 6= y,

−∑z∈S\{x} Lπ(x, z) , if x = y.
(1.1)

Then we have

Proposition 1.2. With respect to d, the Metropolis generator Lπ minimizes the
distance from L to L(π) and it is the unique minimizer of the distance from L to
L(π, L).

But this result is not satisfying, because it does not admit an obvious extension
to more general generators, for instance to diffusion generators, whereas there is
often an analogue to the Metropolis construction in such a setting. For example
in the Euclidean space R

d, let π be a probability measure with a smooth and
positive density (still denoted π) with respect to the Lebesgue measure and consider
the generator L := △/2 of the Brownian motion. Then it is well-known that
the corresponding Metropolis generator should be the Langevin operator Lπ· :=
(△·+ 〈∇ ln(π),∇·〉)/2. One of our objectives is to propose a geometric justification
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of the latter kind of assertion, in the same spirit as Proposition 1.2, by providing
abstract definitions of Metropolis type algorithms associated to a given probability
measure and to a given Markov process. This will lead us to replace the distance
d by other discrepancy quantities. To keep the development of this subject to a
reasonable size and to avoid technicalities, we postpone the treatment of general
Markov processes to a future work. Here we will only consider finite state space
jump processes and regular diffusions taking values in a compact manifold, but we
will adopt a general formalism each time it is possible without too much digression.
Nevertheless, for the remaining part of this introduction, we will keep working in the
finite state space setting and the analogous results concerning compact Riemannian
diffusions will be presented in Section 4.

As above Proposition 1.2, L stands for an a priori given generator and we denote
by M another generic generator. For any probability measure µ on S, we consider
(X(µ)(t))t≥0 (respectively (Y (µ)(t))t≥0) a Markov process on S whose initial dis-
tribution is µ and whose generator is L (resp. M). Without real loss of generality,
their trajectories are assumed to be càdlàg, namely admitting left limits and be-
ing right continuous and for any T ∈ R+, we denote by L(X(µ)([0, T ])) the law of
X(µ)([0, T ]) := (X(µ)(t))t∈[0,T ] on the set of càdlàg trajectories from [0, T ] to S.
Recall that the relative entropy of two probability measures µ and ν given on the
same probability space is defined by

Ent(µ|ν) :=

{ ∫
dµ
dν ln

(
dµ
dν

)
dν ≤ +∞ , if µ≪ ν,

+∞ otherwise.

where dµ/dν stands for the Radon-Nikodym derivative of µ with respect to ν. This
notion is convenient to introduce naturally a new discrepancy (by this term we
mean a R+ ⊔ {+∞}-valued quantity measuring in some sense if two probability
distributions are close, but without satisfying the axioms of a distance) on L. As
above, π is a given positive probability measure on S, π is said to be invariant for
the generator M if we have

∀ y ∈ S,
∑

x∈S

π(x)M(x, y) = 0.

Proposition 1.3. If π is invariant for M , for any T ≥ 0, we have

Ent(L(Y (π)([0, T ]))|L(X(π)([0, T ]))) = T d̃(M,L) ≤ +∞,

where d̃ is the discrepancy defined by

∀ M,M ′ ∈ L,

d̃(M ′,M) :=
∑

x∈S

π(x)
∑

y∈S\{x}

M ′(x, y) ln

(
M ′(x, y)

M(x, y)

)
−M ′(x, y) +M(x, y)

To get a better justification of the introduction of the discrepancy d̃, we are
lacking a “computational complexity” interpretation of the relative entropy of two
probability measures µ and ν, something saying heuristically that “Ent(µ|ν) is a
measurement of the difficulty (or maybe of the necessary quantity of additional
randomness) to simulate according to µ when we know how to simulate from ν”.
Sanov’s theorem (see for instance the book of Dembo and Zeitouni, 1998) goes in
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this direction, we would like a more simulation oriented result. The above propo-
sition may still seems disturbing, since we are using chains starting from the dis-

tribution π we want to approximate! But the discrepancy d̃ should be seen as an
asymptotic object: we will show that if π is furthermore assumed to be attractive
for M , then we have for any initial distribution µ,

lim
T→+∞

Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ])))/T = d̃(M,L). (1.2)

We can use the discrepancy d̃ to define another Metropolis type generator:

Theorem 1.4. The mapping L(π) ∋M 7→ d̃(M,L) admits a unique minimizer L̃π
which is given by

∀ x, y ∈ S, L̃π(x, y) :=

{ √
π(y)
π(x)

√
L(x, y)L(y, x) , if x 6= y

−∑z∈S\{x} L̃π(x, z) , if x = y

In particular, we don’t find the usual Metropolis generator Lπ as in Proposi-
tion 1.2. To make a link between them, we need to consider more general projection
procedures.

Let ϕ : R+ → R+ be a convex function satisfying ϕ(1) = 0, ϕ′(1) = 0 (so ϕ is
assumed to admits a derivative at 1) and whose growth is at most of polynomial
order. We define the corresponding ϕ-relative entropy of two probability measures
µ and ν given on the same probability space, by

Entϕ(µ|ν) :=

{ ∫
ϕ
(
dµ
dν

)
dν , if µ ≪ ν,

+∞ otherwise.

(the previous relative entropy corresponds to the function ϕ :R+ ∋ r 7→ r ln(r)−r+1).
Contrary to the usual relative entropy case, when π is invariant with respect to M ,
the quantity Entϕ(L(Y (π)([0, T ]))|L(X(π)([0, T ]))) is no longer linear with respect
to the time T ∈ R+, but we can define a discrepancy dϕ in the following way:

Proposition 1.5. Without any assumption on M , we have

lim
T→0+

Entϕ(L(Y (π)([0, T ]))|L(X(π)([0, T ])))/T = dϕ(M,L),

where the discrepancy dϕ is given by

∀ M,M ′ ∈ L,

dϕ(M ′,M) :=

{ ∑
x∈S π(x)

∑
y∈S\{x}M(x, y)ϕ

(
M ′(x,y)
M(x,y)

)
, if M ′ ≪M ,

+∞ otherwise.

where M ′ ≪M means that

∀ x, y ∈ S, M(x, y) = 0 =⇒ M ′(x, y) = 0.

If furthermore we assume that ϕ is strictly convex then the mapping

L(π) ∋M 7→ dϕ(M,L)

admits a unique minimizer Lϕ,π.
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To recover the usual Metropolis generator Lπ defined in (1.1), we consider
for ǫ ∈ (0, 1/2], the convex function ϕǫ satisfying ϕǫ(x) = (x − 1)2 for any x ∈
[1 − ǫ, 1 + ǫ], ϕ′

ǫ = −1 on [0, 1− ǫ) and ϕ′
ǫ = 1 + ǫ on (1 + ǫ,+∞) (this is a kind of

Huber loss function). Despite the fact that ϕǫ is not strictly convex, the mapping
L(π) ∋M 7→ dϕǫ

(M,L) admits nevertheless a unique minimizer Lϕǫ,π and we have

lim
ǫ→0+

Lϕǫ,π = Lπ. (1.3)

The advantage of this approach is that it can be extended to more general situations
than the finite state space case. For instance in the Euclidean diffusion setting, we
will see that the discrepancies dϕǫ

do not depend on ǫ ∈ (0, 1/2] and are also equal to

2d̃ (this quantity will be symmetrical in this situation, but not a distance, because
it can still take the value +∞). This provides a natural definition for d in this
framework and “projecting” accordingly, we will recover the notion of Metropolis
algorithm mentioned previously in the Brownian motion case.

The paper has the following plan. The above assertions about relative entropy
and their generalizations to ϕ-relative entropies will be developed respectively in
Sections 2 and 3. In Section 4 we will extend these considerations to the compact
Riemannian diffusion situation. Finally in two appendices, we will respectively
present the analogue of Girsanov formula in the finite state space setting, which
enables to compute Radon-Nikodym densities on trajectory spaces, and the usual
Girsanov formula in the compact Riemannian diffusion framework.

2. Entropy minimization

This section contains all the considerations concerning relative entropy men-
tioned in the introduction. In particular we prove Proposition 1.3 and Theorem 1.4.

In order to deal with Proposition 1.3 and (1.2) by the same computation, we
first consider an arbitrary initial condition µ on S. From now on, we adopt the
notations and conventions made in Appendix 1, in particular, (X(µ)(t))t≥0 (respec-

tively (Y (µ)(t))t≥0) is a Markov process on S whose initial distribution is µ and

whose generator is L (resp. M). For t ≥ 0, we denote by µt the law of Y (µ)(t).
We also introduce the extended function F (F does not necessary belong to F(S),
because it can take +∞ as value) defined by

∀ x ∈ S, F (x) :=
∑

y∈S\{x}

M(x, y) ln

(
M(x, y)

L(x, y)

)
−M(x, y) + L(x, y)

(in particular, F (x) = +∞ is equivalent to the fact that there exist y 6= x such that
L(x, y) = 0 and M(x, y) > 0).
These notations enable to compute the relative entropy of interest:

Lemma 2.1. For any T ≥ 0, we have

Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ]))) =

∫ T

0

µt[F ] dt.
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Proof : Assume first that M ≪ L. Then according to Theorem 4.6, the Radon-
Nikodym density of L(Y (µ)([0, T ])) with respect to L(X(µ)([0, T ])) is given by

dL(Y (µ)([0, T ]))

dL(X(µ)([0, T ]))
(X([0, T ])) =

exp


 ∑

(x,y)∈S(2)

ln(A(x, y))N
(x,y)
T +

∫ T

0

H(X(s)) ds




(recall that (X(t))t≥0 is a generical trajectory of D), with

∀ x ∈ S, H(x) := M(x, x) − L(x, x),

∀ (x, y) ∈ S(2), A(x, y) :=
M(x, y)

L(x, y)
.

Thus the entropy Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ]))) is equal to the expectation

with respect to L(Y (µ)([0, T ])) of
∑

(x,y)∈S(2) ln(A(x, y))N
(x,y)
T +

∫ T
0
H(X(s)) ds

(with the convention that this expectation is +∞ if the latter expression is not
integrable). Taking into account that for any (x, y) ∈ S(2),

(N
(x,y)
t −

∫ t

0

M(x, y)1x(X(s)) ds)t∈[0,T ]

is a martingale under L(Y (µ)([0, T ])), which is (L(Y (µ)([0, T ]))-a.s. identically null
if A(x, y) = 0, we can write

Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ])))

= E


 ∑

(x,y)∈S(2)

∫ T

0

M(x, y) ln(A(x, y))1x(Y (µ)(t)) dt +

∫ T

0

H(Y (µ)(t)) dt




= E

[∫ T

0

F (Y (µ)(t)) dt

]

=

∫ T

0

E

[
F (Y (µ)(t))

]
dt

=

∫ T

0

µt[F ] dt,

so we get the announced equality.

We now come to the general case. Let S̃µ be the set of points attainable by Y (µ)

(defined before Lemma 4.4, with L̃ replaced by M). According to Remark 4.11,
the above arguments are still valid if we have

∀ x ∈ S̃µ, ∀ y ∈ S, L(x, y) = 0 =⇒ M(x, y) = 0.

But if the latter condition is not satisfied, then on one hand for T > 0,
L(Y (µ)([0, T ])) is not absolutely continuous with respect to L(X(µ)([0, T ])) and
thus Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ]))) = +∞. On the other hand, there exists

x ∈ S̃µ such that F (x) = +∞. But from the probabilistic description of Y (µ),

it appears that for any t > 0, µt gives positive weight to any point of S̃µ and in
particular µt[F ] = +∞. It follows that in this situation the equality of the above
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lemma is also true for T > 0, since both terms are equal to +∞. For T = 0, the
equality holds because both terms are clearly null. �

Proposition 1.3 follows immediately: if µ is invariant for M we have µt = µ for
all t ≥ 0, so for any T ≥ 0,

Ent(L(Y (µ)([0, T ]))|L(X(µ)([0, T ]))) = Tµ[F ]

and one would have noticed that π[F ] = d̃(M,L).
Concerning (1.2), the assumption that π is attractive for M means that for any
initial condition µ, we have

lim
t→+∞

µt = π.

Thus Cesaro’s lemma enables to conclude to (1.2), at least if F is a true function.
But if F takes the value +∞ at some point of S, the hypothesis that π is positive on

S implies that d̃(M,L) = +∞. On the other hand the attractive assumption of π
with respect to M is well-known to be equivalent to the fact that M is irreducible.

This implies that for any initial distribution µ, S̃µ = S and by consequence, for

any T > 0, the law L(Y (µ)([0, T ])) cannot be absolutely continuous with respect
to L(X(µ)([0, T ])) (see Remark 4.11). It follows that the l.h.s. of (1.2) is also
equal to +∞.

One advantage of the discrepancy d̃ over the distance d introduced by Billera and
Diaconis (2001) is that we don’t need an extra condition to define the projection

on L(π) with respect to d̃, as it will be clear in the

Proof of Theorem 1.4: Put an arbitrary total ordering on S, whose strict inequality
is denoted ≺. The fact that M ∈ L(π) is equivalent to the fact that

∀ x ≺ y, M(y, x) =
π(x)

π(y)
M(x, y)

and in particular M is determined by the free choice of the quantities M(x, y) ≥ 0
for x ≺ y. This leads us to write

d̃(M,L)

=
∑

x≺y

π(x)M(x, y) ln

(
M(x, y)

L(x, y)

)
− π(x)M(x, y) + π(x)L(x, y)

+π(y)M(y, x) ln

(
M(y, x)

L(y, x)

)
− π(y)M(y, x) + π(y)L(y, x)

=
∑

x≺y

π(x)M(x, y) ln

(
π(x)M(x, y)

π(x)L(x, y)

)
− 2π(x)M(x, y) + π(x)L(x, y)

+π(x)M(x, y) ln

(
π(x)M(x, y)

π(y)L(y, x)

)
+ π(y)L(y, x)

=
∑

x≺y

π(x)M(x, y) ln

(
(π(x)M(x, y))2

π(x)L(x, y)π(y)L(y, x)

)

−2π(x)M(x, y) + π(x)L(x, y) + π(y)L(y, x).

It appears that if we want to find a minimizer M ∈ L(π) of d̃(M,L), we can
minimize each summand of the above sum separately.
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So let x ≺ y be fixed and denote

α := π(x)M(x, y),

β := π(x)L(x, y),

β′ := π(y)L(y, x).

We are led to minimize as a function of α ≥ 0 the expression

2(α ln(α) − α) − α ln(ββ′) + β + β′.

By differentiating this strictly convex function, we see that the unique minimizer
is α∗ :=

√
ββ′.

The announced results follow at once. �

Due to the fact that

∀ a, b ∈ R+, min(a, b) ≤
√
ab,

we get that

∀ x 6= y, Lπ(x, y) ≤ L̃π(x, y)

and it follows that the Markov process associated to L̃π goes faster to equilibrium
than that associated to Lπ, if we measure this property by the spectral gap or by the
logarithmic Sobolev constant (see for instance the lectures given by Saloff-Coste,
1997). Nevertheless the speed of convergence should not be the unique criterion

for choosing a Metropolis algorithm (otherwise one would just multiply L̃π by a
big constant) as the numbers of operations by unit time should also be taken into
account. Furthermore, the initial generator L should also play a role, maybe in the
spirit of the discussion below Proposition 1.3.

Remark 2.2. When L ∈ L admits an invariant probability measure µ which is

positive, the construction of L̃π can be seen as a two steps procedure:

- First we symmetrize L into L̃ defined by

∀ x 6= y ∈ S, L̃(x, y) :=
√
L(x, y)L∗(x, y),

where L∗ corresponds to the dual generator of L in L
2(µ):

∀ x 6= y ∈ S, L∗(x, y) :=
µ(y)

µ(x)
L(y, x)

- Next we “reweight” L̃ into L̃π using f = dπ/dµ the Radon-Nikodym derivative of
π with respect to µ:

∀ x 6= y ∈ S, L̃π(x, y) :=

√
f(y)

f(x)
L̃(x, y).

3. Other Metropolis type projections

In order to better understand the difference between Lπ and L̃π, we generalize
here the projection procedure of the previous section.

We work in the finite state space setting as above: for any probability measure
µ on S, we consider (X(µ)(t))t≥0 a Markov process on S whose initial distribution
is µ and whose generator is L and we will denote by Pµ the probability measure on

the underlying probability space Ω (only the image of Pµ by (X(µ)(t))t≥0 will be



Continuous time Metropolis algorithms 207

important, so we could restrict ourselves to the canonical situation where Ω = D

and Pµ is the solution of the martingale problem associated to µ and L). For any

(x, y) ∈ S(2) and t ≥ 0, N
(x,y)
t :=

∑
s∈(0,t] 1{X(µ)(s−)=x,X(µ)(s)=y} is the number of

jumps from x to y in the time interval (0, t] and

∀ t ≥ 0, Nt :=
∑

(x,y)∈S(2)

N
(x,y)
t

is the total number of jumps before time t. From the probabilistic description
of (X(µ)(t))t≥0, it appears that the process (Nt)t≥0 is stochastically dominated
by (N̄t)t≥0, a Poisson process of parameter l := maxx∈S |L(x, x)|. The following
preliminary result is well-known.

Lemma 3.1. For any t ≥ 0 and (x, y) ∈ S(2), consider the events

Ωt,x,x := {Nt = 0},
Ωt,x,y := {N (x,y)

t = Nt = 1},
Ω̃t,x := Ω \ ⊔y∈SΩt,x,y.

Then we have

lim
t→0+

1 − Px[Ωt,x,x]

t
= −L(x, x),

lim
t→0+

Px[Ωt,x,y]

t
= L(x, y),

lim
t→0+

Px[Ω̃t,x]

t2
< +∞.

Proof : Let (x, y) ∈ S(2) be given, using the martingale problem for the indicator
function of y, we get that

lim
t→0+

Px[X
(x)(t) = y]

t
= L(x, y).

But for any t ≥ 0, we have

{X(x)(t) = y} \ Ωt,x,y ⊂ {Nt ≥ 2}.
Taking into account the stochastic domination of (Nt)t≥0 by (N̄t)t≥0, it appears

that Px[{X(x)(t) = y} \ Ωt,x,y] is at most of order t2 for small t > 0. The second
convergence announced in the lemma follows. The first one is obtained in the same
way, since we also have

lim
t→0+

1 − Px[X
(x)(t) = x]

t
= −L(x, x)

The last assertion of the lemma is due to the fact that Ω̃t,x is included into {Nt ≥ 2}.
�

For the next result, let ϕ : R+ → R be a locally bounded function vanishing
at 1 and whose growth is at most of polynomial order at +∞. Let also be given
a family (a(x, y))(x,y)∈S(2) of elements from R ⊔ {−∞} (in fact only the quantities

a(x, y) with L(x, y) > 0 will play a role).
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Lemma 3.2. We have for any initial distribution µ,

lim
t→0+

t−1
Eµ


ϕ


exp


 ∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t






 =

∑

(x,y)∈S(2)

µ(x)L(x, y)ϕ(exp(a(x, y))).

Proof : We begin by remarking that for any b ≥ 0, we can find a constant c(b) ∈ R+

such that

∀ t ≥ 0, Eµ


exp


b

∑

y∈S\{x}

a+(x, y)N
(x,y)
t




 ≤ exp(tc(b))

(where for any r ∈ R ⊔ {−∞}, r+ := max(r, 0)). Indeed, define the function
Hb ∈ F(S) by

∀ x ∈ S, Hb(x) := −
∑

y∈S\{x}

L(x, y)(exp(ba+(x, y)) − 1),

then according to Theorem 4.6, for any t ≥ 0, the functional

exp


 ∑

(x,y)∈S(2)

ba+(x, y)N
(x,y)
t +

∫ t

0

Hb(X
(µ)(s)) ds




is a density under Pµ, so it is sufficient to take

c(b) := −min
x∈S

Hb(x).

In particular the expectations considered in the lemma are well defined and we can
write for any t > 0 and x′ ∈ S,

Ex′


ϕ


exp


 ∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t








= Ex′


1Ωt,x′,x′

ϕ


exp


 ∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t








+
∑

y′∈S\{x′}

Ex′


1Ωt,x′,y′

ϕ


exp


 ∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t








+Ex′


1eΩt,x′

ϕ


exp


 ∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t








The first term of the r.h.s. is null, since ϕ(1) = 0. The second term is equal to
∑

y′∈S\{x′}

ϕ(exp(a(x′, y′)))Px′ [Ωt,x′,y′ ] ∼ t
∑

y′∈S\{x′}

ϕ(exp(a(x′, y′)))L(x′, y′)

as t goes to 0+.
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Concerning the third term, we bound it using Hölder inequality with conjugate
exponents 1 < p, q < +∞,

Ex′


1eΩt,x′

ϕ


exp


 ∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t








≤
(

Px′ [Ω̃t,x′ ]
) 1

p


Ex′


|ϕ|q


exp


 ∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t










1
q

≤
(

Px′ [Ω̃t,x′ ]
) 1

p


Ex′


Kq exp


qr

∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t








1
q

≤ K
(

Px′ [Ω̃t,x′ ]
) 1

p


Ex′


exp


qr

∑

(x,y)∈S(2)

a+(x, y)N
(x,y)
t








1
q

≤
(

Px′ [Ω̃t,x′ ]
) 1

p

K exp(tc(rq)/q),

where K, r ≥ 0 are such that we have

∀ s ∈ R+, |ϕ(s)| ≤ Ksr

So if we choose p ∈ (1, 2), Lemma 3.1 shows that

lim
t→0+

t−1
Ex′


1eΩt,x′

ϕ


exp


 ∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t






 = 0

and the announced result follows. �

Now let us assume furthermore that ϕ is convex and differentiable at 1 with
ϕ′(1) = 0. Let also be given h ∈ F(S). Then the addition of the additive functional
associated to h in the exponential does not change the previous result:

Lemma 3.3. We have for any initial distribution µ,

lim
t→0+

t−1
Eµ


ϕ


exp


 ∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t +

∫ t

0

h(X(µ)(s)) ds








=
∑

(x,y)∈S(2)

µ(x)L(x, y)ϕ(exp(a(x, y))).

Proof : To simplify the notations, let us write for any t ≥ 0,

N
(a)
t :=

∑

(x,y)∈S(2)

a(x, y)N
(x,y)
t .

In view of Lemma 3.2, it is sufficient to prove that

lim
t→0+

t−1

∣∣∣∣Eµ
[
ϕ

(
exp

(
N

(a)
t +

∫ t

0

h(X(µ)(s)) ds

))]

−Eµ

[
ϕ
(
exp

(
N

(a)
t

))]∣∣∣ = 0. (3.1)
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We denote by ϕ′
+ the right derivative of ϕ (recall that it exists since ϕ is convex)

and we begin by assuming furthermore that ϕ′
+(0) > −∞. Writing that for any

s ∈ R+ we have

ϕ′
+(0) ≤ ϕ′

+(s) ≤ ϕ(2s) − ϕ(s)

s
≤ ϕ(2s)

s

(ϕ is nonnegative since ϕ′(1) = 0), it appears that ϕ′
+ is locally bounded and that

its growth is at most of polynomial order at +∞. Thus it exist K ′, r′ ≥ 0 such that

∀ s ∈ R+,
∣∣ϕ′

+(s)
∣∣ ≤ K ′sr

′

.

This leads to the following bound, with the function ψ : R+ ∋ s 7→ sϕ′
+(s),

∣∣∣∣ϕ
(

exp

(
N

(a)
t +

∫ t

0

h(X(µ)(s)) ds

))
− ϕ

(
exp

(
N

(a)
t

))∣∣∣∣

=

∣∣∣∣
∫ t

0

h(X(µ)(s)) ds

∫ 1

0

ψ

(
exp

(
N

(a)
t + u

∫ t

0

h(X(µ)(s)) ds

))
du

∣∣∣∣

≤ K ′ ‖h‖∞ t exp
(
(r′ + 1)[N

(a+)
t + ‖h‖∞ t]

)
.

We deduce that the l.h.s. of (3.1) is bounded above by

K ′ ‖h‖∞ exp((1 + r′) ‖h‖∞ t)Eµ

[
exp

(
(r′ + 1)N

(a+)
t

)]
.

According to Lemma 3.2 applied with a+, the latter expectation is of order t
for small t > 0, in particular the above expression vanishes as t goes to zero,
so (3.1) is proven. It remains to deal with the case where ϕ′

+(0) = −∞. Let
η = min(1/2,min(x,y)∈S(2) exp(a(x, y))) and consider ϕ̃, ϕ̂ : R+ → R+ two convex

functions which coincide with ϕ on [η,+∞), which are affine on [0, η] and which
satisfy ϕ̃ ≤ ϕ ≤ ϕ̂ on R+. By the above proof, we have with φ = ϕ̃ or φ = ϕ̂,

lim
t→0+

t−1
Eµ

[
φ

(
exp

(
N

(a)
t +

∫ t

0

h(X(µ)(s)) ds

))]

=
∑

(x,y)∈S(2)

µ(x)L(x, y)φ(exp(a(x, y)))

=
∑

(x,y)∈S(2)

µ(x)L(x, y)ϕ(exp(a(x, y))).

The announced result then follows by comparison. �

We can now come to the

Proof : of Proposition 1.5 So let π be a positive probability measure on S and
besides (X(π)(t))t≥0, we are given (Y (π)(t))t≥0 a Markov process on S whose initial
distribution is π and whose generator is M .
We first assume that M ≪ L. Then according to Theorem 4.6, we have for any
T ≥ 0,

Entϕ(L(Y (π)([0, T ]))|L(X(π)([0, T ])))

= Eπ


ϕ


exp


 ∑

(x,y)∈S(2)

a(x, y)N
(x,y)
T +

∫ T

0

H(X(µ)(s)) ds






 ,
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with

∀ x ∈ S, H(x) := M(x, x) − L(x, x),

∀ (x, y) ∈ S(2), a(x, y) := ln

(
M(x, y)

L(x, y)

)
∈ R ⊔ {−∞}.

The convergence announced in Proposition 1.5 is then an immediate consequence of
Lemma 3.3. If the property M ≪ L is not satisfied, we have, because π is positive
and according to Lemma 4.5, that for any T > 0, L(Y (π)([0, T ])) is not absolutely
continuous with respect to L(X(π)([0, T ])). So due to our conventions, the first part
of Proposition 1.5 is also valid.

The proof of the second part is similar to that of Theorem 1.4, except we cannot
give an explicit formula for the minimizer Lϕ,π.
Again we consider an arbitrary total ordering on S, whose strict inequality is de-
noted ≺. If π is reversible for M and M ≪ L, we can write

dϕ(M,L) =
∑

x≺y

π(x)L(x, y)ϕ

(
M(x, y)

L(x, y)

)
+ π(y)L(y, x)ϕ

(
M(y, x)

L(y, x)

)

=
∑

x≺y

Φπ(x)L(x,y),π(y)L(y,x)(π(x)M(x, y)),

where Φ is defined by

∀ α, β, β′ ≥ 0, Φβ,β′(α) := βϕ

(
α

β

)
+ β′ϕ

(
α

β′

)
(3.2)

(the convention that zero multiplied by anything is still zero is always enforced).
In the above sum, if x ≺ y are such that L(x, y) = 0 or L(y, x) = 0, then we must
have M(x, y) = 0, since M ≪ L. So to find a minimizer M ∈ L(π) of dϕ(M,L) is
equivalent to find a minimizer M ∈ L(π) with M ≪ L of the expression

∑

x⊳y

Φπ(x)L(x,y),π(y)L(y,x)(π(x)M(x, y)),

where x ⊳ y means that x ≺ y with L(x, y) > 0 and L(y, x) > 0. Since each
summand of the above sum can be minimized separately, we are led to show that
for any given (β, β′) ∈ (R+ \ {0})2, the mapping R+ ∋ α 7→ Φβ,β′(α) admits a
unique minimizer αβ,β′ ∈ R+ (note that by symmetry we will have αβ,β′ = αβ′,β).
The unique minimizer Lϕ,π of L(π) ∋M 7→ dϕ(M,L) will then be given by

∀ (x, y) ∈ S(2), L̃ϕ,π(x, y) :=

{ 1
π(x)απ(x)L(x,y),π(y)L(y,x) , if x ⊳ y or if y ⊳ x,

0 , otherwise.

So let us come back to the problem of minimizing φ := Φβ,β′, where (β, β′) ∈
(R+ \ {0})2 are assumed to be fixed. The function φ is convex and let us denote by
φ′+ its right derivative. To see that Φ admits α∗ as unique minimizer is equivalent
to show that

∀ α ∈ R+, φ′+(α)

{
< 0 , if α < α∗

> 0 , if α > α∗
(3.3)

We compute that

∀ α ∈ R+, φ′+(α) := ϕ′
+

(
α

β

)
+ ϕ′

+

(
α

β′

)
.
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By the fact that ϕ′(1) = 0 and the strict convexity of ϕ, it appears that for α > 0
sufficiently small φ′+(α) < 0, that for α > 0 sufficiently large φ′+(α) > 0 and that
φ′+ is increasing, thus there exists a unique α∗ > 0 such that (3.3) is satisfied. �

In fact the strict convexity condition of Proposition 1.5 to get the uniqueness of
the minimizer can be relaxed. To go in this direction, let us introduce

D+ := {t ∈ R+ : λ((ϕ′
+)−1({t})) > 0}

D− := {t ∈ R+ : λ((ϕ′
+)−1({−t})) > 0}

(where λ denotes the Lebesgue measure), which correspond to the nonnegative
slopes of ϕ where ϕ is locally affine and respectively to the opposites of the non-
positive slopes of ϕ where ϕ is locally affine. The strict convexity of ϕ is equivalent
to the fact that D− ∪D+ = ∅. The last part of Proposition 1.5 can be improved as
follows:

Proposition 3.4. Assume that D− ∩ D+ = ∅, then the mapping L(π) ∋ M 7→
dϕ(M,L) admits a unique minimizer Lϕ,π.

Proof : As in the proof of Proposition 1.5, we consider the mapping φ := Φβ,β′,
where (β, β′) ∈ (R+ \ {0})2 are fixed and where Φβ,β′ is defined in (3.2). To get the
wanted uniqueness, it is sufficient to check that (3.3) is satisfied for some α∗ > 0.
Assume that this is not true, then there would exist 0 < α− < α+ such that φ′+ = 0
on (α−, α+), which means that

∀ α ∈ (α−, α+), ϕ′
+

(
α

β

)
= −ϕ′

+

(
α

β′

)
.

But the l.h.s. is nondecreasing as a function of α while the r.h.s. is nonincreasing,

so we deduce that both ϕ′
+

(
·
β

)
and ϕ′

+

(
·
β′

)
should be constant on the interval

(α−, α+). Denoting l the absolute value of these constants (one being the opposite
of the other), we would get that l ∈ D− ∩D+, which is in contradiction with our
assumption. �

In fact the condition given in the above proposition is optimal:

Remark 3.5. Assume that the convex function ϕ (still satisfying ϕ(1) = ϕ′(1) = 0)
is such that for any L ∈ L, the mapping L(π) ∋ M 7→ dϕ(M,L) admits a unique
minimizer, then we have D− ∩D+ = ∅. Indeed, let l ∈ D− ∩D+, then we can find
0 < β < β′ and 0 < α− < α+ such that

∀ α ∈ (α−, α+), ϕ′
+

(
α

β

)
= −ϕ′

+

(
α

β′

)
= l.

It follows that Φβ,β′ admits the whole interval [α−, α+] as minimizers. So according
to the proof of Proposition 1.5, if L ∈ L is such that for some x 6= y we have
π(x)L(x, y) = β and π(y)L(y, x) = β′, then we can freely choose the value of
π(x)M(x, y) = π(y)M(y, x) inside [α−, α+] for a minimizer M of dϕ(·, L) on L(π).

We can now justify the first assertion made after Proposition 1.5. So let ǫ ∈
(0, 1/2] be given and consider the function ϕǫ, for which D− = {1} and D+ =
{1 + ǫ}. Thus the condition of Proposition 3.4 is fulfilled and the mapping L(π) ∋
M 7→ dϕǫ

(M,L) admits a unique minimizer Lϕǫ,π. Before proving the convergence
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(1.3), let us give a more precise version of Proposition 1.2. From now on, endow S
with the binary relation ≺ defined by

∀ x, y ∈ S, x ≺ y ⇔ π(x)L(x, y) ≤ π(y)L(y, x) and x 6= y.

Then we have

Proposition 3.6. A generator M ∈ L(π) is a minimizer of d(·, L) on L(π) if and
only if for any x ≺ y, we have

π(x)M(x, y) = π(y)M(y, x) ∈ [π(x)L(x, y), π(y)L(y, x)].

Proof : Consider the convex function ψ : R+ ∋ u 7→ |u− 1|. If we replace the
distance d by the discrepancy dψ, which coincides with d on couples (M ′,M) ∈ L2

with M ′ ≪ M and is equal to +∞ otherwise, the proof of the second part of
Proposition 1.5 shows that a generator M ∈ L(π) is a minimizer of dψ(·, L) on L(π)
if and only if for any x ≺ y, with L(x, y)L(y, x) > 0, we have that π(x)M(x, y) is
a minimizer of Ψπ(x)L(x,y),π(y)L(y,x), where

∀ α, β, β′ ≥ 0, Φβ,β′(α) := |α− β| + |α− β′| .
This function is easy to minimize and we find the condition

π(x)M(x, y) ∈ [π(x)L(x, y), π(y)L(y, x)].

Looking closely at these arguments, it appears that the situation with d instead of
dψ is similar, except we don’t have to take into account the absolutely continuity
constraint and we end up with the condition given in the proposition. �

In particular, it appears that if there exists (x, y) ∈ S(2) with L(x, y) = 0 and
L(y, x) > 0, then some of the minimizers M of d(·, L) on L(π) do not satisfy
M ≪ L.

We can now come to the

Proof of the convergence (1.3): If (x, y) ∈ S(2) is such that L(x, y)L(y, x) = 0, then
we have for any ǫ ∈ (0, 1/2], Lϕǫ,π(x, y) = 0 = Lπ(x, y) and the convergence (1.3)

is trivial. So consider (x, y) ∈ S(2) with 0 < β < β′ where β := π(x)L(x, y)
and β′ := π(y)L(y, x). For ǫ ∈ (0, 1/2], let α∗(ǫ) be defined as in (3.3) but with
ϕ replaced by ϕǫ. According to the proofs of Propositions 1.5 and 3.6, we have
Lϕǫ,π(x, y) = α∗(ǫ)/π(x) and the convergence limǫ→0+ Lϕǫ,π(x, y) = Lπ(x, y) is
equivalent to the fact that

lim
ǫ→0+

α∗(ǫ) = β.

But this convergence is a consequence of the observation that for ǫ > 0 small
enough,

∀ s ∈ [0, (1 − ǫ)β), (φǫ)
′(s) = −2,

∀ s ∈ ((1 + ǫ)β, (1 − ǫ)β′), (φǫ)
′(s) = ǫ,

which implies that α∗(ǫ) ∈ [(1 − ǫ)β, (1 + ǫ)β]. �

But the above result should not lead one to think that if (ϕǫ)ǫ∈(0,ǫ0], for some
ǫ0 > 0, is another family of functions satisfying the assumption of Proposition 3.4
and converging to ψ : R+ ∋ u 7→ |u− 1| for small ǫ > 0, then (1.3) is fulfilled.
Indeed, consider for ǫ ∈ (0, 1/2], the convex function ϕǫ defined by ϕǫ(x) = (1−x)2
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for any x ∈ [1− ǫ, 1 + ǫ], ϕ′
ǫ = −1− ǫ on [0, 1− ǫ) and ϕ′

ǫ = 1 on (1 + ǫ,+∞). Then
computations similar to the previous ones show that

lim
ǫ→0+

Lϕǫ,π = L̂π,

with

∀ (x, y) ∈ S(2),

L̂π(x, y) :=

{
max

{
L(x, y), π(y)

π(x)L(y, x)
}

, if L(x, y)L(y, x) > 0,

0 , otherwise.

Conversely, one should neither think that all the minimizers M described in
Proposition 3.6 could be approached by minimizers of discrepancies as in Propo-
sition 3.4. Indeed, this is clear for minimizers M not satisfying M ≪ L, but
even some minimizers satisfying this condition cannot be approached. Consider
for instance the case where there exist (x, y) ∈ S(2) and (x′, y′) ∈ S(2) with
{x, y} 6= {x′, y′} and π(x)L(x, y) = π(x′)L(x′, y′) < π(y)L(y, x) = π(y′)L(y′, x′).
Then there are some minimizers M such that π(x)M(x, y) 6= π(x′)M(x′, y′), while
for any convex function ϕ satisfying the assumption of Proposition 3.4, we have
π(x)Lϕ,π(x, y) = π(x′)Lϕ,π(x

′, y′).

Remark 3.7. The considerations of Proposition 3.6 can be extended to other dis-
crepancies on L. For instance for ǫ > 0, consider the (non symmetrical) discrepancy

∀ M,L ∈ L,
dǫ(M,L) :=

∑

x∈S

π(x)
∑

y∈S\{x}

(|M(x, y) − L(x, y)| + ǫ(M(x, y) − L(x, y))+

(where (·)+ stands for the positive part). Then it appears that the mapping L(π) ∋
M 7→ dǫ(M,L) admits the usual Metropolis generator Lπ as unique minimizer (if
one replace the positive part by the negative part in the above discrepancy, one

gets the previously defined generator L̂π). But Lemma 3.3 is not clear for the
corresponding convex function R+ ∋ u 7→ |u− 1| + ǫ(u − 1)+ and this alternative
definition Lπ does not extend either to the diffusion situation.

4. On the compact Riemannian diffusion situation

We now leave the finite state space setting to see how our previous considerations
can be extended to a compact Riemannian diffusion framework. As our main pur-
pose is to illustrate how the approach of the previous sections can be generalized,
we will adopt strong regularity assumptions. That is also why we have chosen a
compact setting, to avoid the investigation of boundedness conditions. For compu-
tations of trajectory entropies in Euclidean spaces, see for instance the papers of
Dawson and Gärtner (1987) or of Cattiaux and Léonard (1994) and the references
given therein.

So let S be a smooth compact manifold of dimension n ∈ N \ {0}. We are
interested into Markov generators L of diffusion type, which can be written in a
chart C as
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∀ f ∈ C∞, ∀ x ∈ S,

L[f ](x) :=
1

2

∑

i,j∈J1,nK

ai,j(x)∂i,jf(x) +
∑

i∈J1,nK

bi(x)∂if(x), (4.1)

where C∞ is the space of smooth functions on S, where ∂i is the differentiation
operator with respect to the ith coordinate of the underlying chart C, ∂i,j = ∂i∂j
and where the diffusive symmetric matrix field C ∋ x 7→ a(x) := (ai,j(x))i,j∈J1,nK

and the drift vector field C ∋ x 7→ b(x) := (bi(x))i∈J1,nK are smooth. Furthermore
a(x) is assumed to be invertible for all x ∈ C.

If we are given a probability measure µ on S, it is well-known (see for instance

the books of Émery, 1989 and of Ikeda and Watanabe, 1989) that we can associate
to µ, seen as the initial distribution, and to the generator L a Markov process
(X(µ)(t))t≥0 with continuous trajectories in S (a Markov process with continuous

trajectories is traditionally called a diffusion). The law Pµ of (X(µ)(t))t≥0 on the
space of continuous mappings from R+ to S is characterized as the unique solution
of the martingale problem associated to µ and L:

• The law of X(µ)(0) is µ.
• For any function f ∈ C∞, the process M(f) defined by

∀ t ∈ R+, M(f)
t := f(X(µ)(t)) − f(X(µ)(0)) −

∫ t

0

L[f ](X(µ)(s)) ds

is a martingale.
For more informations on martingale problems associated to diffusion operators, we
refer to the books of Stroock and Varadhan (2006) and Ethier and Kurtz (1986).

The generator L and the Markov process (X(µ)(t))t≥0 should be seen as an a
priori given Markov framework and they will play exactly the same role they had
in the previous sections. The other data will be a probability measure π with a
smooth and positive density. But first let us consider another diffusion generator

L̃ (whose diffusion symmetric matrix field and drift vector field will be denoted

(ãi,j(x))i,j∈J1,nK and (̃bi(x))i∈J1,nK for x belonging to a chart C) satisfying the same

conditions as L. A corresponding diffusion process is denoted (X̃(µ)(t))t≥0 (instead

of (Y (µ)(t))t≥0 in the previous sections). In proposition 4.13 of Appendix 2 we
recall why a necessary condition for absolute continuity on finite time horizons is

that ã = a. Since in the end we will mainly be interested into diffusions (X̃
(µ)
t )t≥0

which are absolutely continuous with respect to (X
(µ)
t )t≥0 on finite time horizons,

the diffusive matrix field of L̃ will thus have to coincide with that of L. This leads
us to consider the corresponding Riemannian structure.

For x ∈ S, we introduce a scalar product 〈·, ·〉(x) on the tangent space TxS of S
at x: if v, w ∈ TxS and if C is a chart with x ∈ C, we define

〈v, w〉(x) :=
∑

i,j∈J1,nK

(a−1(x))i,jviwj ,

where (vi)i∈J1,nK and (wi)i∈J1,nK are the coordinates of v and w in the chart C. It
can be checked that (〈·, ·〉(x))x∈S satisfies the rules of 2-covariant tensor and since
it is symmetrical and positive definite, it gives rise to a Riemannian structure on
S, see for instance the book of Ikeda and Watanabe (1989). From now on, we
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denote by 〈·, ·〉, |·|, ∇, div, △ and λ, respectively the scalar product, the norm,
the gradient, the divergence, the Laplacian and the probability associated to this
Riemannian structure. The operator L can then be rewritten under a more intrinsic
way:

L· = △/2 · +〈b,∇·〉, (4.2)

where b is a vector field on S (but whose coordinates (bi)i∈J1,nK in a chart don’t
necessary coincide with those given in the formulation (4.1)). Assuming that ã = a,

the other generator L̃ can be written under the same form, L̃· = △/2 · +〈̃b,∇·〉,
with another vector field b̃.

The usual Girsanov theorem recalled in Proposition 4.14 of Appendix 2, as well

as Remark 4.15 following it, lead us to introduce the notation L̃ ∼ L, where L

and L̃ are two generators as in the beginning of this section, if ã = a (by analogy

with the previous section, we could also have adopted the notation L̃≪ L, but we

prefered to write L̃ ∼ L to indicate that in the present continuous framework, this
is an equivalence relation). Let π be a probability measure on S. We define an
associated discrepancy d on the set L of generators as above by

∀ L, L̃ ∈ L, d(L̃, L) :=

{ ∫ ∣∣∣̃b− b
∣∣∣
2

(x)π(dx) , if L̃ ∼ L,

+∞ , otherwise.

Note that the discrepancy d is symmetrical: for any L, L̃ ∈ L, d(L̃, L) = d(L, L̃).

To justify the introduction of d (and to try to smooth the abuse of notation
consisting in denoting it in the same way as the distance Billera and Diaconis
(2001) in the discrete time and space setting), let us consider ϕ : R+ → R a
convex function differentiable in a neighborhood of 1, admitting a second derivative
ϕ′′(1) > 0, satisfying ϕ(1) = ϕ′(1) = 0 and whose growth is at most of polynomial
order. Then we have a result analogous to Proposition 1.5:

Proposition 4.1. For any L̃, L ∈ L, we have

lim
T→0+

Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ])))/T =
ϕ′′(1)

2
d(L̃, L).

As it will appear in the following proof, this convergence is also true if ϕ′′(1) = 0,

but we have to replace ϕ′′(1)d(L̃, L) by 0 if L̃ ∼ L and +∞ otherwise.

Proof : If the condition L̃ ≪ L is not satisfied, then according to Remark 4.15 we
have

∀ T > 0, Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) = +∞.

Thus it is sufficient to treat the situation where L̃ ∼ L. According to Proposi-
tion 4.14, we have for any T ≥ 0,

Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) = E

[
ϕ(ET [̃b− b])

]
.
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As in the finite state space, this expectation is finite because for any T ≥ 0 and
p ≥ 1, we have

E

[
EpT [̃b− b]

]
= E

[
exp

(
pM(eb−b)

T − p

2

∫ T

0

∣∣∣̃b− b
∣∣∣
2

(X(µ)(t)) dt

)]
(4.3)

= E

[
ET [p(̃b− b)] exp

(
p2 − p

2

∫ T

0

∣∣∣̃b− b
∣∣∣
2

(X(µ)(t)) dt

)]

≤ exp

(
p2 − p

2
T
∥∥∥b̃− b

∥∥∥
2

∞

)
E

[
ET [p(̃b− b)]

]

= exp

(
p2 − p

2
T
∥∥∥b̃− b

∥∥∥
2

∞

)
.

We begin by assuming furthermore that ϕ is smooth on R+ and that the growth
of ϕ′′ is at most of polynomial order. In this case we can use directly It’s formula
to get that for any T ≥ 0,

E

[
ϕ(ET [̃b− b])

]
= E

[∫ T

0

ϕ′(Et [̃b− b])Et [̃b− b] dM(eb−b)
t

+
1

2

∫ T

0

ϕ′′(Et [̃b− b])E2
t [̃b− b] d〈M(eb−b)〉t

]

=
1

2
E

[∫ T

0

ϕ′′(Et [̃b− b])E2
t [̃b− b]

∣∣∣̃b− b
∣∣∣
2

(X(π)(t)) dt

]

=
1

2

∫ T

0

E

[
ϕ′′(Et [̃b − b])E2

t [̃b− b]
∣∣∣̃b − b

∣∣∣
2

(X(π)(t))

]
dt.

So if we divide by T and let T go to zero, we get in the limit

1

2
E

[
ϕ′′(E0 [̃b− b])E2

0 [̃b− b]
∣∣∣̃b− b

∣∣∣
2

(X(π)(0))

]
=

ϕ′′(1)

2
d(L̃, L),

where to justify the convergence, we have taken into account the fact that the
growth of ϕ′′ is at most of polynomial order and the bound (4.3). Note that the
convexity of ϕ was not necessery to deduce this convergence.

We now come to the general case. By our assumptions on ϕ, for any ǫ > 0,
we can find two smooth functions ϕǫ,− and ϕǫ,+ on R+ satisfying the following
conditions:

ϕǫ,−(1) = ϕ′
ǫ,−(1) = 0 = ϕǫ,+(1) = ϕ′

ǫ,+(1),

ϕ′′
ǫ,−(1) = ϕ′′(1) − ǫ and ϕ′′

ǫ,+(1) = ϕ′′(1) + ǫ,

∀ s ∈ R+, ϕ−,ǫ(s) ≤ ϕ(s) ≤ ϕ+,ǫ(s),

ϕ′′
−,ǫ and ϕ′′

+,ǫ grow at most polynomially.

Then using the previous convergence with the functions ϕǫ,− and ϕǫ,+ and the
following bound valid for any T ≥ 0,
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E

[
ϕ−,ǫ(ET [̃b− b])

]
≤ Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ])))

≤ E

[
ϕ+,ǫ(ET [̃b− b])

]
,

it appears that

lim sup
T→0+

Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ])))

T
≤ d(L̃, L)

2
(ϕ′′(1) + ǫ),

lim inf
T→0+

Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ])))

T
≥ d(L̃, L)

2
(ϕ′′(1) − ǫ).

It remains to let ǫ go to zero to be convinced of the announced convergence. �

In the case of the usual entropy, corresponding to the function R+ ∋ u 7→
u ln(u)− u+ 1, we recover the analogous result to Proposition 1.3: if π is invariant

for L̃, then for any T ≥ 0, we have

Ent(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) =
T

2
d(L̃, L) ≤ +∞.

Indeed, the only nontrivial case corresponds to T > 0 and L̃ ≪ L, for which we
compute that

∀ T > 0,

Ent(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) = Ẽπ

[
ln
(
ET [̃b− b]

)]

= Ẽπ

[
M(eb−b)

T − 1

2

∫ T

0

∣∣∣̃b− b
∣∣∣
2

(X̃(π)(t)) dt

]
,

where Ẽπ[·] stands for the expectation with respect to X̃(π). To go further, note

that M(eb−b) is no longer a martingale under this law and to transform it into

a martingale we have to subtract the process 〈M(eb−b),M(eb−b)〉 (this comes from
arguments similar to those used in the proof of Proposition 4.14, see also the book
of Revuz and Yor, 1999). Thus it follows that

Ent(L(X̃(π)([0, T ]))|L(X(π)([0, T ]))) = Ẽπ

[
1

2

∫ T

0

∣∣∣̃b− b
∣∣∣
2

(X̃(π)(t)) dt

]

=
1

2

∫ T

0

Ẽπ

[∣∣∣̃b− b
∣∣∣
2

(X̃(π)(t))

]
dt

=
T

2
Ẽπ

[∣∣∣̃b− b
∣∣∣
2

(X̃(π)(0))

]
,

because π is invariant for L̃ and we recognize the last term as Td(L̃, L)/2.

Thus as it was announced, the discrepancies 2d̃ and dϕǫ
for ǫ ∈ (0, 1/2] all

coincides with d in our diffusion framework. It is then quite natural to propose as
the Metropolis generator associated to π and L, the minimizer Ld of the mapping
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L(π) ∋ L̃ 7→ d(L̃, L), at least if it exists. Here L(π) also stands for the set of

generators L̃ ∈ L for which π is reversible. This means that

∀ f, g ∈ C∞, π[fL̃[g]] = π[gL̃[f ]].

Under our smoothness assumptions, for a given L̃ ∈ L, if such a reversible proba-
bility measure π exists, it admits a positive and smooth density with respect to λ,

because π must also be invariant for L̃ and so it is a weak solution to the elliptic

equation L̃∗[π] = 0, where L̃∗ is dual operator of L̃ in L
2(λ). Conversely, if π is

a probability measure admitting a positive and smooth density with respect to λ,
then L(π) is not empty, since it contains at least the operator (△·+〈∇ ln(π),∇·〉)/2.

In fact let us check that this is the only element L̃ of L(π) satisfying L̃ ∼ L, where

L is given in (4.2). The condition L̃ ∼ L implies that there exists a vector field b̃

such that we can write L̃· = 1
2△ · +

〈
b̃,∇·

〉
. The dual operator L̃∗ of L̃ in L

2(λ)

is then given by L̃∗· = 1
2△ · −div(·̃b). The reversibility of π with respect to L̃ is

equivalent to the fact that L̃ is equal to its dual operator in L
2(π), condition which

can be written

L̃· =
1

π
L̃∗[π·] (4.4)

(where we denote in the same way the probability measure π and its density with
respect to λ). By expanding this relation and by taking into account the equation

L̃∗[π] = 0, we get that the vector field ∇π
π − 2b̃ must vanish everywhere, which

amounts to the above assertion.
So the minimization of L(π) ∋ L̃ 7→ d(L̃, L) is very simple, since Ld := (△ ·

+〈∇ ln(π),∇·〉)/2 is the unique element of L(π) with d(Ld, L) < +∞.
The above approach can be extended to the situation where we add jumps to

the above diffusion generators. But as already mentioned in the discussion after
Proposition 4.14, we don’t want to develop here the underlying theory of martin-
gales associated to functions of two variables. So let us close this paper by sketching
the line of reasoning, which is a mix of the arguments given in the finite and diffusion
case, without entering into the details of the corresponding computations:

Remark 4.2. Consider generators of the type H = L+Q, where the diffusion part
L is given as in (4.1), with the same assumptions on the coefficients a and b, and
where the jump part can be written as

∀ f ∈ C∞, ∀ x ∈ S, Q[f ](x) :=

∫
(f(y) − f(x)) q(x, y)λ(dy),

where the intensity of jumps q is a positive and smooth function on S2. It is easy to
see that the decomposition of H under the form L+Q is unique and more precisely
that the action of H on C∞ determine the coefficients a, b (in any chart) and q.
The set of such generators H will be denoted H.
If µ is a probability measure on S, we denote (X(µ))t≥0 any càdlàg Markov process
admitting µ as initial distribution and H as generator. Its law on the set of càdlàg
trajectories is the unique solution of the martingale problem associated to µ and
H .
Let H̃ ∈ H be another generator of the same kind, all notions relative to H̃ will
receive a tilde at their top. As recalled at the beginning of this section, for any

T > 0, we have L(X̃(µ)([0, T ]) ≪ L(X(µ)([0, T ]) if and only if ã = a, property
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which is still denoted by H̃ ∼ H . Again we endow S with the Riemannian structure
induced by a−1, in order to adopt intrinsic notations: H = △/2 · +〈b,∇·〉 + Q[·],
where b is a vector field on S (and idem for H̃ if H̃ ∼ H). Let us introduce the
functions V and v defined by

∀ (x, y) ∈ S2, V (x, y) :=

{
ln
(

eq(x,y)
q(x,y)

)
, if x 6= y,

0 , if x = y.

∀ x ∈ S, v(x) :=

∫
(V (x, y) − exp(V (x, y)) + 1)q(x, y)λ(dy)

Then it is possible to associate naturally to V a martingale M(V ), such that if

H̃ ∼ H , we have for any T ≥ 0,

dL(X̃(µ)([0, T ]))

dL(X(µ)([0, T ]))
= ET [̃b− b]ET [V ],

where the first factor was defined in (4.11) and the second factor is given by

ET [V ] := exp

(
M(V )

T +

∫ T

0

v(X(µ)(t)) dt

)
.

The fact that these densities so neatly decompose into a diffusion factor and a
jump factor is related to the fact that the martingale M(V ) is totally discontinuous
(namely its co-bracket with any continuous martingale is null, see for instance
the book of Dellacherie and Meyer, 1980). So in this situation, we see that in the
completion of the space of simple functions of two variables with respect to the norm
(4.10), two kinds of orthogonal objects appear: germs of functions on the diagonal
(corresponding to vector fields) and functions of two variables which vanish on the
diagonal (corresponding to jump rate densities). The parameterization of Girsanov

transformations by these objects (the couple (̃b− b, V ) in the above example) is in
fact very general, as it was alluded to in Remark 4.12. These formulas enable to
handle ϕ-entropies of trajectorial laws and to define corresponding discrepancies.
Indeed, under the assumptions on ϕ preceding Proposition 4.1, we get for any
probability measure π on S,

lim
T→0+

Entϕ(L(X̃(π)([0, T ]))|L(X(π)([0, T ])))/T = dϕ(L̃, L),

where the discrepancy in the r.h.s. is given by

dϕ(L̃, L) :=

:=

{
ϕ′′(1)

2

∫ ∣∣∣̃b− b
∣∣∣
2

(x)π(dx) +
∫
ϕ
(

eq(x,y)
q(x,y)

)
π(dx)q(x, y)λ(dy) , if H̃ ∼ H ,

+∞ , otherwise.

Assume now that π has a smooth and positive density with respect to λ (which
will still be denoted π) and consider H(π) the subset of H consisting of generators
from H admitting π as a reversible measure. As it can be guessed, our purpose

is to find the minimizer Hϕ of the mapping H(π) ∋ H̃ 7→ dϕ(H̃,H), under the
additional condition on ϕ given in Proposition 3.4. In order to go in this direction
the following result is important.
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Proposition 4.3. The generator H̃ is reversible with respect to π if and only if its

diffusion part L̃ and its jump part Q̃ are both reversible with respect to π.

Proof : As in the case (4.4) of the diffusion generators, the reversibility of π is

equivalent to the equation H̃ · = 1
π H̃

∗[π·], where H̃∗ is the dual operator of H̃ in

L
2(λ). Expanding the r.h.s. we get that for any f ∈ C∞ and x ∈ S,

1

π(x)
H̃∗[πf ](x) =

1

2
△f(x) +

〈
∇ ln(π) − b̃,∇f

〉
(x)

+

∫
(f(y) − f(x))

π(y)

π(x)
q̃(y, x)λ(dy) +

H̃∗[π]

π(x)
f(x).

So the previous equality is equivalent to the fact that

H̃∗[π] = 0,

∇ ln(π) − b̃ = b̃,

∀ x 6= y ∈ S,
π(y)

π(x)
q̃(y, x) = q(x, y).

The second equation is equivalent to the reversibility of π with respect to the

diffusion part L̃ and the third equation is equivalent to the reversibility of π with

respect to the jump part Q̃. The first equation, which is the formulation of the
stationarity of π, is in fact implied by the two other equations. �

Indeed, the last proposition is also true without assumption of regularity on the
probability measure π, but it appears a posteriori that π has to admit a smooth and
positive density with respect to λ, since it must also be reversible for the elliptic

operator L̃.

Thus Hϕ is a minimizer of the mapping H(π) ∋ H̃ 7→ dϕ(H̃,H) if and only if its dif-

fusion part Lϕ is a minimizer of the mapping L(π) ∋ L̃ 7→ ϕ′′(1)
2 d(L̃, L) and its jump

part Qϕ is a minimizer of the mapping q̃ 7→
∫
ϕ
(

eq(x,y)
q(x,y)

)
π(dx)q(x, y)λ(dy). For the

diffusion part, this leads to Lϕ = (△ · +〈∇ ln(π),∇·〉)/2. For the jump part, the
computations of the proof of Proposition 1.5 (taking into account Proposition 3.4)
lead to

∀ x 6= y, qϕ(x, y) =
1

π(x)
απ(x)q(x,y),π(y)q(y,x),

where the function (R∗
+)2 ∋ (β, β′) 7→ αβ,β′ was defined in term of ϕ in the proof

of Proposition 1.5.
In particular in the case of the classical entropy, we find the rate density q̃ given by

∀ x 6= y, q̃(x, y) =

√
π(y)

π(x)

√
q(x, y)q(y, x).

Appendix 1: finite state space Girsanov formula

This long appendix presents in the finite state space setting the changes of law
which are analogous to those considered by Girsanov (1960) for Euclidean diffusions.
They corresponds to all the transformations of the underlying probability measure P

of a given Markov process which remain absolutely continuous with respect to P on
finite time intervals and which preserve the (time-homogeneous) Markov property.
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We begin by recalling the martingale problem approach to Markov processes,
since it is the natural framework to deal with this subject. We need some notations:
let D be the set of càdlàg trajectories from R+ to the finite set S. We denote by
(X(t))t≥0 the process of the canonical coordinates on D and we endow D with the
σ-field D generated by the X(t), for t ∈ R+. For any T ∈ R+, we also denote
D([0, T ]) the σ-field generated by the X(t), for t ∈ [0, T ]. We will always implicitly
assume that the set D is endowed with the filtration (D([0, t]))t≥0. Let a probability
measure µ on S and L ∈ L be given. We say that a probability measure P on D is
a solution to the martingale problem associated to µ and L if:

• The law of X(0) (called the initial law) under P is µ.
• For any function f defined on S, the process M(f) defined by

∀ t ∈ R+, M(f)
t := f(X(t)) − f(X(0)) −

∫ t

0

L[f ](X(s)) ds (4.5)

is a martingale. In the above expression, L was interpreted as an operator acting
on functions (seen as column vector, indexed by S) through the formula

∀ x ∈ S, L[f ](x) :=
∑

y∈S

L(x, y)f(y).

It is well-known, see for instance the book of Ethier and Kurtz (1986), that such
a solution exists and is unique, we denote it Pµ (or simply Px when µ is equal to
the Dirac mass δx for some x ∈ S). The probabilistic description of the evolu-
tion of (X(t))t≥0 is the following: for s > 0, let X(s−) := limu→s,u<sX(u) and
consider the first jump time τ1 := inf{s > 0 : X(s) 6= X(s−)}. Then condition-
ally to X(0), τ1 is distributed as an exponential law of parameter |L(X(0), X(0))|
(this is the Dirac measure at +∞ if L(X(0), X(0)) = 0). Conditionally to X(0)
and τ1 < +∞, the first jump position X(τ1) is distributed according to the law
(L(X(0), y)/|L(X(0), X(0))|)y 6=X(0) on S \ {X(0)}. Next conditionally to X(0), τ1
and X(τ1), the waiting time for the second jump is distributed as an exponential
law of parameter |L(X(τ1), X(τ1))| etc.
If one doesn’t want to make reference to a particular initial distribution µ (and
this is usually the point of view adopted in Markov process theory, compare for
instance Lemmas 4.4 and 4.5 below to see how convenient it can be), one considers
simultaneously all the martingale problems associated to δx and L, for x ∈ S, and
one says that the solution to the martingale problems relative to L is the family
(Px)x∈S . Note that all the Pµ can be recovered from this family, since we have
Pµ =

∑
x∈S µ(x)Px. Furthermore, the Markov property of (X(t))t≥0 under Pµ is

deduced without difficulty from the uniqueness of the family (Px)x∈S as solution to
the above martingale problems.

Let L̃ ∈ L be another generator and P̃µ be the solution of the martingale problem

associated to µ and L̃. More generally all notions relative to L̃ will be covered by a
tilde sign when they have to be distinguished from those relative to L. For T ≥ 0,
consider Pµ,[0,T ] the restriction of Pµ to the measurable space (D,D([0, T ]). We are

interested in the generators L̃ which are such that for any x ∈ S and any T ≥ 0,

P̃x,[0,T ] is absolutely continuous with respect to Px,[0,T ] (using the Markov property,
it is clear that is equivalent to the existence of T > 0 such that for any x ∈ S,

P̃x,[0,T ] is absolutely continuous with respect to Px,[0,T ]). A necessary condition is
easy to obtain. For x ∈ S, let Sx be the set of points which are attainable by X
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under Px: a point y ∈ S belongs to Sx if and only if there exists a finite sequence
x0 = x, x1, ..., xn = y in S with n ∈ N and L(xi, xi+1) > 0 for all i ∈ J0, n − 1K.
More generally, let Sµ := ∪x∈supp(µ)Sx, where supp(µ) is the support of µ.

Lemma 4.4. If there exists T > 0 such that P̃µ,[0,T ] is absolutely continuous with

respect to Pµ,[0,T ], then S̃µ ⊆ Sµ and we have

∀ x ∈ S̃µ, ∀ y ∈ S, L(x, y) = 0 =⇒ L̃(x, y) = 0

Proof : For x, y ∈ S and T > 0, consider the event

Ax,y,T := {∃ s ∈ (0, T ] : X(s−) = x, X(s) = y}.

From the probabilistic description of Pµ, we see that Pµ[Ax,y,T ] > 0 if and only if
x ∈ Sµ and L(x, y) > 0 and let denote by Rµ the set of such couples (x, y).
Now let T > 0 be as in the above lemma. From the absolute continuity assumption,

we get that R̃µ ⊆ Rµ and this amounts to the conclusions given in the lemma. �

The necessary condition given in Lemma 4.4 is in fact sufficient, see remark 4.11
below. But to avoid embarrassing notations, it is better to work simultaneously
with the whole family (Px)x∈S . As an immediate consequence of the above result,
we get:

Lemma 4.5. If there exists T > 0 such that for any x ∈ S, P̃x,[0,T ] is absolutely

continuous with respect to Px,[0,T ], then we have L̃ ≪ L (with the notation of
Proposition 1.5), which just means that the transitions forbidden by L are also

forbidden by L̃.

Our main goal in this appendix is to show the reciprocal result and to exhibit

the density dP̃x,[0,T ]/dPx,[0,T ]. To do so, again we need more notations.

For x 6= y ∈ S and t ≥ 0, consider

N
(x,y)
t :=

∑

s∈(0,t]

1X(s−)=x,X(s)=y

the number of jumps from x to y which have occurred before time t and

M(x,y)
t := N

(x,y)
t −

∫ t

0

L(x, y)1x(X(s)) ds.

Let us check that (M(x,y)
t )t≥0 is a martingale under Pµ for any initial condition µ.

This comes from the fact that we can represent it as a stochastic integral:

∀ t ≥ 0, M(x,y)
t =

∫ t

0

1x(X(s−)) dM(y)
s (4.6)



224 Persi Diaconis and Laurent Miclo

where (M(y)
t )t≥0 is the martingale associated to the indicator function 1y via for-

mula (4.5). Indeed, let us compute the r.h.s.:
∫ t

0

1x(X(s−)) dM(y)
s =

∫ t

0

1x(X(s−)) d

(1y(X(s)) − 1y(X(0))

−
∫ s

0

L[1y](X(u)) du

)

=

∫ t

0

1x(X(s−)) d1y(X(s))

−
∫ t

0

1x(X(s−))L[1y](X(s)) ds

=
∑

0<s≤t

1x(X(s−))(1y(X(s)) − 1y(X(s−)))

−
∫ t

0

1x(X(s−))L[1y](x) ds
= N

(x,y)
t −

∫ t

0

L(x, y)1x(X(s)) ds.

Now consider another generator L̃ satisfying the conclusion of Lemma 4.5. We
define

∀ x 6= y, A(x, y) :=
L̃(x, y)

L(x, y)

(taking into account the usual convention that 0 · ∞ = 0, we have A(x, y) = 0 if

L(x, y) = 0, since L̃≪ L). Consider also the functions G and H defined by

∀ x ∈ S,

{
G(x) :=

∑
y 6=x L(x, y)(ln(A(x, y)) −A(x, y) + 1),

H(x) := −∑y 6=x L(x, y)(A(x, y) − 1) = L̃(x, x) − L(x, x).

Then we have

Theorem 4.6. Under the assumption that L̃≪ L, for any initial condition µ and

any finite time horizon T ≥ 0, we have P̃µ,[0,T ] ≪ Pµ,[0,T ] and the corresponding
Radon-Nikodym derivative is given by

dP̃µ,[0,T ]

dPµ,[0,T ]
= exp


 ∑

x 6=y∈S

ln(A(x, y))N
(x,y)
T +

∫ T

0

H(X(s)) ds




= exp


 ∑

x 6=y∈S

ln(A(x, y))M(x,y)
T +

∫ T

0

G(X(s)) ds




(note that these quantities vanish if N
(x,y)
T > 0 for some x 6= y satisfying L̃(x, y) = 0

and L(x, y) > 0).

This result could be proven using Doléans-Dade stochastic exponential (cf. for
instance the book of Dellacherie and Meyer, 1980) and stochastic calculus for mar-
tingales with jumps. Nevertheless this approach does not seem to us the most ap-
propriate to deal with the present situation. Indeed, we just want to use immediate
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consequences of the martingale problem formulation and elementary stochastic cal-
culus, enabling to compute the product of a absolutely continuous adapted process
with a martingale. The proof of Theorem 4.6 will take several steps. The first one
consist in introducing some exponential martingales (which are not easily described
as Doléans-Dade stochastic exponential processes).

To any function f on S, we associate a new function I[f ] via the formula

∀ x ∈ S, I[f ](x) := exp(−f(x))L[exp(f)](x) − L[f ](x).

Remark 4.7. The mapping f 7→ I[f ] should be seen as a modified “carré du champ”.
Recall that the usual carré du champ of f (see for instance the lecture of Bakry,
1994) is defined by

∀ x ∈ S, Γ[f ](x) := L[f2](x) − 2f(x)L[f ](x).

It is easily checked for instance that we have

exp(−osc(f))Γ[f ] ≤ 2I[f ] ≤ exp(osc(f))Γ[f ],

where osc(f) = maxS f − minS f is the oscillation of f . Furthermore, if L is a
diffusion generator (namely if the processes admitting L as generator have contin-
uous paths, as it is the case in Section 4), we have I[f ] = Γ[f ]/2. The interest
of the carré du champ is that it enables to compute the bracket of M(f) (i.e. the
previsible process (〈M(f)〉t)t≥0 starting from 0 such that ((M(f))2 − 〈M(f)〉t)t≥0

is a martingale):

∀ t ≥ 0, 〈M(f)〉t =

∫ t

0

Γ[f ](X(s)) ds.

The modified carré du champ will play a similar role of integrand for a compensator,
but with an exponential mapping rather than a square mapping.

We associate to any function f on S the process (Et[f ])t≥0 given by

∀ t ≥ 0, Et[f ] := exp

(
M(f)

t −
∫ t

0

I[f ](X(s)) ds

)
. (4.7)

Then we have another characterization of the solution to the martingale problem
associated to µ and L:

Proposition 4.8. Under Pµ the process (Et[f ])t≥0 is a martingale. Conversely if
P is a probability measure on D such that µ is the law of X(0) and such that for
any function f , the process (Et[f ])t≥0 is a martingale, then P = Pµ.

Proof : For the first point, we write that for any t ≥ 0,

Et[f ] = exp

(
−
∫ t

0

exp(−f(X(s)))L[exp(f)](X(s)) ds

)
exp(f(X(t)) − f(X(0))),



226 Persi Diaconis and Laurent Miclo

so its stochastic differential is

dEt[f ] = exp

(
−
∫ t

0

exp(−f(X(s)))L[exp(f)](X(s)) ds

)
exp(−f(X(0)))

(L[exp(f)](X(t))dt+ dM(exp(f))
t )

− exp

(
−
∫ t

0

exp(−f(X(s)))L[exp(f)](X(s)) ds

)

exp(f(X(t)) − f(X(0))) exp(−f(X(t)))L[exp(f)](X(t))dt

= exp

(
−
∫ t

0

exp(−f(X(s)))L[exp(f)](X(s)) ds

)

exp(−f(X(0)))dM(exp(f))
t .

It follows that (Et[f ])t≥0 is a martingale as a stochastic integral (of a previsible

integrand) with respect to the martingale (M(exp(f))
t )t≥0.

Conversely, we write that for any t ≥ 0,

exp(f(X(t))) = exp(f(X(0)))

exp

(∫ t

0

exp(−f(X(s)))L[exp(f)](X(s)) ds

)
Et[f ],

thus differentiating we get

d exp(f(X(t)))

= exp(f(X(0))) exp

(∫ t

0

exp(−f(X(s)))L[exp(f)](X(s)) ds

)
Et[f ]

exp(−f(X(t)))L[exp(f)](X(t))dt

+ exp(f(X(0))) exp

(∫ t

0

exp(−f(X(s)))L[exp(f)](X(s)) ds

)
dEt[f ]

= L[exp(f)](X(t))dt

+ exp(f(X(0))) exp

(∫ t

0

exp(−f(X(s)))L[exp(f)](X(s)) ds

)
dEt[f ].

It follows that

dM(exp(f))
t = exp(f(X(0))) exp

(∫ t

0

exp(−f(X(s)))L[exp(f)](X(s)) ds

)
dEt[f ]

and thus (M(exp(f))
t )t≥0 is a martingale if (Et[f ])t≥0 is a martingale. The second

announced result is a consequence from the fact that any function f on S can be
written as f = exp(g)−c exp(0), with c > −minS f) and the function g := ln(c+f),
so that M(f) = M(exp(g)) − cM(exp(0)) = M(exp(g)) is a martingale. �

We need more exponential martingales than those of the form (Et[f ])t≥0 where
f ∈ F(S), the space of functions defined on S. Let us note that for any f ∈ F(S),
we can write

∀ t ≥ 0, M(f)
t =

∑

x∈S

f(x)M(x)
t .



Continuous time Metropolis algorithms 227

This suggests to consider the new martingales

∀ t ≥ 0, M(f)
t =

∑

(x,y)∈S(2)

f(x, y)M(x,y)
t ,

where S(2) := S2 \ {(x, x) : x ∈ S} and f is a function defined on S(2). We denote
F(S(2)) the space of such functions and we will also see it as a subset of F(S2) by
extending functions f ∈ F(S(2)) on S2 with the convention that they vanish on the
diagonal {(x, x) : x ∈ S}. This enables to extend the modified carré du champ I
as a non-linear operator from F(S(2)) to F(S) by action on the second variable.
More explicitly, we define

∀ f ∈ F(S(2)), ∀ x ∈ S, I[f ](x) := I[f(x, ·)](x)
=

∑

y∈S\{x}

L(x, y)(exp(f(x, y)) − 1 − f(x, y)).

Next we associate to any f ∈ F(S(2)) the process (Et[f ])t≥0 via (4.7). We hope that

the fact that the same symbols M(f), I[f ] and E [f ] are used for related but different
meanings according to f ∈ F(S) or f ∈ F(S(2)) is not leading to confusion.

Proposition 4.9. For any initial condition µ, the process (Et[f ])t≥0 is a martingale
under Pµ.

Proof : We remark that (Et[f ])t≥0 is a multiplicative process, in the sense that

∀ t, s ≥ 0, Et+s[f ] = Et[f ]Es[f ] ◦ θt,
where (θt)t≥0 is the family of the natural shift mappings from D to itself:

∀ t, s ≥ 0, ∀ ω ∈ D, Xs(θt(ω)) = Xt+s(ω).

Thus taking into account the fact that (Et[f ])t≥0 is adapted and the Markov prop-
erty, we see that to prove that (Et[f ])t≥0 is a martingale under Pµ, it is sufficient
to show that

∀ t ≥ 0, ∀ x ∈ S, Ex[Et[f ]] = 1

To do so, we will use Proposition 4.8 and an approximation procedure. Let ǫ > 0
be given. We consider the F(S)-valued previsible process (Fǫ(t))t≥0 given by

∀ t ≥ 0, ∀ x ∈ S, Fǫ(t)(x) := f(X(ǫ⌊t/ǫ⌋), x),
where ⌊·⌋ stands for a modified integer part: for any r ∈ R+, ⌊r⌋ is the largest
integer number strictly less than r, with the exception that ⌊0⌋ = 0 (this is to
insure that (Fǫ(t))t≥0 is previsible, in fact this is also true if ⌊·⌋ is the usual integer
part, but to be convinced of this assertion, one needs to know that the jump times
of the underlying Markov processes are totally imprevisible and we don’t want to
enter in such technicalities, cf. for instance the book of Dellacherie and Meyer,
1980). Next we define

∀ t ≥ 0, M(Fǫ)
t :=

∑

x∈S

∫ t

0

Fǫ(s)(x) dM(x)
s (4.8)

and quite naturally

∀ t ≥ 0, Et(ǫ, f) := exp

(
M(Fǫ)

t −
∫ t

0

I[Fǫ(s)](X(s)) ds

)
.



228 Persi Diaconis and Laurent Miclo

Since for t ∈ [0, ǫ], Fǫ(t)(x) does not depend on t and depends on the underlying
trajectory (X(s))s≥0 only through X(0), the first part of Proposition 4.8 shows
that for any initial point x ∈ S,

∀ t ∈ [0, ǫ], Ex[Et(ǫ, f)] = 1.

More generally, conditioning successively with respect to D([0, iǫ]), D([0, (i− 1)ǫ]),
..., D([0, ǫ]), with i := ⌊t/ǫ⌋, the same argument shows that

∀ t ≥ 0, ∀ x ∈ S, Ex[Et(ǫ, f)] = 1.

Thus to deduce the announced result, it is sufficient to prove that for any fixed
x ∈ S, t ≥ 0 and f ∈ F(S(2)), Et(ǫ, f) converges to Et[f ] in L

1(Px) as ǫ goes
to 0+. One way to deduce this convergence is to show on one hand that
supǫ∈(0,1/2] Ex[E2

t (ǫ, f)] < +∞ and on the other hand that pointwise (Px-a.s. or

even only in probability would be enough), Et(ǫ, f) converges to Et[f ] as ǫ goes to
0+. For the first point, we compute that

Ex[E2
t (ǫ, f)] = Ex

[
exp

(
M(2Fǫ)

t − 2

∫ t

0

I[Fǫ](X(s)) ds

)]

= Ex

[
Et(ǫ, 2f) exp

(∫ t

0

(I[2Fǫ] − 2I[Fǫ])(X(s)) ds

)]

≤ exp

(
t sup
y,z∈S

I[2f(y, ·)](z) − 2I[f(y, ·)](z)
)
,

which is a finite upper bound independent from ǫ ∈ (0, 1/2].

Concerning the pointwise convergence, we note that for any s ≥ 0 and x ∈ S,

lim
ǫ→0+

Fǫ(s)(x) = f(X(s−), x).

Thus, passing in the limit in (4.8) (taking into account that in the finite setting the

stochastic differentials dM(x)
s can be seen as simple Stieljes differentials), we get

that

lim
ǫ→0+

M(Fǫ)
t =

∑

x∈S

∫ t

0

f(X(s−), x) dM(x)
s

=
∑

x∈S

∫ t

0

∑

y 6=x

f(y, x)1{y}(X(s−)) dM(x)
s

=
∑

(y,x)∈S(2)

f(y, x)

∫ t

0

1{y}(X(s−))dM(x)
s

=
∑

(x,y)∈S(2)

f(x, y)M(x,y)
t

= M(f)
t ,
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where the last but one equality comes from (4.6).
We also deduce that

lim
ǫ→0+

∫ t

0

I[Fǫ(s)](X(s)) ds =

∫ t

0

I[f(X(s−), ·)](X(s)) ds

=

∫ t

0

I[f(X(s), ·)](X(s)) ds

=

∫ t

0

I[f ](X(s)) ds

(where in the second equality we have used that X(s−) = X(s) almost everywhere
with respect to the Lebesgue measure ds), result leading to the wanted pointwise
convergence. �

Let the probability µ on S and the function f ∈ F(S(2)) be fixed. For any t ≥ 0,

consider P̃µ,[0,t] the probability on the measurable space (D,D([0, t])) which admits
Et[f ] as density with respect to Pµ,[0,t]. Since the process (Es[f ])s≥0 is a nonnegative

martingale starting from 1, it is easy to deduce that the family (P̃µ,[0,t])t≥0 satisfies

the compatibility relations of Kolmogorov: for 0 ≤ s ≤ t, the restriction of P̃µ,[0,t]

to (D,D([0, s])) is equal to P̃µ,[0,s]. By consequence there exists a unique probability

measure P̃µ on (D,D) such that for any t ≥ 0, the restriction of P̃µ to (D,D([0, t]))

coincides with P̃µ,[0,t]. Next result is the key to Theorem 4.6.

Theorem 4.10. The probability P̃µ is solution to the martingale problem associated

to µ and to the generator L̃ defined by

∀ x, y ∈ S, L̃(x, y) :=

{
L(x, y) exp(f(x, y)) , if x 6= y,

−∑z∈S\{x} L̃(x, z) , if x = y.

Proof : We use the criterion presented in Proposition 4.8. The law ofX(0) under P̃µ

is µ since P̃µ and Pµ coincides on the σ-field D([0, 0]) = σ(X(0)). So let g ∈ F(S)

be a test function. We want to show that (Ẽt[g])t≥0 is a martingale under P̃µ, where

∀ t ≥ 0, Ẽt[g] := exp

(
M̃(g)

t −
∫ t

0

Ĩ[g](X(s)) ds

)
,

with of course,

∀ t ≥ 0, M̃(g)
t := g(X(t)) − g(X(0)) −

∫ t

0

L̃[g](X(s)) ds,

= M(g)
t −

∫ t

0

(L̃− L)[g](X(s)) ds

∀ x ∈ S, Ĩ[f ](x) := exp(−f(x))L̃[exp(f)](x) − L̃[f ](x).

Due to the definition of P̃µ, (Ẽt[g])t≥0 is a martingale under P̃µ if and only if

(Ẽt[g]Et[f ])t≥0 is a martingale under Pµ. But for any t ≥ 0, we compute that

Ẽt[g]Et[f ] = exp

(
M(g)

t + M(f)
t −

∫ t

0

F (X(s)) ds

)
,

where F ∈ F(S) is the function defined by, for any x ∈ S,
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F (x) := (L̃− L)[g](x) + exp(−g(x))L̃[exp(g)](x) − L̃[g](x)

+L[exp(f(x, ·)](x) − L[f(x, ·)](x)
= exp(−g(x))L̃[exp(g)](x) + L[exp(f(x, ·)](x) − L[g + f(x, ·)](x)
=

∑

y 6=x

(
(exp(g(y) − g(x)) − 1)L̃(x, y) + (exp(f(x, y)) − 1)L(x, y)

)

−L[g + f(x, ·)](x)
=

∑

y 6=x

(
[exp(g(y) − g(x)) − 1] exp(f(x, y)) + exp(f(x, y)) − 1

)
L(x, y)

−L[g + f(x, ·)](x)
=

∑

y 6=x

(exp[g(y) − g(x) + f(x, y)] − 1)L(x, y) − L[g + f(x, ·)](x)

= I[h](x),

with h ∈ F(S(2)) given by

∀ (x, y) ∈ S(2), h(x, y) := g(y) − g(x) + f(x, y)

Let us check that

∀ t ≥ 0, M(g)
t + M(f)

t = M(h)
t .

It amounts to verify that M(g) = M(ḡ) where ḡ ∈ F(S(2)) is defined by

∀ (x, y) ∈ S(2), ḡ(x, y) := g(y) − g(x).

Indeed, we have for any t ≥ 0,

M(ḡ)
t =

∑

(x,y)∈S(2)

(g(y) − g(x))M(x,y)
t

=
∑

(x,y)∈S(2)

(g(y) − g(x))

∫ t

0

1{x}(X(s−)) dM(y)
s

=
∑

(x,y)∈S2

(g(y) − g(x))

∫ t

0

1{x}(X(s−)) dM(y)
s

=
∑

y∈S

g(y)

∫ t

0

∑

x∈S

1{x}(X(s−)) dM(y)
s

−
∑

x∈S

g(x)

∫ t

0

1{x}(X(s−)) d


∑

y∈S

M(y)
s




=
∑

y∈S

g(y)

∫ t

0

dM(y)
s −

∑

x∈S

g(x)

∫ t

0

1{x}(X(s−)) dM(1)
s )

=
∑

y∈S

g(y)M(y)
t

= M(g)
t ,
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where for the last but one equality we have used that the martingale associated to
the function identically equal to one, M(1), is null.

So finally we get that (Ẽt[g]Et[f ])t≥0=(Et[h])t≥0 is a martingale under Pµ accord-
ing to Proposition 4.9. �

We can now come to the

Proof : of Theorem 4.6 So let be given a generator L̃ satisfying L̃ ≪ L. We begin

by assuming that L̃ satisfies furthermore L̃ ≫ L. Then we consider the previous
construction with the function f ∈ F(S(2)) defined by

∀ (x, y) ∈ S(2), f(x, y) := ln

(
L̃(x, y)

L(x, y)

)
.

According to Theorem 4.10, we have

∀ T ≥ 0,
dP̃µ,[0,T ]

dPµ,[0,T ]
= ET [f ]

and this can be rewritten under the form given in Theorem 4.6.

In the general case, we introduce for ǫ > 0 the new generator L̃(ǫ) := L̃ + ǫL, to
which we apply the above result. Then with obvious notations, we get that for any
T > 0,

lim
ǫ→0+

exp


 ∑

x 6=y∈S

ln(A(ǫ)(x, y))N
(x,y)
T +

∫ T

0

H(ǫ)(X(s)) ds




= exp


 ∑

x 6=y∈S

ln(A(x, y))N
(x,y)
T +

∫ T

0

H(X(s)) ds


 .

Furthermore this pointwise convergence also takes place in L
p(Pµ,[0,T ]), for any

p ≥ 1, because it is not difficult to find three constants K1,K2,K3 ≥ 0 (de-

pending only on T , L and L̃) such that for any ǫ ∈ (0, 1], the random variable∑
x 6=y∈S ln(A(ǫ)(x, y))N

(x,y)
T +

∫ T
0 H(ǫ)(X(s)) ds is stochastically bounded above by

K1N +K2, where N is a Poisson variable of parameter K3, and the latter random
variable admits exponential moments of all order. We deduce that as ǫ → 0+, the

probability P
(ǫ)
µ,[0,T ] converges in total variation toward the probability P̂µ,[0,T ] on

(D,D([0, T ])) which has exp
(∑

x 6=y∈S ln(A(x, y))N
(x,y)
T +

∫ T
0 H(X(s)) ds

)
as den-

sity with respect to Pµ,[0,T ]. It follows that the family (P̂µ,[0,T ])T≥0 satisfies the
Kolmogorov compatibility conditions, so that its elements are the restrictions to

the σ-fields (D([0, T ]))T≥0 of a probability P̂µ on (D,D). Furthermore the above

convergence in total variation and the convergence of L̃(ǫ) to L̃ imply that P̂µ is the

solution of the martingale problem associated to µ and L̃, i.e. P̂µ = P̃µ. Thus the
conclusions of Theorem 4.6 also hold in the general case. �

We end up this appendix with two remarks.

Remark 4.11. Let us justify the already announced fact that the necessary condition

given in Lemma 4.4 is also sufficient. So let L̃ a generator satisfying the conclusions
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of this lemma. Let L̂ be another generator such that

∀ x ∈ S̃µ, ∀ y ∈ S, L̂(x, y) = L̃(x, y).

Then P̃µ is also solution to the martingale problem associated to µ and L̂, because

for any f ∈ F(S) and any t ≥ 0 we have
∫ t
0
L̃[f ](X(s)) ds =

∫ t
0
L̂[f ](X(s)) ds,

P̃µ-a.s. In particular consider L̂ defined by

∀ x, y ∈ S, L̂(x, y) :=

{
L̃(x, y) , if x ∈ S̃µ,
0 , otherwise.

Since L̂≪ L, we can apply Theorem 4.6 to get that for any T ≥ 0, P̃µ,[0,T ] ≪ Pµ,[0,T ]

(and the expressions for the density given in Theorem 4.6 are also valid, with L̃

and L̂).

The second remark goes in the direction of an abstract Girsanov theory.

Remark 4.12. The carré du champ alluded to in Remark 4.7 can be polarized into
a bilinear map from F(S)2 to F(S) via the formula

∀ f, g ∈ F(S), ∀ x ∈ S, Γ[f, g](x) := L[fg](x) − f(x)L[g](x) − g(x)L[f ](x).

Next, similarly to what we have done before Proposition 4.9, we can extend Γ to
F(S2) by action on the second variable:

∀ f, g ∈ F(S2), ∀ x ∈ S, Γ[f, g](x) := Γ[f(x, ·), g(x, ·)](x)

Now let a function f ∈ F(S(2)) be fixed and consider the generator L̃ constructed
in Theorem 4.10. Then its action on functions can be expressed under the form

∀ g ∈ F(S), ∀ x ∈ S, L̃[g](x) = L[g](x) + Γ[exp(f), g](x)

(where g in the carré du champ is considered as a function of two variables via
g(x, y) = g(y) for any x, y ∈ S).

This procedure associating to a bivariate function f ∈ F(S(2)) an exponential
martingale (Et[f ])t≥0 which leads to the construction of the solution to the martin-

gale problem corresponding to the operator L̃ given in the above form is in fact very
general Indeed, under regularity assumptions, we can recover in this way all the
transformations of the underlying probability of a Markov process which preserve
the Markov property and which are absolutely continuous over finite time horizons.
These generalized Girsanov transformations were first exihibited by Kunita (1969)
which used another formalism. Heuristically, these changes amounts to modifying
the intensity of jumps and adding drifts in the directions permitted by the diffusion
coefficients. According to the above formulation, they can be parameterized by
functions belonging to subspaces of F(S(2)) (satisfying some regularity or bound-
edness assumptions in general) quotiented by the subspace of bivariate functions
whose carré du champ vanishes everywhere. For instance starting with the Lapla-
cian generator over a Riemannian compact manifold, we recover all the vector fields
as parameters of Girsanov transformations in this setting, see also the discussion
after Proposition 4.14 in Appendix 2.
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Appendix 2: the usual Girsanov theorem

We present here this famous result in the compact diffusion framework of Sec-
tion 4.

First we recall a preliminary condition for absolute continuity on finite time hori-
zons, relatively to generators given in the form (4.1), so no Riemannian structure
is necessary.

Proposition 4.13. Let µ and µ̃ be two initial distributions, if for some T > 0 we

have L(X̃(eµ)([0, T ])) ≪ L(X(µ)([0, T ])) then on any chart C, we have

∀ x ∈ C, a(x) = ã(x).

Proof : First we assume that µ = µ̃ = δx, the Dirac mass at some fixed point x ∈ S
and we consider C an open chart containing x. Let us show that in this chart, we
have a(x) = ã(x).
For i ∈ J1, nK, we denote by xi the ith coordinate mapping in C centered in x
(namely xi(x) = 0 for all i ∈ J1, nK). Let (vi)i∈J1,nK ∈ R

n be a given vector and

consider C′ an open set of S satisfying x ∈ C′ and C̄′ ⊂ C. It is possible to extend
the mapping C′ ∋ x 7→∑

i∈J1,nK vixi into a function f ∈ C∞. Since the martingale

M(f) associated to f is continuous, the iterated logarithm law (see for instance the
book of Revuz and Yor, 1999) shows that a.s.

lim sup
t→0+

M(f)
t√

〈M(f)〉t ln(ln(1/〈M(f)〉t))
= 1,

where according to Remark 4.7, the bracket 〈M(f)〉 of the martingale M(f) is given
by

∀ t ≥ 0, 〈M(f)〉t =

∫ t

0

Γ[f ](X(δx)(s)) ds.

We compute that on any chart C′′, the carré du champ Γ[f ] can be written down
as

∀ y ∈ C′′, Γ[f ](y) =
∑

i,j∈J1,nK

ai,j(y)∂if(y)∂jf(y).

In particular, since a.s. limt→0+ X
(δx)(t) = x, it follows that as t goes to zero,

〈M(f)〉t ∼ t
∑

i,j∈J1,nK

ai,j(x)vivj

= tvta(x)v

and we get that a.s.,

lim sup
t→0+

f(X(δx)(t))√
t ln(ln(1/t))

= lim sup
t→0+

M(f)
t√

t ln(ln(1/t))

=
√
vta(x)v.

Similarly we have a.s.

lim sup
t→0+

f(X̃(δx)(t))√
t ln(ln(1/t))

=
√
vtã(x)v,
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so we deduce that for any vector v ∈ R
n,

vtã(x)v = vta(x)v.

Since a(x) and ã(x) are symmetrical, this relation implies that ã(x) = a(x).
More generally, for any initial distributions µ and µ̃, the above arguments show

that for any function f ∈ C∞, we have a.s.,

lim sup
t→0+

f(X(µ)(t))√
t ln(ln(1/t))

=
√

Γ[f ](X(µ)(0)),

lim sup
t→0+

f(X̃(eµ)(t))√
t ln(ln(1/t))

=

√
Γ̃[f ](X(eµ)(0)).

Assume now that the support of µ̃ is the whole state space S and that the conclusion
of the above proposition is not satisfied. Then we can find a chart C, a point

x0 ∈ C and a vector v ∈ R
n such that η = β − β̃ 6= 0, where β := vta(x0)v

and β̃ := vtã(x0)v. Let f ∈ C∞ be a function as above which coincides with
x 7→ ∑

i∈J1,nK vixi on a neighborhood C′ ⊂ C of x0. Then we can find another

neighborhood C′′ ⊂ C′ such that for any x ∈ C′′,

|Γ[f ](x) − β| ≤ η/3,∣∣∣Γ̃[f ](x) − β̃
∣∣∣ ≤ η/3.

Assume for instance that β > β̃ and consider in the space of continuous trajectories
from [0, T ] to S the event

E :=

{
X(0) ∈ C′′, lim sup

t→0+

f(X(t))√
t ln(ln(1/t))

≤ β + β̃

2

}
,

where (X(t))t∈[0,T ] is the canonical coordinate process. Then under L(X(µ)([0, T ])),

E is negligible while it has probability µ̃(C′′) > 0 under L(X̃(eµ)([0, T ])) and this
is contradictory with our absolute continuity assumption. So the conclusion of the
above proposition also holds if the support of µ̃ is S.

Finally we consider the general case for the initial distributions µ and µ̃. Due to
the compactness of S and our assumption on the diffusive matrix fields, the operator

L̃ is uniformly elliptic, so for T > 0 the law µ̃T/2 of X
(µ)
T/2 admits a smooth and pos-

itive density and in particular its support is S. Thus applying the above arguments

to L(X(µ)([T/2, T ])) and L(X̃(eµ)([T/2, T ])) we get the announced conclusion, at

least if we know that L(X̃(eµ)([T/2, T ])) ≪ L(X(µ)([T/2, T ])). But this is an imme-

diate consequence of the assumption L(X̃(eµ)([0, T ])) ≪ L(X(µ)([0, T ])). �

Now we assume that the compact manifold S is endowed with a Riemannian
structure and that the generators are written under the form (4.2). The usual
Girsanov formula can then be stated as:

Proposition 4.14. For any initial distribution µ and any finite time horizon T ≥ 0,

the law L(X̃(µ)([0, T ])) is absolutely continuous with respect to L(X(µ)([0, T ])) and
the corresponding Radon-Nikodym density is equal to

dL(X̃(µ)([0, T ]))

dL(X(µ)([0, T ]))
= exp

(
M(eb−b)

T − 1

2

∫ T

0

∣∣∣̃b − b
∣∣∣
2

(X(t)) dt

)
,
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where (M(eb−b)
t )t≥0 is a martingale whose bracket is given by

∀ t ≥ 0, 〈M(eb−b)〉t =

∫ t

0

∣∣∣̃b− b
∣∣∣
2

(X(s)) ds

(in these formulas (X(t))t∈[0,T ] stands for a generic trajectory, in the proof below it

will coincides with (X(µ)(t))t∈[0,T ], which is a more natural notation when working

under L(X(µ)([0, T ]))).

This result can be proven by an approach formally similar to that of Appendix
1. Indeed, if F is a smooth function on S2 such that

∀ x ∈ S, ∇yF (x, y)|y=x = b̃(x) − b(x),

then with the notations of Appendix 1, M(eb−b) corresponds to M(F ) (see also
Remark 4.12). The definition of the martingales associated to functions of two
variables goes through an approximation procedure, starting with simple functions
of the kind F = f ⊗ g, with f, g ∈ C∞, for which we take

∀ t ≥ 0, M(F )
t :=

∫ t

0

f(X(µ)(s−)) dM(g)
s . (4.9)

The completion of the vector space generated by functions of the form F = f ⊗ g,
with f, g ∈ C∞, is done with respect to the semi-norm ||| · ||| on C∞(S2) defined by

∀ F ∈ C∞(S2), |||F ||| := sup
x∈S

Γ[F (x, ·)](x), (4.10)

where Γ is the carré du champ associated to L (acting on the second variable in
the above formula).

In the diffusion framework the computation of the Radon-Nikodym densities are
even easier, for instance the martingale

(Et [̃b− b])t≥0 :=

(
exp

(
M(eb−b)

t − 1

2

∫ t

0

∣∣∣̃b− b
∣∣∣
2

(X(µ)(s) ds

))

t≥0

(4.11)

is the Doléans-Dade exponential of the martingale M(eb−b), namely the solution of
the s.d.e.

E0 [̃b− b] = 1,

∀ s ≥ 0, dEs [̃b− b] = Es− [̃b− b] dM(eb−b)
s

(in the diffusion setting, the s− (indicating left limit) in the above formula and in
(4.9) can be replaced by s).
But for our restricted purposes here, it is not necessary to develop this approach
and we resort to a more traditional point of view:

Proof : of Proposition 4.14 To construct directly the martingale M(eb−b), we imbed
S isometrically into R

N via the Nash’s theorem (see for instance the book of Han
and Hong, 2006). Let (ei)i∈J1,NK be the canonical basis of R

N . For each i ∈
J1, NK and x ∈ S, we denote vi(x) ∈ TxS the orthogonal projection of ei on
the vector space TxS (seen as a vector subspace of the Euclidean space R

N ). If
X(µ)(0) is given and distributed according to µ on S and if ((Wi(t))t≥0)i∈J1,NK is
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a family of independent standard one-dimensional Brownian motions (furthermore
independent from X(µ)(0)), it is well-known that the solution (X(µ)(t))t≥0 of s.d.e.

∀ t ≥ 0, dX(µ)(t) =
∑

i∈J1,NK

vi(X
(µ)(t)) dWi(t) + b(X(µ)(t)) dt

stays in S and that its law is solution to the martingale problem associated to µ
and L. Indeed, using It’s formula we get that for any f ∈ C∞,

f(X(µ)(t)) = f(X(µ)(0)) +

∫ t

0

L[f ](X(µ)(s)) ds+ M(f)
t ,

where M(f) is the martingale defined by

∀ t ≥ 0, M(f)
t :=

∑

i∈J1,NK

∫ t

0

〈vi,∇f〉(X(µ)(s)) dWi(s).

Now we define the martingale M(eb−b) by

∀ t ≥ 0, M(eb−b)
t :=

∑

i∈J1,NK

∫ t

0

〈̃b− b, vi〉(X(µ)(s)) dWi(s)

and we compute that its bracket is given by

∀ t ≥ 0, 〈M(eb−b)〉t :=
∑

i∈J1,NK

∫ t

0

〈̃b− b, vi〉2(X(µ)(s)) ds

=
∑

i∈J1,NK

∫ t

0

〈(̃b − b)(X(µ)(s)), ei〉2 ds

=

∫ t

0

∣∣∣̃b− b
∣∣∣
2

(X(µ)(s)) ds.

Since the martingale M(eb−b) is continuous, we deduce that the process E [̃b − b]
defined in (4.11) is a positive martingale starting from 1. Thus via Kolmogorov’s

theorem, we can use it to construct a probability measure P̃µ on the σ-algebra

generated by X(µ) by imposing that on σ(X
(µ)
t : t ∈ [0, T ]), dP̃µ/dPµ = ET [̃b− b],

for any T ≥ 0.

Next for any function f ∈ C∞, we get the co-bracket of M(eb−b) and M(f) by a
similar computation:

∀ t ≥ 0, 〈M(eb−b),M(f)〉t :=
∑

i∈J1,NK

∫ t

0

〈̃b− b, vi〉(X(µ)(s))〈∇f, vi〉(X(µ)(s)) ds

=

∫ t

0

〈̃b − b,∇f〉(X(µ)(s)) ds.

It follows that the process

((
M(f)

t −
∫ t

0

〈̃b− b,∇f〉(X(µ)(s)) ds

)
Et [̃b− b]

)

t≥0
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is a martingale under Pµ, fact which is immediately translated into the assertion

that the process M̃(f) defined by

∀ t ∈ R+, M̃(f)
t := M(f)

t −
∫ t

0

〈̃b − b,∇f〉(X(µ)(s)) ds

= f(X(µ)(t)) − f(X(µ)(0)) −
∫ t

0

L̃[f ](X(µ)(s)) ds

is a martingale under P̃µ. Thus the image of P̃µ under the process X(µ) is the

solution to the martingale problem associated to µ and L̃ and the validity of the
above proposition follows. �

This absolute continuity property enables to obtain a converse result to Propo-
sition 4.13:

Remark 4.15. By conditioning with respect to X(µ)(0) and applying Proposition
4.14 with µ a Dirac mass, we get the equivalence between the following assertions:

• We have µ̃≪ µ and ã = a.

• There exists T > 0 such that L(X̃(eµ)([0, T ])) ≪ L(X(µ)([0, T ])).

• For any T ≥ 0, we have L(X̃(eµ)([0, T ])) ≪ L(X(µ)([0, T ])).

Furthermore in this situation, the Radon-Nikodym density is given, for any T ≥
0, by

dL(X̃(eµ)([0, T ]))

dL(X(µ)([0, T ]))
=

dµ̃

dµ
(X(µ)(0)) exp

(
M(eb−b)

T − 1

2

∫ T

0

∣∣∣̃b− b
∣∣∣
2

(X(µ)(t)) dt

)
.
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