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Abstract

We present a weighted sampling Moran particle system model for the numerical solving of a
class of Feynman–Kac formulae which arise in di�erent �elds. Our major motivation was from
nonlinear �ltering, but our approach is context free. We will show that under certain regularity
conditions the resulting interacting particle scheme converges to the considered nonlinear equa-
tions. In the setting of nonlinear �ltering, the L1-convergence exponent resulting from our proof
also improves recent results on other particle interpretations of these equations. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

1.1. Motivations

Initially, our motivation comes from nonlinear �ltering. Heuristically, its purpose
is to guess the position at some time t of a Markovian signal process, given some
undirect and noisy observations made up to this time t. The usual way to solve this
problem is to compute the relative conditional expectations. If the observation process
is a uniformly elliptic di�usion and if the signal merely acts on its drift, it is well
known, via several uses of Girsanov formula, that the conditional distributions under
interest can be easily written in terms of renormalized Feynman–Kac formulae.
But for the practitioner this theoretical solution is di�cult to manipulate, since the

Feynman–Kac formulae involve integration over a set of trajectories which is a very
large space.
Our purpose here is to solve numerically these formulae by approximating them via

interacting particle systems. It seems that the algorithm we propose is the �rst one
which is genuinely continuous time, i.e. without any resort to discretization.
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The basic mechanism behind its evolution is a Moran interaction, which is traditional
in measure valued process theory as a particle approximation of the Fleming–Viot
process (cf. Dawson (1993)). But the latter is stochastic, whereas we are looking for
a deterministic measure valued dynamical system in the limit. We will manage to
get it, by modifying the renormalization and by using a nonsymmetrical weight. In
fact, our process should rather be seen as a Nanbu particle system approximation of
a particular spatially homogeneous generalized Boltzmann equation (cf. Graham and
M�el�eard, 1997).
But our approach will be di�erent from the proofs arising in the literature of this

�eld, and will take into account the speci�city of our model. So the convergence
analysis will rather be based on martingales and semi-group technics. May be our
semi-group method can be extended to more general particle models whose interaction
is expressed through the jumps, as those presented in Graham and M�el�eard (1997).
The paper has the following structure. In Section 2 we introduce some basic ob-

jects and terminology and discuss the hypotheses needed for further developments. In
Section 3 we consider the in�nitesimal pregenerator associated to the Moran particle
scheme. The study of the weak propagation of chaos is performed in Section 4.
In the last section, we present several examples of mutation pregenerators that can

be handled in our framework including bounded generators, Riemannian and Euclidean
di�usions.
But we will not discuss here about the applications to nonlinear �ltering problems.

We just point out that in the more traditional situations, the signals are also such
di�usions, that is why we have treated these examples with some details, showing how
our abstract hypotheses retranscribe in this set-up.

1.2. Description of our Moran particle model and statement of some results

On a Polish space E, we assume that we are given two time inhomogeneous and
measurable families U = (Ut)t¿0 and L = (Lt)t¿0, respectively, of measurable, non-
negative and bounded functions and of pregenerators. Let us denote by M1(E) the set
of all probability measures on E, and we �x some element �0 ∈M1(E). Let (Xt)t¿0 be
a Markovian process whose initial law is �0 and whose family of pregenerators is L.
The object of interest in this article is the measure valued dynamical system de�ned
by the renormalized Feynman–Kac formulae:

∀t¿0; �t(f) =
E[f(Xt) exp(

∫ t
0 Us(Xs) ds)]

E[exp(
∫ t
0 Us(Xs) ds)]

;

where f is a measurable bounded function on E. It appears that (�t)t¿0 is a particular
solution of the equation

d
dt
�t(f) = �t(Ltf) + �t(fUt)− �t(f)�t(Ut): (1)

We get formally the nature of our interacting particle schemes by noting that, for
regular functions f, (1) can be rewritten as

d
dt
�t(f) = �t(Lt; �t (f));
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where Lt; �, for t¿0 and �∈M1(E) �xed, is a pregenerator on E, de�ned on a suitable
domain by

Lt; �(f)(x) = Lt(f)(x) +
∫
(f(z)− f(x))Ut(z)�(dz): (2)

Starting from this formula, we consider an interacting N -particles system (�(N )t )t¿0=
((�(N;1)t ; : : : ; �(N;N )t ))t¿0, which is a time-inhomogeneous Markov process on the product
space EN ; N¿1, whose pregenerator L(N )

t at time t¿0 acts on functions � belonging
to a good domain by

L
(N )
t (�)(x1; : : : ; xN ) =

N∑
i=1

L
(i)
t;m(N )(x)(�)(x1; : : : ; xN ) (3)

with

∀x = (x1; : : : ; xN )∈EN ; m(N )(x) =
1
N

N∑
i=1

�xi ∈M1(E); (4)

where �a stands for the Dirac measure at a∈E and where the notation L
(i)
t; � have been

used instead of Lt; � when it acts on the ith variable of �(x1; : : : ; xN ). Assume that
the initial particle system �(N )0 = (�(N;1)0 ; : : : ; �(N;N )0 ) consists of N -independent random
variables with common law �0. The main purpose of this work is to show that the
empirical distributions of the N -particle system

�(N )t =
1
N

N∑
i=1

��(N; i)t

weakly converges as N → ∞ to the desired solution of (1) and to give an upper bound
on the speed.

Theorem 1.1. Under certain regularity conditions; for any T¿0 and for any nice test
function f;

sup
06t6T

E(|�(N )t (f)− �t(f)|)6 CT√
N
&f& (5)

for some constant CT which only depends on the time parameter T (in particular
through certain quantities associated with the underlying Markov semigroup; this
dependence will be later more explicit); and where the norm &·&will be explained
in Section 2.

In nonlinear �ltering settings the pregenerator of the particle scheme will use the
observation record and the quenched version of (5) holds although the constant CT will
also depend on the observations up to time T , because Ut and Lt depend on the ob-
servation at time t¿0. Note that for this kind of application, the time-inhomogeneous
assumption is crucial due to the fact that we cannot ask for much regularity in time (typ-
ically Ut and Lt would not be di�erentiable with respect to time t¿0, and this forbids
us from using the traditional trick of considering the homogeneous process (t; Xt)t¿0,
since the time–space function U will not belong to the domain of its generator). In
this framework the same scheme can also be used to approximate the optimal �lter.
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2. Hypotheses and preliminary results

To describe precisely our model, let us introduce some notations. Let E be a Polish
space, endowed with its Borelian structure. We denote by M(E) the space of all
nonnegative and �nite Borel measures on E. We will also designate by Cb(E) (resp.
Bb(E)) the Banach space of all bounded continuous functions (resp. of all bounded
measurable functions), both sets being endowed with the supremum norm ‖ · ‖.
We now need an E-valued time-inhomogeneous Markov process X = {Xt ; t¿0}.

There are several ways of giving such an object, but perhaps the more convenient is
via martingales problems (cf. Ethier and Kurtz, 1986, for a general reference).
Let A be a dense sub-algebra of Cb(E) which is supposed to contain 5, the function

taking everywhere the value 1.
Let (Lt)t¿0 be a measurable family of pregenerators from the domain A to Cb(E):

for each t¿0; Lt :A → Cb(E) is a linear operator satisfying the maximum principle
(for the de�nition of this property, see for instance Proposition 2:2, p. 13 of Liggett
(1985)) and such that Lt(5) ≡ 0, and for each f∈A �xed,

R+ × E 3 (t; x) 7→ Lt(f)(x)

is B(R+) ⊗ E-measurable, where B(R+) (respectively E) is the �-algebra of the
Borelian sets on R+ (resp. on E). To get rid of integrability problems, we will also
impose that for all f∈A and all T ¿ 0,∫ T

0
‖ Lt(f) ‖ dt ¡+∞:

For t¿0, let D([t;+∞[; E) be the set of all c�adl�ag paths from [t;+∞[ to E, and
we denote by (Xs)s¿t the process of canonical coordinates on D([t;+∞[; E), which
generate on this space the �-algebra Dt;+∞ = �(Xs: s¿t).
Our �rst hypothesis is:

(H1) For all (t; x)∈R+×E; there exists a unique probability Pt; x on (D([t;+∞[ ; E);
Dt;+∞) such that

• Xt ◦ Pt; x = �x, the Dirac mass in x, and
• for all f∈A, the process(

f(Xs)− f(Xt)−
∫ s

t
Lu(f)(Xu) du

)
s¿t

is a (Dt; s)s¿t-martingale under Pt; x.

Let us �rst precise that the previous martingales problem can be extended to a
time–space version:
Let A be the set of absolutely continuous functions g :R+ → R admitting a bounded

derivative, i.e. there exists a bounded measurable function g′ :R+ → R, such that for
all t¿0,

g(t) = g(0) +
∫ t

0
g′(s) ds:
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On A⊗A, we de�ne the operator L given on functions of the form f= g⊗ h, with
g∈A and h∈A, by

∀t¿0; ∀x∈E; L(f)(t; x) = g′(t)h(x) + g(t)Lt(h)(x):

Then we have:

Lemma 2.1. Let (t; x)∈R+×E be �xed. Under Pt; x; for each f∈A⊗A; the process
(Ms(f))s¿t de�ned by

∀s¿t; Ms(f) = f(s; Xs)− f(t; Xt)−
∫ s

t
L(f)(u; Xu) du

is a square integrable martingale and its increasing process has the form

∀s¿t; 〈M (f)〉s =
∫ s

t
�(f;f)(Xu; u) du;

where � is the “carr�e du champ” bilinear operator associated to the pregenerator L
and de�ned by

∀�; ’∈A⊗A; �(�; ’) = L(�’)− �L(’)− ’L(�): (6)

We can consider, for s¿0, the “carr�e du champ” bilinear operator �s associated to
the pregenerator Ls, which is naturally de�ned by

∀f; g∈A; �s(f; g) = Ls(fg)− fLs(g)− gLs(f)
and we easily check that for all f∈A⊗A,

∀(s; x)∈R+ × E; �(f;f)(s; x) = �s(f(s; :); f(s; :))(x)

(so no derivability of f on the time variable is required to de�ne �(f;f), and this
fact will often be used below).
But A ⊗A is quite too small for our purpose, so let us extend it in the following

way: for T ¿ 0 �xed, we denote by A(T;A) the set of functions f : [0; T ] × E → R
such that for all 06t6T; f(t; ·)∈A and for which there exists a sequence (fn)n¿0
of elements of AT ⊗A satisfying supn¿0; s∈[0;T ]; x∈E |L(fn)(s; x)|¡+∞; fn * f and
�(fn − f;fn − f) * 0, where * stands for the bounded pointwise convergence on
[0; T ] × E, and where AT is the set of restrictions to [0; T ] of functions belonging
to A.
We will need some regularity conditions on the family of probabilities (Pt; x)(t; x)∈R+×E ,

and these are expressed in the following hypothesis:
(H2) For all T ¿ 0 and ’∈A �xed, the application

FT;’ : [0; T ]× E 3 (t; x) 7→ Et; x[’(XT )] (7)

belongs to A(T;A).

This property has a lot of interesting consequences:

• First, we get that the application FT;’ is measurable with respect to B([0; T ])⊗ E,
and it is not di�cult to deduce from this fact, by using the right continuity of the
trajectories, that the function

4× E 3 (t; s; x) 7→ Et; x[’(Xs)]
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is measurable with respect to the natural �-algebra B(4)⊗E, where 4={(t; s)∈R2+:
06t6s}.
If �0 ∈M1(E), P�0 will denote the probability on (D([0;+∞[; E);D0;+∞)

de�ned by

∀A∈D0;+∞; P�0 (A) =
∫
E
P0; x(A)�0(dx):

It is the unique solution to the martingales problem associated to (Lt)t¿0 whose
initial law is �0.

• The strongly continuous and positive inhomogeneous semi-group (Ps; t)06s6t on
Bb(E) associated with the transition probabilities of X

def := (Xt)t¿0 is de�ned by

∀06s6t; ∀’∈Bb(E); ∀x∈E; Ps; t(’)(x) = Es; x[’(Xt)];

where Es; x is the expectation relative to Ps; x.
The �rst assumption in the de�nition of A(T;A) shows in fact that for all 06s6t,

A is stable under Ps; t .
In particular, since Ps; t is a contraction (on Bb(E)) and A is dense in Cb(E), it

follows that Cb(E) is stable by the operators Ps; t , 06s6t, so the Markov process
(Xt)t¿0 is Fellerian.

• But the consequence of (H2) which really matters for us is the following one: let
us remark that if we note for T ¿ 0 and ’∈A,

∀06t6T; Nt(T; ’) = Pt;T (’)(Xt);

then the Markov property of X also implies that (Nt(T; ’))06t6T is a martingale.

The interest of (H2) is that it enables us to get the following informations about
this martingale (which would be immediate, under stronger regularity assumptions):

Lemma 2.2. The martingale (Nt(T; ’))06t6T is a.s. c�adl�ag; and its increasing
process is

∀06t6T; 〈N (T; ’)〉t =
∫ t

0
�s(Ps;T (’); Ps;T (’))(Xs) ds

Proof. Let (fn)n¿0 be a sequence of functions of AT ⊗A corresponding to FT;’, in
the sense of the above de�nition. From the general inequality

�(fn − fm; fn − fm)62(�(fn − FT;’; fn − FT;’) + �(fm − FT;’; fm − FT;’))
valid for all n; m¿0, we obtain (via the application of a dominated convergence
theorem) that

lim
n;m→∞ E�0 [(MT (fn)−MT (fm))

2] = lim
n;m→∞ E�0 [〈M (fn − fm)〉T ] = 0

and it is quite standard to deduce from this Cauchy convergence that there exists a
martingale (Mt)06t6T such that

lim
n→∞ E�0

[
sup

06t6T
(Mt(fn)−Mt)2

]
= 0:
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But we are also assurred, for 06t6T , of the pointwise bounded convergence of
fn(t; Xt)−fn(0; X0) toward Nt(T; ’)−N0(T; ’), so we have the pointwise convergence
(may be only for a subsequence) of

∫ t
0 L(fn)(s; Xs) ds toward Mt−Nt(T; ’)−N0(T; ’).

This shows that the latter process (for 06t6T ) is previsible, as a limit of previs-
ible processes, that it has bounded variations (from our assumption on the uniform
boundedness of the L(fn), n¿0), and as we already know that it is a martingale, we
conclude that up to an evanescent set, it is null.
Then again an application of convergence theorems enables us to see that the process(

[Nt(T; ’)− N0(T; ’)]2 −
∫ t

0
�s(Ps;T (’); Ps;T (’))(Xs) ds

)
06t6T

is a martingale, from where the second a�rmation of the lemma follows.
Note furthermore that hypothesis (H2) insures that (Nt(T; ’))06t6T is a.s. c�adl�ag,

since it is equal to (Mt)06t6T , which is c�adl�ag as a locally uniform (in time) limit of
c�adl�ag martingales.

This property leads us to extend the de�nition of L: for T ¿ 0 �xed, let D(T; L) be
the vector space generated by AT ⊗A and by {FT;’; F2T;’: ’∈A}.
We agree to set, for all ’∈A,
∀06t6T; ∀x∈E,

L(FT;’)(t; x) = 0;

L(F2T;’)(t; x) = �t(Pt;T (’); Pt;T (’))(x):

Finally, we will also need in the sequel the following more quantitative assumption:
(H3) There exists a convex subset D⊂A with the following properties:

• 5∈D; A=
⋃
n¿1 nD (so we have 0∈D), and ‖ ’ ‖61 for any ’∈D.

• For any time T ¿ 0, there exist three constants C(1)T ; C
(2)
T ; C

(3)
T ¡∞, increasing in

T , such that for any 06t6T and any ’∈D,

Ut’∈C(1)T D;

Pt;T (’)∈C(2)T D;

‖ �t(Pt;T (’); Pt;T (’)) ‖6C(3)T
(in particular, we will have Ut ∈C(1)T D, for 06t6T , and so for all t¿0; Ut ∈Bb(E),
and note that the three requirements above are still satis�ed if T is replaced by s
in the left-hand sides; with 06t6s6T )

Denote by &·& the jauge of D in A:

∀’∈A; &’&= inf{l¿ 0: ’=l∈D}
The convexity and the �rst property of D enable us to see that &·&is in fact a

norm on A (the one alluded to in the introduction), which satis�es

∀’∈A; &’&¿ ‖ ’ ‖ :
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Remark 2.3. This norm can be di�erent from the one usually put on A, relatively to
the interval [0; T ], and which is de�ned by

∀’∈A; ‖ ’ ‖A;T = ‖ ’ ‖ + sup
06t6T

‖ Lt’ ‖

under the extra assumption that for all ’∈A; ‖ ’ ‖A;T ¡+∞.

An example of more explicit domain D and related jauge &·&will be given later,
see the �rst part of Section 5.
As all our hypotheses on the underlying Markov process X are now put forward, we

can describe the problem we are interested in. Let a probability �0 ∈M1(E) be given,
and consider a measurable application U : R+ × E 3 (t; x) 7→ U (t; x)∈R+, locally
bounded, in the sense that for all given T¿0, the restriction of U on [0; T ] × E is
bounded. The measure valued dynamical system under study is de�ned by the following
Feynman–Kac formulae, for t¿0 and f∈Bb(E),


t(f)
def= E�0 [f(Xt)e

∫ t
0
Us(Xs) ds]; (8)

�t(f)
def= 
t(f)=
t(5);

where for a time s¿0 �xed, Us denote the bounded measurable application E 3 x 7→
U (s; x)∈R+.
These Feynman–Kac formulae are commonly used as a probabilistic representation

for solutions of certain parabolic di�erential equations (see for instance Krylov (1964)
and Sznitman (1997) and references therein) and it also plays a major role in nonlinear
�ltering theory.
In view of the functional representation (8) the temptation is to apply classical

Monte-Carlo simulations based on a sequence of independent copies of the process
X . Unfortunately, it is well known that the resulting particle scheme is not e�cient
mainly because the deviation of the particles may be too large and the growth of the
exponential weights with respect to the time parameter is di�cult to control.
This is not astonishing: roughly speaking the law of Xt and the desired distribution

�t may di�er considerably and there may be too few particles in the space regions with
height �t-mass probability. In contrast to the latter the Moran particle approximating
model involve the use of a system of particles which evolve in correlation with each
other and give birth to o�springs depending on the �tness function U . This guarantees
an occupation of the probability space regions proportional to their probability mass
thus providing a stochastic grid which is related to the �tness function U .
Let us present the two evolution equations that will be used in the foregoing

development.

Proposition 2.4. The measure valued process {�t ; t¿0} satis�es the following two
integral equations; for all t¿0:

∀f∈A;

�t(f) = �0(f) +
∫ t

0
�s(Ls(f)) ds+

∫ t

0
[�s(fUs)− �s(f)�s(Us)] ds; (9)
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∀f∈Bb(E);

�t(f) = �0(P0; t(f)) +
∫ t

0
[�s(UsPs; t(f))− �s(Ps; t(f))�s(Us)] ds: (10)

Furthermore; there exists a unique solution of (10) for arbitrary initial conditions
�0 ∈M1(E).

Proof. Since in the Radon–Nykodim sense, we have a.s. for t¿0,

�t(Ut) =
d
dt
log E�0

[
exp

∫ t

0
Us(Xs) ds

]
;

we obtain

∀f∈Bb(E); �t(f) = E�0 [f(Xt)e
∫ t
0
Ũ s(Xs) ds]; (11)

where for all s¿0 and all x∈E, we have de�ned Ũ s(x) = Us(x)− �s(Us).
Now, writing that for f∈A, there exists a martingale M (f) = (M (f)

t )t¿0 such that
for all t¿0,

f(Xt) = f(X0) +
∫ t

0
Ls(f)(Xs) ds+M

(f)
t

and that

e
∫ t
0
Ũ s(Xs) ds = 1 +

∫ t

0
Ũ s(Xs) e

∫ s
0
Ũ u(Xu) du ds; (12)

we get by standard stochastic calculus that {�t ; t¿0} is a solution of (9). To prove
(10), we use one more time (12), because it yields that the right-hand side of (11)
equals

�0(P0; t(f)) +
∫ t

0
E�0 [f(Xt)Ũ s(Xs) e

∫ s
0
Ũ u(Xu) du] ds: (13)

Using the Markov property of X , the last member of (13) is equal to∫ t

0
E�0 [Ps; t(f)(Xs)Ũ s(Xs) e

∫ s
0
Ũ u(Xu) du] ds:

Again from (11), one concludes that

�t(f) = �0(P0; t(f)) +
∫ t

0
�s(Ps; t(f)Ũ s) ds

= �0(P0; t(f)) +
∫ t

0
�s((Us − �s(Us))Ps; t(f)) ds

and the proof of (10) is completed.
Let us check the uniqueness of the solution of (10). Let R+ 3 t 7→ �t ∈M1(E) and

R+ 3 t 7→ ��t ∈M1(E) be measurable solutions of (10) with the same initial condition.
We set

∀t¿0; ∀f∈Bb(E); It(f) = |�t(f)− ��t(f)|:
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A direct computation yields that for any t¿0 and any f∈Bb(E),

It(f)6
∫ t

0
[Is(UsPs; t(f))+ ‖ U ‖?t Is(Ps; t(f))+ ‖ f ‖ Is(Us)] ds; (14)

where ‖ U ‖?t =sup06s6t ‖ Us ‖. This implies that
∀t¿ 0; ∀f∈Bb(E); It(f)6 t(3 ‖ U ‖?t ) ‖ f ‖ : (15)

Substituting (15) into the right-hand side of (14) we get

∀t¿0; ∀f∈Bb(E); It(f)6
t2

2
(3 ‖ U ‖?t )2 ‖ f ‖ :

Repeating this procedure n-times we arrive at

It(f)6
tn

n!
(3 ‖ U ‖?t )n ‖ f ‖ →

n→∞ 0:

This ends the proof of the proposition.

The evolution equation (9) will be used to de�ne a pregenerator of the Moran
interacting particle scheme. The second di�erential equation (10) gives a more tractable
and general description of the desired valued measure process (8), at least once the
inhomogeneous semi-group (Ps; t)06s6t is known, fact which will always be assumed
here. We will use this equation to study the convergence of such genetic-type interacting
particle scheme.

3. The interacting particle system model

The genetic-type interacting particle system under study will be a Markov process
(�(N )t )t¿0 = ((�

(N;1)
t ; : : : ; �(N;N )t ))t¿0 with state space EN , where N¿1 is the size of the

system.
Heuristically, the motion of the particles will be decomposed into the two following

rules. Between the jumps due to interaction between particles, each particle evolves
independently from the others and randomly according to a L-motion in E (that is
according to the time-inhomogeneous semigroup of X ).
At some random times we introduce a competitive interaction beween the particles.

More precisely, during this stage a chosen particle �(N; i)t will be replaced by a new
particle �(N;j)t , 16j6N , with a probability proportional to its adaptation Ut(�

(N;j)
t ),

16j6N .
So at time t¿0 a pregenerator of the interacting particle scheme associated to (1)

is the sum of two pregenerators

∀t¿0; L
(N )
t = L̃

(N )
t + L̂

(N )
t :

The �rst pregenerator L̃
(N )
t is called the mutation pregenerator. It denotes the generator

coming from N -independent L-processes and it is given on A⊗N by

∀�∈A⊗N ; L̃
(N )
t (�)(x1; : : : ; xN ) =

N∑
i=1

L(i)t (�)(x1; : : : ; xN );
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where L(i)t denotes the action of Lt on the ith variable xi, i.e. L
(i)
t =Id⊗· · ·⊗ Lt︸︷︷︸

ith

⊗ · · ·⊗

Id, where Id is the identity operator.

The second one, L̂
(N )
t , is called the selection pregenerator. It is the jump-type

generator de�ned by

∀�∈A⊗N ; L̂
(N )
t (�)(x1; : : : ; xN ) =

1
N

N∑
i=1

N∑
j=1

�xji (�)(x1; : : : ; xN )Ut(xj);

where for 16i6N and y∈E,

�yi (�)(x1; : : : ; xN )
def := �(x1; : : : ; y︸︷︷︸

ith

; : : : ; xN )− �(x1; : : : ; xN )

(this is meaningful for all functions �∈Cb(EN ), and in fact L̂
(N )
t is a bounded gen-

erator on Cb(EN )).
For any �xed N¿1, the in�nitesimal pregenerator L(N )

t with domain the algebra
with unity A⊗N , can be regarded as the pregenerator of a Moran-type interacting
particle scheme with competitive selection interactions (see for instance Dawson, 1993
and references therein). But in contrast to the classical Moran process the total jump
rate is “proportional” to the number of particles, and above the roles of i and j are
not symmetrical.
For any given probability m0 on EN , it is quite standard to construct explicitly a

Markov process (�(N )t )t¿0=((�
(N;1)
t ; : : : ; �(N;N )t ))t¿0 whose initial law is m0 and verifying

the martingale problem corresponding to the family of pregenerators (L(N )
t )t¿0. More

precisely, using the fact that all t¿0, L(N )
t is just a bounded perturbation of L̃

(N )
t by

L̂
(N )
t , we can apply general results about this kind of martingales problems, see for
instance the Proposition 10:2 p. 256 of Ethier and Kurtz (1986).
From now on, E will designate the expectation relative to the process �(N ) de�ned

in this section, starting with initial law �⊗N0 at time 0.

4. Quantitative weak propagation of chaos results

In fact, the laws of the particle systems (�(N )t )06t6T , where N ∈N∗ and T ¿ 0
are �xed, satisfy more extended martingales problems, because the proofs presented
by Ethier and Kurtz (1986) enable us to transpose the whole pregenerator (D(L); L)
considered in Section 2, owing to hypothesis (H2).
Let us denote by A(T; N;A) the vector sub-space of Cb([0; T ] × EN ) generated by

the functions f(t; x) =
∏
16i6N fi(t; xi), where f1; : : : ; fN ∈A(T;A).

If such a function f is given, we de�ne for all (t; x)∈ [0; T ]× E,

L̃
(N )
(f)(t; x) =

∑
16i6N

f1(t; x1) · · ·fi−1(t; xi−1)L(fi)(t; xi)fi+1(t; xi+1) · · ·fN (t; xN )
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and then we extend linearly this operator L̃
(N )

on A(T; N;A). We also consider the

pregenerator L̂
(N )

acting on A(T; N;A) in the following way:

∀f∈A(T; N;A); ∀(t; x)∈ [0; T ]× E;

L̂
(N )
t (f)(t; x) = L̂

(N )
t (f(t; ·))(x)

and next we introduce

L(N ) = L̃
(N )
+ L̂

(N )
:

This pregenerator on A(T; N;A) coincides naturally with @t +L
(N )
t on AT ⊗A⊗N .

Then we are assured of

Lemma 4.1. Under the laws of �(N ) constructed in the previous section; for all T ¿ 0
and all f∈A(T; N;A); the process (M (N )

t (f))06t6T de�ned by

∀06t6T; M (N )
t (f) = f(t; �(N )t )− f(0; �(N )0 )−

∫ t

0
L(N )(f)(s; �(N )s ) ds

is a bounded martingale.

We will apply this result to some special functions, for which x∈EN is seen only
through its empirical measure m(N )(x) de�ned in (4).
Let T ¿ 0 and ’∈A be �xed, we �rst consider the function f1 ∈A(T; N;A)

de�ned by

∀06t6T; ∀x∈EN ; f1(t; x) = m(N )(x)[Pt;T (’)] =
1
N

∑
16i6N

Pt;T (’)(xi):

One of its main interest is that it satis�es

∀t¿0; ∀x∈EN ;
L̃
(N )
(f1)(t; x) = 0;

L̂
(N )
(f1)(t; x) = m(N )(x)[UtPt;T (’)]− m(N )(x)[Ut]m(N )(x)[Pt;T (’)]:

Thus the process de�ned for 06t6T by

M (N )
t (f1) = �

(N )
t (Pt;T (’))− �(N )0 (P0;T (’))

−
∫ t

0
(�(N )s (UsPs;T (’))− �(N )s (Us)�(N )s (Ps;T (’))) ds

(let us recall that �(N )t = m(N )(�(N )t )) is a c�adl�ag martingale. To �nd its increasing
process, let us consider the function f2 = f21 . So we have

∀06t6T; ∀x∈EN ; f2(t; x) =
1
N 2

∑
16i; j6N

Pt;T (’)(xi)Pt;T (’)(xj);

where it clearly appears that this function belongs to A(T; N;A).
We calculate that

∀06t6T; ∀x∈EN ;
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L(N )(f2)(t; x) =
1
N
m(N )(x)[�t(Pt;T (’); Pt;T (’))]

+2f1(t; x)L(N )(f1)(t; x)

+
1
N
m(N )(x)[(Pt;T (’)− m(N )(x)[Pt;T (’)])2(Ut + m(N )(x)[Ut])]:

We easily deduce from this fact that

(M (N )
t (f1))2 − 1

N

∫ t

0
(�(N )s [�s(Ps;T (’); Ps;T (’))]

+ �(N )s [(Ps;T (’)− �(N )s [Ps;T (’)])2(Us + �(N )s [Us])]) ds

is a martingale (once again, this would be quite immediate, if one has at his disposal
enough regularity of [0; T ]× EN 3 (t; x) 7→ m(N )(x)[Pt;T (’)] in order to apply directly
to this application and its square the time–space martingale problems for the N -particles
system).
We are now in a position to prove the following weak propagation of chaos result

with rate.

Theorem 4.2. Under assumptions (H1); (H2) and (H3) we have that

sup
06t6T

sup
’∈D

E(|�(N )t (’)− �t(’)|)6 CT√
N

(16)

for some constant CT ¡∞ that only depends on the time parameter T ¿ 0.

Proof. The previous discussion easily implies that for any 06t6T and any ’∈D,
the process B(N; t)(’) = (B(N; t)s (’))06s6t de�ned for 06s6t by

B(N; t)s (’) = �(N )s (Ps; t(’))− �(N )0 (P0; t(’))−
∫ s

0
�(N )u (UuPu; t(’))

− �(N )u (Uu)�(N )u (Pu; t(’)) du

is a bounded martingale and its increasing process has the form

∀06s6t; 〈B(N; t)(’)〉s = 1
N

∫ s

0
F̃u(�(N )u ; Pu; t(’)) + F̂u(�(N )u ; Pu; t(’)) du;

where for all u¿0, all �∈M1(E) and all ’∈A,

F̃u(�; ’) = �(�u(’; ’));

F̂u(�; ’) = �[(’− �(’))2(Uu + �(U ))]:
Under our assumptions we note that

sup
’∈D

sup
06u6t6T

sup
�∈M1(E)

F̃u(�; Pu; t(’)) + F̂u(�; Pu; t(’))6CT (17)

for some constant CT ¡∞ which could be explicited in terms of C(1)T , C
(2)
T and C(3)T .

Now, we set

∀06t6T; ∀’∈D; I (N )t (’) def := |�(N )t (’)− �t(’)|:
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Using the evolution equation (10), we prove that for any 06t6T and any ’∈D,
the error bounds I (N )t (’) are bounded by

I (N )0 (P0; t(’)) +
∫ t

0
(I (N )s (UsPs; t(’))+ ‖ U ‖?t I (N )s (Ps; t(’))

+ I (N )s (Us)) ds+ |B(N; t)t (’)|;
where ‖ U ‖?t =sup06s6t ‖ Ut ‖. Note that (17) implies that for a new constant CT ,

sup
’∈D

E
(
sup

06t6T
|B(N; t)t (’)|

)
6
CT√
N
:

From our choice of the initial particle scheme let us also observe that for all
’∈Bb(E),

E(I (N )0 (’))6
√
E[(�(N )0 [’]− �0(’))2]

6
1√
N

√
�0[(’− �0(’))2];

so we have (recall that ‖ P0; t(’) ‖6 ‖ ’ ‖61 for ’∈D)

sup
06t6T

sup
’∈D

E(I (N )0 (P0; t(’)))6
1√
N
:

Then, under (H3) there exists an other constant CT ¿ 0 such that for all 06t6T ,
if we de�ne the error bound

�I
(N )
t

def := sup
’∈D

E[I (N )t (’)];

then it is itself less than

CT

(
1√
N
+
∫ t

0

�I
(N )
s ds

)
and therefore (16) is now a clear consequence of Gronwall’s lemma.
At least, this would be true if the application [0; T ] 3 t 7→ �I

(N )
t is measurable (the

fact that can be assured by assuming a pointwise separability of D, which is not a
very strong requirement, for instance {f∈Bb(E): ‖ f ‖ 61} is pointwise separable
as a consequence of separability of the �-algebra E).
Otherwise, in order to verify the bound

∀06t6T; I (N )t 6
CT exp(CT t)√

N
;

one just needs to be a little more careful but there is no real di�culty, by using a
recursive method similar to that of the end of the proof of Proposition 2.4.

Remark 4.3. The simplicity of the above proof makes it easy to generalize to similar
situations, for instance, one can consider the setting of Graham and M�el�eard (1997)
and M�el�eard (1996). Nevertheless this approach does not enable us to obtain strong
propagation of chaos, in the sense that we get for instance the strong convergence
of (�(N;1)t )t¿0 toward a suitably coupled non-linear process, whose family of laws is
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(�t)t¿0 (a general reference for strong propagation of chaos is Sznitman (1991), but
Sznitman is rather interested in interactions going through drifts, and he did not look
to the case, as here, where the interactions between the particles are expressed through
jumps). By an other method, based on interacting graphs, Graham and M�el�eard got
this strong propagation in their situation of more general jump rates (taking place in
Rd, d¿1).

We can also use the particle density pro�les {�(N )t ; t¿0} to approximate the
Feynman–Kac formula

∀f∈Cb(E); 
t(f) = E�0 (f(Xt) e
∫ t
0
Us(Xs) ds):

More precisely, if we put


(N )t (f) def := e
∫ t
0
�(N )s (Us) ds�(N )t (f):

Corollary 4.4. Under the assumptions of Theorem 4:2 there exists some constant
CT ¡∞ that only depends on the time parameter T such that

sup
06t6T

sup
’∈D

E(|
(N )t (’)− 
t(’)|)6 CT√
N
: (18)

Proof. To see this claim we plainly use the decomposition


(N )t (f)− 
t(f)

= (e
∫ t

0
�(N )s (Us) ds − e

∫ t
0
�s(Us) ds) �(N )t (f) + (�(N )t (f)− �t(f)) e

∫ t
0
�s(Us) ds:

From this and the fact that

|e
∫ t

0
�(N )s (Us) ds − e

∫ t
0
�s(Us) ds|62eT‖U‖?T

∫ t

0
|�(N )s (Us)− �s(Us)| ds ∀t6T;

where

‖ U ‖?T = sup
06t6T

‖ Ut ‖;

it follows that for any f∈D and any 06t6T ,

|
(N )t (f)− 
t(f)|62TeT‖U‖?T (|�(N )t (f)− �t(f)|+ |�(N )t (Ut)− �t(Ut)|)
and the proof of (18) is now a straighforward consequence of Theorem 4.2.

Remark 4.5. From the density of A in Cb(E), it is easy to deduce that for any t¿0,
�(N )t weakly converges to �t in probability. That is, for any open neighbourhoodV of �t

lim
N→∞

P(�(N )t 6 ∈V) = 0:

Furthermore, the inclusion A⊂Cb(E) is not strictly necessary (the properties of
martingales problems used here are satis�ed in the Bb(E) context, cf. Ethier and Kurtz
(1986), except that the c�adl�agicity of the martingales appearing in (H1) has now to
be assumed), and this fact will be applied in the case of bounded generators, see the
�rst example of Section 5:1:3.
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5. Example of mutations generators

We present here strong and general conditions implying the hypothesis (H3) put on
the mutation pregenerators family L. But we will see that these conditions are su�cient
to treat the more classical examples of Markov processes.

5.1. Time-homogeneous mutations

Condition (H3) is hard to work with in practice. In order to obtain a more tractable
condition it is convenient to �rst examine the “time-homogeneous” situation. Let us
assume that the pregenerators do not depend on time. We will note by L this pregen-
erator, de�ned on a dense subalgebra A⊂Cb(E), and � its corresponding “carr�e du
champ” bilinear operator. The semigroup will satisfy for all 06s6t, Ps; t =P0; t−s, and
we will use the obvious notation Pt = P0; t , for t¿0.
We also suppose that the �tness functions Ut; t¿0, do not depend on time, and

naturally we note U = U0.
Let us make the following hypothesis:

(H4) U ∈A.
In particular, under (H4) the functions U and �(U;U ) are elements of Cb(E) and we
can de�ne

C(4) =
√
2(‖ �(U;U ) ‖ + ‖ U ‖2):

We also use the following assumption:

(H5) For any T there exists a constant C(5)T ¡∞ such that for any f∈A and
t ∈ [0; T ]
‖ �(Ptf; Ptf) ‖6C(5)T max(‖ f ‖2; ‖ �(f;f) ‖):

We begin our program with:

Proposition 5.1. Assume that (H4) and (H5) hold. Then (H3) is satis�ed with the
subset D⊂A given by

D= {f∈A: max(‖ f ‖; ‖ �(f;f) ‖)61}
and with the constants C(1)T = C(4); C(2)T = C(5)T and C(3)T = C(5)T .

It then follows that we can take for jauge

∀f∈A; &f&=max(‖ f ‖;
√
‖ �(f;f) ‖):

Proof. Let us �rst show that

∀f∈D; ∀t ∈ [0; T ]; Pt(f)∈
√
C(5)T D:

For this we simply note that for any f∈D and 06t

‖ Pt(f) ‖6 ‖ f ‖61
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and, under (H5)

‖ �(Pt(f); Pt(f)) ‖6C(5)T :
To complete the proof of the proposition, it clearly su�ces to check that

∀f∈D; Uf=C(4) ∈D:

To see this claim, we note that for any f∈D,

‖ Uf ‖6 ‖ U ‖‖ f ‖6 ‖ U ‖6C(4):
On the other hand, some elementary computations yield (where we use the general
approximation �(g; g) = limt→0+Pt((g− g(x))2)(x)=t, valid for all g∈A),

‖ �(Uf;Uf) ‖62(‖ f ‖2‖ �(U;U ) ‖ + ‖ U ‖2‖ �(f;f) ‖)
and therefore

‖ �(Uf;Uf) ‖62(‖ �(U;U ) ‖ + ‖ U ‖2) = (C(4))2:

Very often, the simplest way to verify hypothesis (H5), is to impose a lower bound
on a curvature associated to the pregenerator L. We now make the assumption that
L(A)⊂A, and then for �¿0, let R� ∈R t {−∞} the largest constant such that for
all f∈A,

�(L(f); f)6− R��(f;f) + �2L(�(f;f)) (19)

(as usual, if there is no such �nite constant, we put R� = −∞), and we de�ne the
modi�ed curvature constant as the “number”

R def := sup
�¿0

R� ∈R t {−∞}:

In the literature, the curvature associated to a pregenerator L is given as R1 (cf.
Bakry (1994) for di�usion pregenerators and Schmuckenschl�ager (1998) for jumps
pregenerators), because it is then the largest constant such that for all f∈A,

�2(f;f)¿R1�(f;f);

where �2 is naturally de�ned by

∀f; g∈A; �2(f; g) = 1
2 (L(�(f; g))− �(L(f); g)− �(f; L(g)))

and in case L is the Laplacian on a Riemannian manifold, one gets for R1 the usual
Ricci curvature.
But in fact, it can be easily proved that in the situation where L is the pregenerator

of a non-degenerate di�usion on a manifold (for the de�nitions, see for instance Ikeda
and Watanabe, 1981) and where A contains at least all smooth functions with compact
support, one has R� =−∞ if � 6= 1 (because only when � = 1, it is possible to have
cancelations of some third-order derivatives of the functions), thus R=R1. Nevertheless,
in general, R is a little better than R1, for instance, it can be shown by direct calculations
that for the asymmetric Bernoulli processes on two points, R = R0¿R1. So perhaps
R is a good de�nition of the curvature of a pregenerator L, however that may be, for
our purposes, only R will be needed.
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Proposition 5.2. Let us assume a strong regularity in time of the semi-group: for all
t¿0; we suppose that in the &·&sense; on A;

d
dt
Pt = PtL= LPt:

Then with the previous notations; one is always assured that

∀f∈A; ∀T¿0; �(PT (f); PT (f))6exp(−2RT )�(f;f)
so if we suppose that R¿−∞, then (H5) is satis�ed with C(5)T = exp((−2R)+T ).

Proof. We will �rst consider the case �¿ 0. Let T ¿ 0 and f∈A be �xed, and
de�ne for 06t6T ,

Ft
def := �(Pt(f); Pt(f));

Gt
def := P�(T−t)(Ft);

which are non-negative functions.
One is lead to di�erentiate Gt in time (in the ‖ · ‖ sense), to get

d
dt
Gt = −�L(P�(T−t)(Ft)) + P�(T−t)

(
d
dt
Ft

)
= −�P�(T−t)(L(Ft)) + 2P�(T−t)(�(L(Pt(f)); Pt(f)))

6−2R�P�(T−t)(Ft)

= −2R�Gt;
where we have applied (19) with f replaced by Pt(f)∈A. This di�erential inequality
is integrated at once to provide the upper bound

FT = GT6exp(−2R�T )G0 = exp(−2R�T )P�T (F0)
from which it follows that

‖ FT ‖6exp(−2R�T ) ‖ F0 ‖ : (20)

This is also true for �=0, since it is then enough to di�erentiate directly Ft in time.
So as (20) is always satis�ed for �¿0, one has

‖ FT ‖6exp(−2RT ) ‖ F0 ‖
and the proposition is proved.

5.2. Time-inhomogeneous setting

We follow the ideas introduced below for homogeneous Markov processes.
So let us assume a strong (but quite usual in the context of semigroup approaches

in probability) regularity of the inhomogeneous semigroup (Ps; t)06s6t : for all 06s6t,
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we suppose that in the &·&0 sense,
d
ds
Ps; t =−LsPs; t ;

d
dt
Ps; t = Ps; tLt ; (21)

where &·&0 is the norm given on A by

∀f∈A; &f&0 = max(‖ f ‖;
√
‖ �0(f;f) ‖):

We will need even a little more: let � :R+ → R∗
+ a measurable and integrable func-

tion be given, we make the assumption that there exists an inhomogeneous semigroup
of Markov kernels (P(�)s; t )06s6t such that,

∀06s6t;

Ps; s = Id;

d
dt
P(�)s; t = �tP

(�)
s; t Lt (22)

(in the pointwise sense will be enough here, so for instance one can be lead to consider
the martingales problem associated to the family of pregenerators (�tLt)t¿0).
Furthermore, we suppose that for all f∈A; R+ 3 t 7→ �t(f;f) is derivable (as

before, in Cb(E)), and we denote for t¿0,

At = sup
f∈A

∣∣∣∣
∣∣∣∣@t�t(f;f)�t(f;f)

∣∣∣∣
∣∣∣∣

(where @t stands for d=dt).
We also assume that for all t¿0; Lt(A)⊂A, and that for all f∈A, R+ × E 3

(t; x) 7→ Lt(Lt(f))(x) is measurable, this stability also enables us to consider Rt the
curvature of Lt , as it is de�ned in the previous subsection.
We suppose that both the applications R+ 3 t 7→ At and R+ 3 t 7→ Rt are locally in

the L1-space for the Lebesgue measure.
Furthermore, for the latter application, we will assume that if we denote for �; t ¿ 0,

R�; t = inf
f∈A; x∈E

�Lt(�t(f;f))(x)− �t(Lt(f); f)(x)
�t(f;f)(x)

;

then there exists a sequence (�n)n∈N of measurable and integrable applications from
R+ to R, such that for all T ¿ 0,

lim
n→∞

∫ T

0
R�n(s); s ds=

∫ T

0
Rs ds;

(note that if the Lt; t¿0, are di�usion pregenerators, then this extra condition is auto-
matically satis�ed, as one can take �n ≡ 1, there is even no need for condition (22),
since we will use it only for the applications �n; n¿0).
Finally, let us consider the constant

C(4)T = sup
06t6T

√
2(‖ �0(Ut; Ut) ‖ + ‖ Ut ‖2)

and suppose it is �nite.
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Under all the above hypotheses, we can see that

Proposition 5.3. If we de�ne

D= {f∈A: &f&061};
then for all T ¿ 0 �xed; condition (H3) is ful�lled with

C(1)T = C(4)T ;

C(2)T = exp
(∫ T

0
3At − 2Rt dt

)
;

C(3)T = exp
(∫ T

0
2At − 2Rt dt

)
:

Here the associated jauge is clearly &·&0.

Proof. The membership of Ut’ to C
(4)
T D, for ’∈D, is shown as in the homogeneous

case. Then we remark that for all 06s6t6T and all ’∈A,

exp
(
−
∫ t

s
Au du

)
�s(’; ’)6�t(’; ’)6exp

(∫ t

s
Au du

)
: �s(’; ’)

So in fact, derivations (21) are also true in the sense of the norm &·&u =max(‖ · ‖;√‖ �u(·; ·) ‖), for all u∈ [0; T ]. A consequence of this property is that in the ‖ · ‖
sense, for all ’∈A, the application [0; T ] 3 t 7→ �t(Pt;T (’); Pt;T (’)) is derivable, and
its derivative is

d
dt
�t(Pt;T (’); Pt;T (’)) = (@t�t)(Pt;T (’); Pt;T (’))− 2�t(Lt(Pt;T (’)); Pt;T (’)):

So let s¿0; ’∈D and n∈N be given, we consider for s6t6T ,

Gt = P
(�n)
s; t [�t(Pt;T (’); Pt;T (’))]:

As before, we calculate that

@tGt = �n(t)P
(�n)
s; t [Lt(�t(Pt;T (’); Pt;T (’))] + P

(�n)
s; t [(@t�t)(Pt;T (’); Pt;T (’))]

−2P(�n)s; t [�t(LtPt;T (’); Pt;T (’))]

¿ (2R�n(t); t − At)Gt:
By integrating this inequality, we get

GT¿Gs exp
(∫ T

s
2R�n(t); t − At dt

)
from where it follows that

‖ �s(Ps;T (’); Ps;T (’)) ‖6 ‖ �T (’; ’) ‖ exp
(∫ T

s
At − 2R�n(t); t dt

)

6 ‖ �0(’; ’) ‖ exp
(∫ T

0
2At − 2R�n(t); t : dt

)
:
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But letting n go to in�nity, we obtain that the two last requirements of condition
(H3) are ful�lled with the constants presented in the proposition.

5.3. Examples of mutations pregenerators

Here are some classical examples that can be handled in our framework.

5.3.1. Bounded generators
The simplest examples of mutation pregenerators which satisfy the previous hypothe-

ses are those of measurable families of bounded generators (Lt)t¿0. Namely, for all
t¿0, let Lt :E × E → R be a signed kernel such that

• for any (t; x)∈R+ × E; Lt(x; · ∩ (E\{x})∈M(E) and Lt(x; E) = 0,
• for any A∈E; R+ × E 3 (t; x) 7→ Lt(x; A)∈R+ is a measurable function,
• for all T ¿ 0, there exists a constant 06MT ¡∞ such that

∀(t; x)∈ [0; T ]× E; Lt(x; E\{x})6MT :
We can take here A=Bb(E), and in this case the inhomogoneous variant of (H5)

clearly holds, because we have

∀f∈A; ‖ �t(f;f) ‖ = sup
x∈E

1
2

∫
(f(y)− f(x))2Lt(x; dy)

6 2MT ‖ f ‖ :
So in this particular situation we can choose for the subset D the set of all measurable
and bounded functions f such that ‖ f ‖61. In view of Theorem 4.2 for any T ¿ 0
there exists a constant CT ¡∞ such that

sup
06t6T

E(|�Nt (f)− �t(f)|)6
CT√
N

‖ f ‖

for any measurable and bounded function f : E → R.

5.3.2. Riemannian di�usions
Let E be a compact Riemannian manifold. As usual, 〈·; ·〉; ∇· and 4· will denote

the scalar product, the gradient (or more generally the connexion) and the Laplacian
associated to this structure. Let A be the algebra of smooth functions, i.e. A=C∞(E).
Suppose we are given a family (bt)t∈R+ of vector �elds, such that

R+ × E 3 (t; x) 7→ bt(x)∈Tx(E)⊂T(E)
is smooth.
We denote for t¿0,

Lt :A → A

f 7→ 4f
2
+ 〈bt ;∇f〉:
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It is immediate to check that in this example the carr�e du champ does not depend
on time and is given for all t¿0, by

∀f; g∈A; �t(f;f) = 〈∇f;∇g〉:
Classical results show that (H1) is ful�lled and that for all T ¿ 0 and all ’∈A,

the application FT;’ is smooth in [0; T ] × E (for instance, as a solution of a regular
parabolic equation), from where it follows that (H2) is satis�ed, since it is elementary
to prove that A(T;A) contains all smooth functions.
The strong assumption on the time regularity of the semigroup presented in Section

5:1:2 is also well known. Furthermore, as mentioned before, since the Lt; t¿0, are
di�usion pregenerators, we have that

Rt = R1; t

for which we have the lower bound (cf. for instance Section 6 of Bakry, 1994)

Rt¿
R
2
− sup
x∈E

rt(x);

where R is the Ricci curvature of E and where rt(x) is the largest eigenvalue of ∇sbt(x),
which is the symmetrized tensor associated to the tensor ∇bt(x). More precisely, in
local coordinates, ∇sbt(x) is given by the symmetrization of the matrix( ∑

16l6d

gi; l(x)

[
@lb

j
t (x) +

∑
16k6d

�jl;k(x)b
k
t (x)

])
16i; j6d

;

where d is the dimension of E; (gi; j(x))16i; j6d is the inverse of the matrix de�ning
the scalar product in Tx(E), and (�ij; l(x))16i; j; l6d are the Christo�el symbols in the
point x∈E of the connexion ∇.
It then easily follows that assumption (H3) is also veri�ed, via Proposition 5.3.

5.3.3. Euclidean di�usions
Except for the compacity of the state space, these processes are similar to those of

the previous example.
So here E = Rd; d¿1, and let for (t; x)∈R+ × E; a(t; x) = (ai; j(t; x))16i; j6d be a

symmetric positive-de�nite matrix. We suppose they are uniformly elliptic: there exists
a constant �¿ 0 such that for all (t; x)∈R+ × Rd,

∀y = (yi)16i6d ∈Rd;
∑

16i; j6d

ai; j(t; x)yiyj¿�
∑
16i6d

y2i :

We, furthermore, assume that the applications ai; j : R+×Rd → R; 16i; j6d, belong
to C1;2b (R+ × Rd).
Let also b= (bi)16i6d : R+ × Rd → Rd be a C0;1b (R+ × Rd) application.
We denote A= C2b (Rd) and we consider on it the generators Lt; t¿0, given by

∀f∈A; ∀x∈Rd; Lt(f)(x) =
∑

16i; j6d

ai; j

2
(t; x)@i; jf(x) +

∑
16i6d

bi(t; x)@if(x):
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For (t; x)∈R+ × E, it is well known that (H1) is ful�lled (for more details about
this problem, see Stroock and Varadhan (1979)) and that Pt; x is the law of the solution
of the stochastic di�erential equation

Xt = x;

dXs = �(s; Xs) dBs + b(s; Xs) ds; s¿t;

where � is an application from R+ × Rd into the set of symmetric de�nite positive
matrices such that for all (t; x)∈R+ × Rd, �(t; x)2 = a(t; x), and where (Bt)t¿0 is a
standard d-vector Brownian motion.
But as before, (H2) and (H3) are also classical results. In fact, for t¿0 given, one

can take

At =

∥∥∥√∑16i; j6d(@tai; j(t; ·))2
∥∥∥

�

and one can �nd a lower bound of Rt in term of �; max16i; j; k; l6d ‖@k;lai; j(t; ·)‖,
max16i; j; k6d ‖ @kai; j(t; ·) ‖, max16i; j6d ‖ ai; j(t; ·) ‖, max16i; j6d ‖ @jbi(t; ·) ‖ and
max16i6d ‖ bi(t; ·)‖ (cf. for instance Bakry, 1994 or Ikeda and Watanabe, 1981).
The situation is particularly simple when the di�usion matrices are constant, and let

us consider the case where (ai; j)16i; j6d ≡ Id. Then we have
Rt =− sup

x∈Rd
rt(x);

where for x∈Rd; rt(x) is the largest eigenvalue of the symmetric matrix
1
2

(
@ibj(t; x) + @jbi(t; x)

)
16i; j6d ;

so we are assured of

Rt¿− d max
16i; j6d

‖ @jbi(t; ·) ‖ :
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