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Abstract

We consider a general class of discrete, two-dimensional Markov chains modeling
the dynamics of a population with two types, without mutation or immigration, and
neutral in the sense that type has no influence on each individual’s birth or death
parameters. We prove that all the eigenvectors of the corresponding transition matrix
or infinitesimal generator Π can be expressed as the product of explicit “universal”
polynomials of two variables, depending on each type’s size but not on the specific
transitions of the dynamics, and functions depending only on the total population
size. We also prove that all the Dirichlet eigenvectors of Π on subdomains of the
form {(i, j) ∈ N2 : i+ j ≥ N} for some N ≥ 2 have the same decomposition. We then
deduce that all the corresponding Dirichlet eigenvalues are ordered in a specific way
and each of them is related to the greatest eigenvalue associated to eigenvectors
admitting one specific “universal” polynomial as factor. As an application, we study
the quasistationary behavior of finite, two-dimensional Markov chains such that 0 is
an absorbing state for each component of the process. In particular, we prove that
coexistence is never possible conditionally on non-extinction in a population close to
neutrality.
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1 Introduction

This paper studies spectral properties of two-dimensional discrete Markov processes
in continuous and discrete time, having the neutrality property, in the sense of popula-
tion genetics (see e.g. [19]). Considering two populations in interaction, corresponding
to two different types of individuals (typically a mutant type and a resident type), one
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says that the types are neutral (or the mutant type is neutral w.r.t. the resident type, or
more simply the mutation is neutral) if individuals of both types are indistinguishable
in terms of the total population dynamics. In other words, the mutant population has
no selective advantage (or disadvantage) with respect to the rest of the population.

We consider two-dimensional Markov processes (Xn, Yn)n∈T (where T = Z+ :=

{0, 1, . . .} or R+) with values in R2
+ or Z2

+. The notion of neutrality we will consider
can be formally defined as follows. In the case of continuous time, we assume that
the birth and death rates per individual do not depend on the type of the individual,
and depend only on the total population size. In the case of discrete time, we assume
that the transition probabilities can be constructed by first determining the number of
births or deaths in the next time step, with distribution depending only on the total
population size, and second by choosing uniformly at random the individuals concerned
by the birth or death events (regardless of their types). As a consequence, the process
(Xn, Yn)n∈T is such that Zn = Xn + Yn is a Markov process. In particular, the law of
the process Z depends on Z0, but not on X0 or Y0. Note that other notions of neutrality
different from the one considered here can be relevant in biology and can satisfy the
last property (cf. e.g. [1]).

If the process Z is a birth and death continuous-time chain, the class of neutral
processes we consider is the following: the birth and death rates of the Markov process
(Zt)t∈R+ when Z is in state k ≥ 0 are of the form kλk and kµk, respectively. Note that
0 is an absorbing state for Z. In other words, the process (Xt, Yt)t∈R+ is the birth and
death process where both types of individuals have birth and death rates per individual
λk and µk, when the total population has k individuals. This leads to the following
transition rates for the Markov process (Xt, Yt)t∈R+ : for all (i, j) ∈ Z2

+,

from (i, j) to (i+ 1, j) with rate i λi+j
from (i, j) to (i, j + 1) with rate j λi+j
from (i, j) to (i− 1, j) with rate i µi+j
from (i, j) to (i, j − 1) with rate j µi+j .

Note that the sets {0} × Z+, Z+ × {0} and {(0, 0)} are absorbing for this process. In
other words, we only consider neutral two-dimensional processes without mutation and
immigration.

In the case of discrete time, we consider two-dimensional birth and death processes
constructed in a similar way: assume that the birth and death probabilities of the pro-
cess (Zn)n∈Z+

when in state k are pk and qk, respectively, with pk + qk ≤ 1. Then, when
a birth or a death occurs in the population, the individual to which this event applies is
chosen uniformly at random in the population. This leads to the transition probabilities

from (i, j) to (i+ 1, j) with probability i
i+j pi+j

from (i, j) to (i, j + 1) with probability j
i+j pi+j

from (i, j) to (i− 1, j) with probability i
i+j qi+j

from (i, j) to (i, j − 1) with probability j
i+j qi+j

from (i, j) to (i, j) with probability rk,

where rk := 1− pk − qk. Note that this construction requires assuming that r0 = 1 (i.e.
that 0 is absorbing for Z).

In [15], Karlin and McGregor studied two families of neutral multitype population
processes (branching processes and Moran model), but only in the case of nonzero
mutation or immigration, for which the set of states where one population (or more)
is extinct is not absorbing. They could express the eigenvectors of the corresponding
infinitesimal generators in terms of Hahn polynomials. Many other Markov processes
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relevant in biological applications also admit explicit multivariate systems of polynomial
eigenvectors (we refer for example to [17] where a wide class of such processes is
descibed).

We focus here on neutral processes without mutation and immigration, which are
singular for the approach of [15], and we apply our study to a much bigger class of neu-
tral population processes, containing the birth and death processes described above,
but also non-birth and death models.

Our main result is the characterization of all eigenvalues and right eigenvectors of
the transition matrix of neutral processes without mutation and immigration. To this
aim, we first consider the (easier) continuous state space case in Section 2 to introduce
some tools used in the sequel. Next, we construct a particular family of polynomials of
two variables in Section 3, using linear algebra arguments. In Section 4, we prove that
the eigenvectors of the transition matrix of neutral two-dimensional Markov processes
can be decomposed as the product of “universal” polynomials (in the sense that they do
not depend on the specific transition rates of the Markov chain) with functions depend-
ing only on the total population size. We then relate these eigenvectors with Dirichlet
eigenvalue problems in subdomains of Z2

+ of the form {(i, j) ∈ N2 : i+ j ≥ k} for k ≥ 2

(Section 5), where N = {1, 2, . . .}.
The last section (Section 6) is devoted to the application of the previous results to

the study of quasi-stationary distributions. A probability distribution ν on Z2
+ \ {0} is

called quasi-stationary if it is invariant conditionally on the non-extinction of the whole
population, i.e. if

Pν((X1, Y1) = (i, j) | Z1 6= 0) = νi,j , ∀(i, j) ∈ Z2
+ \ {0},

where Pν denotes the law of the process (X,Y ) with initial distribution ν. This ques-
tion is related to the notion of quasi-limiting distribution (also called “Yaglom limit”, in
reference to Yaglom’s theorem on the same convergence for Galton-Watson processes),
defined as

νi,j := lim
n→+∞

P((Xn, Yn) = (i, j) | Zn 6= 0), ∀(i, j) ∈ Z2
+ \ {0}.

These notions are relevant in cases where extinction occurs almost surely in finite time,
to describe the “stationary behaviour” of the process before extinction when the ex-
tinction time is large. This is typically the case in many population dynamics models,
where ecological interactions in the population produce high mortality only when the
population size is large (one speaks of density-dependent models, see e.g. [21], or [6]
for discrete stochastic models).

These questions have been extensively studied in the case where the transition ma-
trix restricted to the non-extinct states is irreducible (which is not true in our two-
dimensional case). The first paper of Darroch and Seneta [7] studies the discrete-time,
finite case. Several extensions of these results to continuous-time and/or infinite denu-
merable state spaces have then been considered in [24, 8, 11]. The case of population
dynamics in dimension 1 have been studied by many authors(e.g. [5, 25, 18, 10, 16,
14, 22, 13]).More recently, the quasi-stationary behaviour of one-dimensional diffusion
models has been studied in [3]. As far as we know, the two-dimensional case has only
been studied in the continuous state space (diffusion) case [4]. An extensive bibliogra-
phy on quasi-stationary distributions can be found in [23]

In Subsection 6.1, we first give the quasi-limiting distribution for general finite two-
dimensional Markov chains in terms of the maximal Dirichlet eigenvalues of the tran-
sition matrix in several subdomains. Finally, in Subsection 6.2, we apply our previous
results to prove that coexistence in the quasi-limiting distribution is impossible for two-
dimensional finite Markov chains which are close to neutrality.
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The paper ends with a glossary of all the notation used in Sections 4 to 6, which may
appear at different places in the paper.

2 Preliminary: continuous case

In this section, we consider the continuous state space case, where computations
are easier, in order to introduce some of the tools needed in the discrete case.

Fix p and q two measurable functions from R+ to R+, and consider the system of
stochastic differential equations

dXt =
√

2Xtp(Xt + Yt)dB
1
t +Xtq(Xt + Yt)dt (2.1a)

dYt =
√

2Ytp(Xt + Yt)dB
2
t + Ytq(Xt + Yt)dt, (2.1b)

where (B1, B2) is a standard two-dimensional Brownian motion. Such SDEs are some-
times called branching diffusions, and are biologically relevant extensions of the classi-
cal Feller diffusion [3]. If p and q satisfy appropriate growth and regularity assumptions,
the solution to this system of SDEs is defined for all positive times and can be obtained
as scaling limits of two-dimensional birth and death processes (we refer to [3] for the
one-dimensional case; the extension to higher dimensions is easy).

This process is neutral in the sense defined in the introduction since Zt = Xt + Yt
solves the SDE

dZt = Ztq(Zt)dt+
√

2Ztp(Zt)dBt, (2.2)

where

Bt =

∫ t

0

√
Xs

Zs
dB1

s +

∫ t

0

√
Ys
Zs
dB2

s

is a standard Brownian motion. Note also that R+ × {0}, {0} × R+ and {(0, 0)} are
absorbing states as soon as there is uniqueness in law for the system (2.1).

For any ϕ ∈ C2(R2
+), the infinitesimal generator A of the process (Xt, Yt)t≥0 is given

by

Aϕ(x, y) =

(
x
∂2ϕ

∂x2
(x, y) + y

∂2ϕ

∂y2
(x, y)

)
p(x+ y)

+

(
x
∂ϕ

∂x
(x, y) + y

∂ϕ

∂y
(x, y)

)
q(x+ y). (2.3)

We first observe in the following proposition that A admits a symmetric measure, but
only on a subset of C2(R2

+). We will use the notation C2
c ((0,+∞)2) for the set of C2(R2

+)

functions whose support is a compact subset of (0,+∞)2.

Proposition 2.1. Assume that 1/p and q/p belong to L1
loc((0,+∞)). Let us define the

measure µ on R2
+ as

µ(dx, dy) =
exp

(∫ x+y

1
q(s)
p(s)ds

)
x y p(x+ y)

dx dy. (2.4)

Then, the restriction Ã of the operator A to C2
c ((0,+∞)2) is symmetric for the canonical

inner product 〈·, ·〉µ in L2(R2
+, µ), and, hence, so is its closure in L2(R2

+, µ).

Note that, because of the singularities in µ when x or y vanish, if p ≥ c > 0 in the
neighborhood of 0, any continuous function in L2(R2

+, µ) must vanish at the boundary

of R2
+. Therefore, L2(R2

+, µ) ⊂ L2,0
loc (R2

+), where L2,0
loc (R2

+) is defined as the closure of
Cc((0,+∞)2) in L2

loc(R2
+).
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Proof. For all f, g ∈ C2
c ((0,+∞)2), we have (formally)

〈f,Ag〉µ = −
∫
R2

+

p(x+ y)

(
x
∂f

∂x
(x, y)

∂g

∂y
(x, y) + y

∂f

∂y
(x, y)

∂g

∂y
(x, y)

)
µ(x, y) dx dy

−
∫
R2

+

f(x, y)

(
∂(xµp)

∂x
(x, y)

∂g

∂x
(x, y) +

∂(yµp)

∂y
(x, y)

∂g

∂y
(x, y)

)
dx dy

+

∫
R2

+

f(x, y)q(x+ y)

(
x
∂g

∂x
(x, y) + y

∂g

∂y
(x, y)

)
µ(x, y) dx dy.

Therefore, 〈f,Ag〉µ = 〈Af, g〉µ if

xq(x+ y)µ(x, y) =
∂(xµp)

∂x
(x, y), ∀x, y > 0

and

yq(x+ y)µ(x, y) =
∂(yµp)

∂y
(x, y), ∀x, y > 0.

Conversely, these equalities can be directly checked from the formula (2.4), which im-
plies that ∂(xµp)/∂x and ∂(yµp)/∂y exist in a weak sense.

Before studying the eigenvectors of A, we need the following result.

Proposition 2.2. For all λ ∈ R, the problem

(1− x2)h′′(x) = −λh(x) (2.5)

has no (weak) non-zero solution h ∈ C1([−1, 1]) except when λ = d(d − 1) for some
d ∈ N. For d = 1, the vector space of solutions has dimension 2 and is spanned by the
two polynomials h(x) = 1 and h(x) = x. For all d ≥ 2,

(1− x2)h′′(x) + d(d− 1)h(x) = 0 (2.6)

has a one-dimensional vector space of solutions in C1([−1, 1]), spanned by a polynomial
Hd of degree d, which can be chosen such that the family (Hd)d≥2 is an orthonormal
basis of L2([−1, 1], dx

1−x2 ). In addition, Hd has the same parity as d (all powers of x that
appear are even if d is even and odd if d is odd). Finally, for all d ≥ 2, one may take

Hd(x) =

√
2d− 1

d(d− 1)

d∑
k=1

(−d)k(d− 1)k
k!(k − 1)!

(1 + x)k

2k−1
, (2.7)

where (x)n := x(x+ 1) . . . (x+ n− 1) is the shifted factorial.

This result is quite classical and goes back at least to Kimura [20] (up to a linear
transformation), so we will omit its proof. The explicit formula forHd(x) can be obtained
as a limit case of classical Gegenbauer polynomials

Hλ
d (x) =

√
B
(1

2
, λ+

1

2

)2(2λ+ 1)d(d+ λ)

d!(d+ 2λ)
2F1

(
−d, d+ 2λ

λ+ 1
2

;
1 + x

2

)
,

when λ → −1/2, where d ≥ 2, B is the Beta function and aFb are the hypergeometric
series. The normalizing constant in Hλ

d (x) is not the usual one, but has been chosen
such that these polynomials form an orthonormal family in L2((−1, 1), (1− x2)λ−1/2dx).

We now introduce the change of variables

z = x+ y ∈ R+ and w =
x− y
x+ y

∈ [−1, 1], (2.8)
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which defines a C∞-diffeomorphism from R2
+ \{0} to (0,+∞)× [−1, 1]. Then µ(dx, dy) =

ν(dz, dw), where

ν(dz, dw) :=
2 exp

(∫ z
1

q(s)
p(s)ds

)
z(1− w2)p(z)

dz dw,

and

A =
1− w2

z
p(z)

∂2

∂w2
+ zp(z)

∂2

∂z2
+ zq(z)

∂

∂z
. (2.9)

Now, assume that A has an eigenvector of the form ϕ(w)ψ(z). If λ is the correspond-
ing eigenvalue, (2.9) yields

ϕ(w)
(
zp(z)ψ′′(z) + zq(z)ψ′(z)− λψ(z)

)
+ (1− w2)ϕ′′(w)

p(z)

z
ψ(z) = 0.

Hence, we have the following result.

Proposition 2.3. All functions on R2
+ of the form

Hd

(x− y
x+ y

)
ψ(x+ y), (2.10)

where d ≥ 0, H1(x) = x, H0(x) = 1, Hk, k ≥ 2 are as in Proposition 2.2, where ψ satisfies

zp(z)ψ′′(z) + zq(z)ψ′(z)− d(d− 1)
p(z)

z
ψ(z) = λψ(z), ∀z ≥ 0, (2.11)

for some λ ∈ R, are eigenfunctions of A for the eigenvalue λ.

Now, we proceed to prove that there are no other eigenvectors of A (in the sense
of Theorem 2.4 below). Such a result seems natural as (2.11) can be written as the
Sturm-Liouville problem

d

dz

(
ψ′(z) exp

∫ z

1

q(s)

p(s)
ds

)
− d(d− 1)

exp
∫ z

1
q(s)
p(s)ds

z2
ψ(z) = −λ

exp
∫ z

1
q(s)
p(s)ds

zp(z)
ψ(z).

Here again, the usual integrability conditions are not satisfied. More precisely, if p(z) ≥
c > 0 for z in the neighborhood of 0 and q is bounded, using the terminology of [26],
for all d ≥ 0, the problem (2.10) is a singular self-adjoint boundary value problem on
(0,∞), where the endpoint 0 is LP (limit point) singular (see [26, Thm. 7.4.1]). In this
case very little is known about the existence of an orthonormal basis of eigenvectors in
L2((0,∞), ν̃), where

ν̃(z) =
2 exp

(∫ z
1
q(s)
p(s)ds

)
zp(z)

(2.12)

(the spectrum might even be continuous, see [26, Thm. 10.12.1(8)]).
For this reason, we state our next result on the operator A with a restricted domain

corresponding to the case where the diffusion is reflected in the set

D := {(x, y) ∈ R2
+ : a ≤ x+ y ≤ b},

where 0 < a < b < ∞. For all initial condition (X0, Y0) = (x0, y0) ∈ D, we consider the

process (Xt, Yt, k
(a)
t , k

(b)
t )t≥0 such that k(a)

0 = k
(b)
0 = 0, k(a) and k(b) are nondecreasing

processes, (Xt, Yt) ∈ D for all t ≥ 0,

k
(α)
t =

∫ t

0

1{Xs+Ys=α}dk
(α)
s , ∀t ≥ 0, α = a, b

dXt =
√

2Xtp(Xt + Yt)dB
1
t +Xtq(Xt + Yt)dt−

√
2
−1
dk

(b)
t +

√
2
−1
dk

(a)
t

dYt =
√

2Ytp(Xt + Yt)dB
2
t + Ytq(Xt + Yt)dt−

√
2
−1
dk

(b)
t +

√
2
−1
dk

(a)
t .
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Then Zt = Xt + Yt is the solution of (2.2) reflected at a and b with local time k(a)
t at a

(resp. k(b)
t at b). Therefore, (Xt, Yt) is also neutral in the sense of the introduction.

The corresponding infinitesimal generator is defined by (2.3) with domain the set of
ϕ(x, y) ∈ C1(D) ∩ C2(int(D)), where int(D) denotes the interior of D, such that

∂ϕ

∂x
(x, y) +

∂ϕ

∂y
(x, y) = 0, ∀(x, y) ∈ D s.t. x+ y = a or b.

Theorem 2.4. For 0 < a < b < ∞, assume that p ≥ c > 0 on [a, b] and q/p belong to
L1([a, b]).

(a) There exists a denumerable orthonormal basis of L2(D,µ) of eigenvectors of A of
the form (2.10), where d ≥ 2 and ψ solves (2.11) on (a, b) and satisfies ψ′(a) =

ψ′(b) = 0. Moreover, any eigenvector of A in L2(D,µ) is a linear combination of
eigenvectors of the form (2.10), all corresponding to the same eigenvalue.

(b) There exists a family of right eigenvectors of A of the form

{1} ∪
{ x

x+ y
ψk(x+ y),

y

x+ y
ψk(x+ y)

}
k≥1
∪⋃

d≥2

{
Hd

(x− y
x+ y

)
ψ

(d)
k (x+ y)

}
k≥1

, (2.13)

which is a basis of the vector space

V :=
{
f ∈ L2(D,Leb) : ∃f1, f2 ∈ L2([a, b],Leb) and f3 ∈ L2(D,µ) s.t.

f(x, y) =
x

x+ y
f1(x+ y) +

y

x+ y
f2(x+ y) + f3(x, y)

}
, (2.14)

where Leb denotes Lebesgue’s measure. More precisely, for all f ∈ V , the func-
tions f1, f2, f3 in (2.14) are unique and there exists unique sequences {αk}k≥1,
{βk}k≥1, and {γdk}d≥2, k≥1 such that

f(x, y) =
∑
k≥1

αk
x

x+ y
ψk(x+ y) +

∑
k≥1

βk
y

x+ y
ψk(x+ y)

+
∑

d≥2 k≥1

γdkHd

(x− y
x+ y

)
ψ

(d)
k (x+ y), (2.15)

where the series
∑
k αkψk and

∑
k βkψk both converge for ‖ · ‖ν̃ and the series∑

d,k γdkHd(
x−y
x+y )ψ

(d)
k (x+ y) converges for ‖ · ‖µ.

Point (b) says that the eigenvectors of the form (2.10), although not orthogonal in
some Hilbert space, allow one to recover a bigger class of functions than in Point (a).
The vector space V is not equal to L2(D,Leb), but the following result shows that it is
much bigger than L2(D,µ).

Proposition 2.5. The vector space V of Theorem 2.4 contains H1(D,Leb).

Proof. To prove this result, it is more convenient to consider the variables (z, w) as
in (2.8) instead of (x, y). The vector space V then becomes the set of g ∈ L2([a, b] ×
[−1, 1],Leb) such that

g(z, w) =
1 + w

2
g1(z) +

1− w
2

g2(z) + g3(z, w) (2.16)
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for some g1, g2 ∈ L2([a, b],Leb) and g3 ∈ L2([a, b] × [−1, 1], ν) = L2([a, b] × [−1, 1], (1 −
w2)−1dz dw).

We first introduce the following notion of trace: we say that a function g ∈ L2([a, b]×
[−1, 1],Leb) admits the function ḡ ∈ L2([a, b],Leb) as a trace at w = 1, or w = −1

respectively, if

g(z, w)− ḡ(z) ∈ L2([a, b]× [0, 1], (1− w2)−1dz dw),

or

g(z, w)− ḡ(z) ∈ L2([a, b]× [−1, 0], (1− w2)−1dz dw)

respectively.

Our first claim is that any g ∈ L2([a, b]× [−1, 1],Leb) which admits traces g1 and g2 at
w = 1 and w = −1 respectively, belongs to V , and these traces are exactly the functions
g1 and g2 in (2.16). To see that, we only have to check that g3 ∈ L2([a, b] × [0, 1], (1 −
w2)−1dz dw), and the same result on [a, b]× [−1, 0] will follow by symmetry:

∫ b

a

dz

∫ 1

0

dw

(
g − 1+w

2 g1 − 1−w
2 g2

)2
1− w2

≤ 2

∫ b

a

dz

∫ 1

0

dw
(g − g1)2

1− w
+ 2

∫ b

a

dz

∫ 1

0

dw (g1 + g2)2 1− w
4(1 + w)

< +∞.

Second, we claim that any g ∈ H1([a, b] × [−1, 1],Leb) admits traces at w = 1 and
w = −1 as defined above. Assume first that g ∈ C1([a, b] × [0, 1]). Then, using the
Cauchy-Schwartz inequality,

∫ 1

0

dw

∫ b

a

dz
(g(z, w)− g(z, 1))2

1− w2
=

∫ 1

0

dw

∫ b

a

dz

(∫ 1

w
∇wg(z, x)dx

)2

1− w2

≤
∫ 1

0

dw

∫ b

a

dz

∫ 1

w

dx |∇wg(z, x)|2 ≤ ‖∇wg‖2Leb.

Since in addition ‖g(·, 1)‖L2(Leb) ≤ 4‖g‖H1(Leb) by classical trace results (cf. e.g. [2,
p. 196]), the function g 7→ (g(·, 1), g − g(·, 1)) extends by density to a linear operator ψ
continuous from H1([a, b]× [0, 1],Leb) to L2([a, b],Leb)×L2([a, b]× [0, 1], (1−w2)−1dz dw).
Since obviously ψ1(g) + ψ2(g) = g, the claim is proved and the proof of Proposition 2.5
is completed.

Proof of Theorem 2.4. An eigenvector ofA of the formHd(w)ψ(z) satisfies the Neumann
boundary condition in D iff ψ′(a) = ψ′(b) = 0. The problem (2.11) with this bound-
ary condition is a regular Sturm-Liouville problem with the weight ν̃ defined in (2.12).
Therefore (cf. e.g. [26, Thm. 4.6.2]), for all d ≥ 0, there exists an orthonormal basis
{ψ(d)

k }k≥1 of L2([a, b], ν̃) composed of solutions to (2.11) on (a, b) with Neumann bound-
ary conditions. All the corresponding eigenvalues are real, simple and the correspond-
ing spectrum has no accumulation point.

Now, we claim that

F :=
⋃
d≥2

{
Hd

(x− y
x+ y

)
ψ

(d)
k (x+ y)

}
k≥1

forms an orthonormal basis of L2(D,µ). The orthonormal property follows from the fact

that, if ϕ(x, y) = Hd(
x−y
x+y )ψ

(d)
k (x+ y) and ϕ′(x, y) = Hd′(

x−y
x+y )ψ

(d′)
k′ (x+ y) for d, d′ ≥ 2 and
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k, k′ ≥ 1,

〈ϕ,ϕ′〉µ =

∫ 1

−1

∫ b

a

Hd(w)Hd′(w)ψ
(d)
k (z)ψ

(d′)
k′ (z)dν(z, w)

= 〈ψ(d)
k , ψ

(d′)
k′ 〉ν̃ 〈Hd, Hd′〉(1−w2)−1dw.

To prove that F is a basis of L2(D,µ), assume that f ∈ L2(D,µ) satisfies∫∫
D

f(x, y)Hd

(x− y
x+ y

)
ψ

(d)
k (x+ y)dµ(x, y) = 0, ∀d ≥ 2, k ≥ 1.

By the Cauchy-Schwartz inequality, for all d ≥ 2, the function

f̃d(z) :=

∫ 1

−1

f
(z(1 + w)

2
,
z(1− w)

2

)Hd(w)

1− w2
dw

belongs to L2([a, b], ν̃). In addition,

〈f̃d, ψ(d)
k 〉ν̃ = 0, ∀k ≥ 1.

Therefore, f̃d(z) = 0 for all d ≥ 2, for Lebesgue-almost every z ≥ 0. By Fubini’s theorem,
w 7→ f( z(1+w)

2 , z(1−w)
2 ) belongs to L2([−1, 1], (1− x2)−1dx) for almost every z ≥ 0. Hence

we deduce from Proposition 2.2 that this function is 0 for almost every z ≥ 0. Hence
f = 0.

Thus F is an orthonormal basis of L2(D,µ) composed of eigenvectors of A. It is then
classical to deduce that A admits no other eigenvector in this space, in the sense of
point (a).

For point (b), let us first prove that the decomposition

f =
x

x+ y
f1(x+ y) +

y

x+ y
f2(x+ y) + f3(x, y)

is unique for f ∈ V , with f1, f2 ∈ L2([a, b],Leb) and f3 ∈ L2(D,µ). We only need to prove
that this equality for f = 0 implies f1 = f2 = f3 = 0.

Since f3 ∈ L2(D,µ), we have∫ ε

0

dx

∫ b−x

a−x
dy f2

3 (x, y) ≤ ε
∫ ε

0

dx

∫ b−x

a−x
dy

f2
3 (x, y)

x
= o(ε)

as ε→ 0. Therefore,∫ ε

0

dx

∫ b−x

a−x
dy

y2

(x+ y)2
f2

2 =

∫ ε

0

dx

∫ b−x

a−x
dy

(
x

x+ y
f2

1 + f3

)2

≤ 2

∫ ε

0

dx

∫ b−x

a−x
dy

x2

(x+ y)2
f2

1 + o(ε) = o(ε).

This implies that
∫ b
a
f2

2 (z)dz = 0, i.e. f2 = 0. Similarly, f1 = 0 and thus f3 = 0.
Since L2([a, b],Leb) = L2([a, b], ν̃), the result then follows from the decomposition of

f1 and f2 (resp. f3) in the orthonormal basis {ψ(1)
k }k≥1 of L2([a, b], ν̃) (resp. the orthonor-

mal basis {Hd(
x−y
x+y )ψ

(d)
k (x+ y)}d≥2, k≥1 of L2(D,µ) ).

To motivate the calculations of the next section, let us finally observe that, for all
ϕ ∈ C2(R2

+),

Aϕ(x, y) = (T̃ϕ)(x, y)p(x+ y) + (L̃ϕ)(x, y)q(x+ y),
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where

L̃ = x
∂

∂x
+ y

∂

∂y

and

T̃ = x
∂2

∂x2
+ y

∂2

∂y2
, (2.17)

and that T̃ L̃ = L̃T̃ .

3 On a family of bivariate polynomials

The goal of this section is to prove the existence of a family of polynomials in R of
two variables X and Y , satisfying the family of relations

XP (X + 1, Y ) + Y P (X,Y + 1) = (X + Y + d)P (X,Y ) (3.1a)

XP (X − 1, Y ) + Y P (X,Y − 1) = (X + Y − d)P (X,Y ) (3.1b)

for an integer d ≥ 0.
Before stating the main result of the section, let us recall some notation. R[X] is the

set of polynomials on R with a single variable X and R[X,Y ] the set of real polynomials
with two variables X and Y . The degree deg(P ) of a polynomial P ∈ R[X,Y ] is defined
as the maximal total degree of each monomial of P . We define

Pd = {P ∈ R[X,Y ] : deg(P ) ≤ d}.

For all P ∈ R[X,Y ], we may write

P (X,Y ) =
∑
i,j≥0

ai,jX
iY j ,

where only finitely many of the ai,j are nonzero. The real number ai,j will be called the
(i, j)-coefficient of P .

For any P ∈ R[X,Y ] and for any d ≥ 0, we denote by [P ]d the sum of all monomials
of P of degree d:

[P ]d(X,Y ) =

d∑
i=0

ai,d−iX
iY d−i.

In particular, [P ]d is homogeneous of degree d and P =
∑∞
i=1[P ]i.

We denote by ∆i the first-order symmetrized discrete derivative with respect to the
i-th variable:

∀P ∈ R[X,Y ], ∆1P (X,Y ) =
P (X + 1, Y )− P (X − 1, Y )

2

and ∆2P (X,Y ) =
P (X,Y + 1)− P (X,Y − 1)

2
,

and by ∆2
i the symmetrized second-order discrete derivative with respect to the i-th

variable:

∀P ∈ R[X,Y ], ∆2
1P (X,Y ) =

P (X + 1, Y ) + P (X − 1, Y )− 2P (X,Y )

2

and ∆2
2P (X,Y ) =

P (X,Y + 1) + P (X,Y − 1)− 2P (X,Y )

2
.

Note that the superscript in the notation ∆2
i does not correspond to the composition of

the operator ∆i with itself.
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Finally, we define the linear operators on R[X,Y ]

L = X∆1 + Y∆2 and T = X∆2
1 + Y∆2

2.

Then, adding and substracting the equations (3.1a) and (3.1b), the system (3.1) is equiv-
alent to

LP = dP (3.2)

TP = 0. (3.3)

We are going to prove the following result

Theorem 3.1. For d = 1, the system (3.1) has a two-dimensional vector space of solu-
tions in R[X,Y ], spanned by the two polynomials P (1)

1 := X and P (2)
1 := Y .

For any d ∈ {0, 2, 3, . . .}, the system (3.1) has a one-dimensional vector space of
solutions. All nonzero solutions are of degree d. For d = 0, this is the vector space
of constants, spanned by P0 := 1. When d ≥ 2, we denote by Pd the unique solution
to (3.1) with (d − 1, 1)-coefficient equal to −2H ′d(1) = (−1)d2

√
d(d− 1)(2d− 1), where

Hd is defined in Proposition 2.2.

It can be checked that the first polynomials are

P0 = 1, P
(1)
1 = X, P

(2)
1 = Y

P2 = 2
√

6 XY,

P3 = −2
√

30 XY (X − Y ),

P4 = 4
√

21 XY (X2 − 3XY + Y 2 + 1),

P5 = −6
√

20 XY (X − Y )(X2 − 5XY + Y 2 + 5).

Before proving this result, let us give some properties of the polynomials Pd, proved
after the proof of Theorem 3.1.

Proposition 3.2. The polynomials Pd, d ≥ 2, defined in Theorem 3.1 satisfy the follow-
ing properties:

(a) For all d ≥ 2, [Pd]d(X,Y ) = (X + Y )dHd

(
X−Y
X+Y

)
, where Hd is defined in Proposi-

tion 2.2.

(b) [P ]d−2k−1 = 0 for all 0 ≤ k < d/2.

(c) For all d ≥ 2, Pd is divisible by XY . For d odd, Pd(X,Y ) is divisible by XY (X − Y ).

(d) for all d ≥ 2, Pd(Y,X) = Pd(−X,−Y ) = (−1)dPd(X,Y ).

(e) Pd(i, j) = 0 if i, j ∈ Z, ij ≥ 0 and 0 ≤ |i|+ |j| ≤ d− 1.

(f) For all d ≥ 0, the matrix (Pi(j, d − j))0≤i,j≤d is invertible, where P1 = P
(1)
1 . In

particular, (Pd(j, d− j))0≤j≤d 6= 0.

(g) For all d ≥ 3, Pd(j, d− j)Pd(j + 1, d− j − 1) < 0 if 1 ≤ j ≤ d− 2.

(h) For all d, d′, k ≥ 2,

k−1∑
i=1

Pd(i, k − i)Pd′(i, k − i)
i(k − i)

= 2

(
k + d− 1

2d− 1

)
δdd′ , (3.4)

where δij is the Kronecker symbol and by convention
(
i
j

)
= 0 if j < 0 or j > i.
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Proposition 3.3. For all d ≥ 2, the polynomial Pd is given by the following formula:

Pd(X,Y ) = Cd(−X − Y )d

d∑
k=1

(−d)k(d− 1)k

(k − 1)!k!

(−X)k
(−X − Y )k

, (3.5)

where

Cd = (−1)d+12

√
2d− 1

d(d− 1)
.

In order to prove Theorem 3.1, we need the following lemma.

Lemma 3.4. (a) We have
TL = LT + T, (3.6)

(b) Define for all d ≥ 0

Dd = {P ∈ Pd : T (P ) = 0}.

Then dim(D0) = 1 and dim(Dd) = d+ 2 for all d ≥ 1.

Proof of Lemma 3.4. To prove (3.6), it would be enough to expand both sides of the
equation. We prefer to give a proof based on differential calculations, because it is
related to the method used in the rest of the proof. First, let I = {1, 3, 5, . . .} and
J = {2, 4, 6, . . .} be the sets of odd and even integers, respectively. Using the fact that,
for Q ∈ R[X].

Q(X + 1) =
∑
n≥0

Q(n)(X)

n!
and Q(X − 1) =

∑
n≥0

(−1)nQ(n)(X)

n!
,

where Q(n) denotes the n-th derivative of Q, one has

T =
∑
p∈J

1

p!

(
X

∂p

∂Xp
+ Y

∂p

∂Y p

)
, (3.7)

L =
∑
q∈I

1

q!

(
X

∂q

∂Xq
+ Y

∂q

∂Y q

)
. (3.8)

Since for all p, q ∈ N

X
∂p

∂Xp

(
X

∂q

∂Xq

)
= X2 ∂p+q

∂Xp+q
+ pX

∂p+q−1

∂Xp+q−1
,

one easily checks that

TL− LT =
∑

p∈J,q∈I

1

p!

1

q!
(p− q)

(
X

∂p+q−1

∂Xp+q−1
+ Y

∂p+q−1

∂Y p+q−1

)
.

Now, for all n ∈ N,∑
p∈J, q∈I, p+q=2n+1

1

p!

1

q!
(p− q) =

∑
p∈I, q∈I, p+q=2n

1

p!

1

q!
−

∑
p∈J, q∈J∪{0}, p+q=2n

1

p!

1

q!

= −
∑

0≤p≤2n

1

p!

1

(2n− p)!
(−1)p +

1

(2n)!

=
(
(1− 1)2n + 1

) 1

(2n)!
=

1

(2n)!
.
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This completes the proof of Lemma 3.4 (a).
To prove (b), letHp be the subspace of Pd composed of all homogeneous polynomials

of degree d. Recall the definition (2.17) of the operator T̃ on R[X,Y ], and observe that,
for all d ≥ 1, T̃ is a linear map from Hd to Hd−1. Now, the family {(X − Y )k(X +

Y )d−k, 0 ≤ k ≤ d} forms a basis of Hd. Hence, any P ∈ Hd can be written in the form

P (X,Y ) = (X + Y )dh
(
X−Y
X+Y

)
, where h ∈ R[X] has degree d. With this notation, it can

be checked that

∂2P

∂X2
(X,Y ) = d(d− 1)(X + Y )d−2h(W )

+ 4(d− 1)Y (X + Y )d−3h′(W ) + 4Y 2(X + Y )d−4h′′(W ),

where W = (X − Y )/(X + Y ), and similarly for the second variable. This yields

T̃P = (X + Y )d−1

(
d(d− 1)h(W ) + 4

XY

(X + Y )2
h′′(W )

)
.

Using the relation 4XY/(X + Y )2 = 1 − W 2, we finally obtain that P ∈ Ker(T̃ ) ∩ Hd
if and only if h solves (2.6). By Proposition 2.2, for all d 6= 1, this equation has a
unique (up to a multliplicative constant) polynomial solution, which has degree d. Since
dim(Hd) = d + 1, we deduce that T̃ : Hd → Hd−1 is surjective for all d ≥ 2. If d = 1,
Ker(T̃ ) ∩H1 = H1 which has dimension 2.

Now, let P = [P ]1 + . . .+ [P ]d ∈ Pd and observe that any k-th order derivative of [P ]m
belongs to Hm−k if k ≤ m. Therefore, by (3.7), the equation TP = 0 is equivalent to the
fact that, for all 0 ≤ n ≤ d− 1,

[TP ]n =
∑
p≥1

1

(2p)!

(
X

∂2p

∂X2p
+ Y

∂2p

∂Y 2p

)
[P ]n+2p−1 = 0,

or, equivalently,

T̃ [P ]n+1 = −2
∑
p≥2

1

(2p)!

(
X

∂2p

∂X2p
+ Y

∂2p

∂Y 2p

)
[P ]n+2p−1. (3.9)

If n ≥ 1 and [P ]n+3, [P ]n+5, . . . are given, there is a one-dimensional affine space of
solution for this equation. If n = 0, (3.9) is automatically satisfied, since both sides are
0. Therefore, choosing recursively [P ]d, [P ]d−1, . . . , [P ]2 and setting any value to [P ]1
and [P ]0, the result on the dimension of Dd easily follows.

Proof of Theorem 3.1. Fix d ≥ 0. We claim that, as a linear operator on Pd, L is diag-
onalizable and its spectrum SpPd

(L) = {0, 1, . . . , d}. To see this, fix λ ∈ SpPd
(L) and P

an eigenvector for this eigenvalue, with degree p. Writing as in the proof of Lemma 3.4
P = [P ]p + . . .+ [P ]0, the equation LP = λP is equivalent to the fact that, for 0 ≤ n ≤ p

λ[P ]n =
∑
q≥0

1

(2q + 1)!

(
X

∂2q+1

∂X2q+1
+ Y

∂2q+1

∂Y 2q+1

)
[P ]n+2q. (3.10)

Now, for any Q ∈ Hk, one has

L̃Q = X
∂Q

∂X
+ Y

∂Q

∂Y
= kQ. (3.11)

Therefore, (3.10) for n = p imposes λ = p, and for n = p − 1, [P ]p−1 = 0. Moreover, for
0 ≤ n ≤ p− 2, (3.10) is equivalent to

(p− n)[P ]n =
∑
q≥1

1

(2q + 1)!

(
X

∂2q+1

∂X2q+1
+ Y

∂2q+1

∂Y 2q+1

)
[P ]n+2q, (3.12)
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which allows one to compute recursively [P ]p−2, . . . , [P ]0 given any [P ]p ∈ Hp and
[P ]p−1 = 0. Since dim(Hp) = p + 1, the eigenspace corresponding to the eigenvalue
p of L has dimension p+ 1.

Now, it follows from (3.6) that L is a linear operator from Dd to Dd. Since L is
diagonalizable in Pd, it is also diagonalizable on any stable subspace, and SpDd

(L) ⊂
{0, . . . , d}.

Let p ∈ {2, . . . , d} and assume that there exists P ∈ Dd \ {0} satisfying LP = pP .
Again, deg(P ) = p necessarily. Writing P = [P ]p + . . . + [P ]0 again, since T (P ) = 0, we
have

T̃ [P ]p = X
∂2[P ]p
∂X2

+ Y
∂2[P ]p
∂Y 2

= 0,

which has a one-dimensional vector space of solutions in Hp. Once [P ]p is fixed and
since we have [P ]p−1 = 0, (3.12) can be used recursively to compute [P ]p−2, . . . , [P ]0. In
conclusion, the eigenspace of L in Dd for the eigenvalue p is either of dimension 1 or
0. Now, L is diagonalizable in Dd. Since dim(Dd) = d + 2 and dim(H0) + dim(H1) = 3,
the only possibility is that SpDd

(L) = {0, 1, . . . , d} and that each eigenvalue p 6= 1 has a
one-dimensional vector space of solutions, and the eigenvalue 1 has a two-dimensional
vector space of solutions.

This easily implies Theorem 3.1, except for the expression of −2H ′d(1). This can be
easily obtained from (2.7) and the relation H ′d(1) = (−1)d−1H ′d(−1) which follows from
the parity property of Hd stated in Proposition 2.2.

Proof of Proposition 3.2. Recall from the proof of Lemma 3.4 that a nonzero solution P
of (3.1) for d ≥ 2 satisfies

[P ]d(X,Y ) =

d∑
n=0

bn(X − Y )n(X + Y )d−n,

where h(x) =
∑d
n=0 bnx

n is a polynomial solution of (2.6). Therefore, the (d − 1, 1)-
coefficient ad−1,1 of P is given by

ad−1,1 =

d∑
n=0

bn(−n+ d− n) = dh(1)− 2h′(1) = −2h′(1),

and Point (a) then follows from Proposition 2.2 and the value of the (d− 1, 1) coefficient
of Pd.

Observe that any polynomial solution of (2.6) with d ≥ 2 is divisible by (X−1)(X+1).
As a consequence of the previous construction, any polynomial P such that (3.1) holds
satisfies that XY divides [P ]d. Note also that [P ]d−1 = 0, which implies (b) by (3.12).
Moreover, (3.12) also implies by induction that XY divides [P ]d−2k for all 0 ≤ k ≤ d/2,
which yields the first part of (c).

By Proposition 2.2, (d) is true for [Pd]d and of course for [Pd]d−1 = 0. Now, assume
that P ∈ R[X,Y ] satisfies P (Y,X) = P (−X,−Y ) = (−1)αP (X,Y ). Then it can be easily
checked that, for all k ≥ 1,

Q(X,Y ) := X
∂kP

∂Xk
(X,Y ) + Y

∂kP

∂Y k
(X,Y )

satisfies

Q(Y,X) = (−1)αQ(X,Y ) and Q(−X,−Y ) = (−1)α+k+1Q(X,Y ).

Therefore, (d) easily follows from (3.12) by induction.
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Now, fix d odd. By Proposition 2.2, Hd is odd and thus Hd(X) is divisible by X. This
implies that [P ]d is divisible by X − Y . Moreover, it follows from (d) that the polynomial
[P ]d/(X − Y ) is symmetric. Now, let Q(X,Y ) = XnY m +XmY n for some n,m ≥ 0, and
fix k ≥ 0. Since

X
∂kQ

∂Xk
− Y ∂

kQ

∂Y k
= n(n− 1) . . . (n− k + 1)(Xn−k+1Y m −XmY n−k+1)

+m(m− 1) . . . (m− k + 1)(Xm−k+1Y n −XnY m−k+1),

the polynomial X − Y divides X ∂kQ
∂Xk − Y ∂kQ

∂Y k . Since this holds for any n,m ≥ 0, the
same is true for all Q such that Q(X,Y ) = Q(Y,X). Now, any polynomial of the form
P (X,Y ) = (X − Y )Q(X,Y ) with Q symmetric satisfies

X
∂kP

∂Xk
(X,Y ) + Y

∂kP

∂Y k
(X,Y ) = kX

∂k−1Q

∂Xk−1
(X,Y )− kY ∂

k−1Q

∂Y k−1
(X,Y )

+ (X − Y )

(
X
∂kQ

∂Xk
(X,Y ) + Y

∂kQ

∂Y k
(X,Y )

)
.

In particular, X − Y divides X ∂kP
∂Xk + Y ∂kP

∂Y k . Therefore, the fact that [P ]i is divisible by
X − Y for i < d follows form (3.12) by induction. This ends the proof of (c).

As a consequence of (c), Pd(i, 0) = Pd(0, j) = 0 for any i, j ∈ Z for d ≥ 2. Apply-
ing (3.1b) for (X,Y ) = (d− 1, 1) yields Pd(d− 2, 1) = 0. By induction, applying (3.1b) for
(X,Y ) = (d− k, 1) implies Pd(d− k − 1, 1) = 0 for all k ∈ {1, . . . , d− 2}. Similarly, apply-
ing (3.1b) for (X,Y ) = (d− 1− k, 2) implies Pd(d− 2− k, 2) = 0 for all k ∈ {1, . . . , d− 3}.
Point (e) is therefore straightforward by induction.

For all d ≤ k, the polynomial Qk,d(X) = Pk(X, d−X) satisfies

[Qk,d]k =

[
dkHk

(
2X − d

d

)]
k

6= 0

for all k ≥ 2. Therefore, deg(Qk,d) = k for all k ≥ 0, and {Q0,d, Q1,d, . . . , Qd,d} is a
basis of P ′d := {Q ∈ R[X] : deg(Q) ≤ d}. Since ϕ(Q) = (Q(0), . . . , Q(d)) defines a linear
isomorphism from P ′d to Rd+1, we deduce that {ϕ(Q0,d), . . . , ϕ(Qd,d)} is a basis of Rd+1,
which is equivalent to (f).

Point (g) is a simple consequence of points (e) and (f) and of formula (3.1a) with
X = j and Y = d− j − 1.

Because of point (e) above, (h) is obvious if k ≤ d− 1 or k ≤ d′ − 1. So let us assume
that d, d′ ≤ k. Multiplying (3.1a) by (X + Y − d + 1) and applying (3.1b) to both terms
on the l.h.s. yields

(2XY − d(d− 1))Pd(X,Y ) = XY (Pd(X + 1, Y − 1) + Pd(X − 1, Y + 1)). (3.13)

This means that, for all k ≥ 2 and 2 ≤ d ≤ k, the vector (Pd(i, k − i))1≤i≤k−1 is a right

eigenvector of the matrix Ak = (a
(k)
i,j )1≤i,j≤k−1 for the eigenvalue −d(d− 1), where

a
(k)
i,i = −2i(k − i) for 1 ≤ i ≤ k − 1,

a
(k)
i,i+1 = i(k − i) for 2 ≤ i ≤ k − 1,

a
(k)
i,i−1 = i(k − i) for 1 ≤ i ≤ k − 2

and a(k)
ij = 0 for |i− j| ≥ 2.

It is straightforward to check that the matrix Ak is self-adjoint for the inner product
〈·, ·〉µ, where µi = 1/i(k−i), which implies that two right eigenvectors of Ak correspond-
ing to different eigenvalues are orthogonal w.r.t. this inner product. This yields (3.4) for
d 6= d′.
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Finally, fix 2 ≤ d ≤ k. Using (3.1a) and (3.1b), we have

(k + d)

k−1∑
i=1

Pd(i, k − i)2

i(k − i)

=

k−1∑
i=1

Pd(i, k − i)
Pd(i+ 1, k − i)

k − i
+

k−1∑
i=1

Pd(i, k − i)
Pd(i, k − i+ 1)

i

=

k∑
i=1

Pd(i, k − i+ 1)
Pd(i− 1, k − i+ 1)

k − i+ 1
+

k∑
i=1

Pd(i, k − i+ 1)
Pd(i, k − i)

i

= (k − d+ 1)

k∑
i=1

Pd(i, k − i+ 1)2

i(k − i+ 1)
.

Applying this equality inductively, we deduce that

k−1∑
i=1

Pd(i, k − i)2

i(k − i)
= C

(
k + d− 1

2d− 1

)
for some constant C.

Now, by point (a) and Proposition 2.2, we have

1

k2d−1

k−1∑
i=1

P 2
d (i, k − i)
i(k − i)

∼ 4

k

k−1∑
i=1

H2
d

(
2i−k
k

)
1−

(
2i−k
k

)2 −→ 2

∫ 1

−1

H2
d(x)

1− x2
dx = 2

as k → +∞. Thus C = 2 and the proof of (h) is completed.

Proof of Proposition 3.3. In [15], the authors construct a family of functions of two vari-
ables satisfying relations close to (3.1), which they use to study neutral, multitype popu-
lation processes with non-zero mutation or immigration. These functions are expressed
in terms of the Hahn polynomials, defined for fixed parameters α > −1, β > −1 and
N ∈ N by

Qd(x;α, β,N) = 3F2

(
−d, −x, d+ α+ β + 1

α+ 1, −N + 1
; 1

)
, (3.14)

for all integer d ≥ 0. Karlin and McGregor proved that the rational function

φd(X,Y ) = Qd(X;α, β,X + Y + 1) =

d∑
k=0

(−d)k(−X)k(d+ α+ β + 1)k
(α+ 1)k(−X − Y )kk!

satisfies

(X + α+ 1)φd(X + 1, Y ) + (Y + β + 1)φd(X,Y + 1) = (X + Y )φd(X,Y ) (3.15)

Xφd(X − 1, Y ) + Y φd(X,Y − 1)

=
(X + Y + 1− d)(X + Y + d+ α+ β + 2)

X + Y + 1
φd(X,Y ).

(3.16)

Let us define

ψd(X,Y ) = (−X − Y )d lim
β→−1

lim
α→−1

(α+ 1)φd(X,Y )

= (−X − Y )d

d∑
k=1

(−d)k(−X)k(d− 1)k
(k − 1)!(−X − Y )kk!

.
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Passing to the limit in (3.15) and (3.16) proves that ψd satisfies (3.1). Since ψd is a
polynomial, Theorem 3.1 entails (3.5). It only remains to check that Cdψd(X,Y ) has
its (d − 1, 1) coefficient equal to (−1)d2

√
d(d− 1)(2d− 1). The (d − 1, 1) coefficient of

ψd(X,Y ) is

(−1)d
d∑
k=1

(−d)k(d− 1)k
(k − 1)!k!

(d− k) = (−1)d+1d(d− 1)2
d∑
k=1

(−d+ 2)k−1(d)k−1

(k − 1)!k!

= (−1)d+1d(d− 1)2F1

(
−d+ 2, d

2
; 1

)
.

The Chu-Vandermonde formula (cf. e.g. [9]) implies that

2F1

(
−d+ 2, d

2
; 1

)
= (−1)d

(d− 2)!

(d− 1)!
=

(−1)d

d− 1
,

which gives the expression of Cd.

4 Spectral decomposition of neutral two-dimensional Markov chains

In this section, we consider neutral extensions of the two-dimensional birth and
death chains in Z2 described in the introduction. In the sequel, this family will be
called N2dMC, for neutral two-dimensional Markov chains.

A N2dMC (Xt, Yt)t∈Z+
is constructed by specifying first the Markov dynamics of

Zt = Xt + Yt in Z+. Assume that its transition matrix is

Π0 = (pn,m)n,m≥0,

where
∑
m≥0 pn,m = 1 for all n ≥ 1 and the state 0 is absorbing (p0,0 = 1). Then, the pro-

cess (Xt, Yt)t∈Z+ is constructed as follows: if there is a birth at time t (i.e. if Zt+1 > Zt),
the types of the new individuals are successively picked at random in the population;
if there is a death at time t (i.e. if Zt+1 < Zt), the types of the killed individuals are
successively picked at random in the population; finally, if Zt+1 = Zt, then Xt+1 = Xt

and Yt+1 = Yt.
For example, the transition probability from (i, j) to (i + k, j + l) for (i, j) ∈ Z2

+ and
k, l ≥ 0, k + l ≥ 1 is(

k + l

k

)
i(i+ 1) . . . (i+ k − 1) j(j + 1) . . . (j + l − 1)

(i+ j)(i+ j + 1) . . . (i+ j + k + l − 1)
pi+j,i+j+k+l.

After some algebra, one gets the following formulas for the transition probabilities: for
all l ≥ 0 and k ≥ 0 such that l + k ≥ 1, the Markov chain (Xn, Yn)n≥0 has transitions
from (i, j) ∈ Z2

+ to

(i+ k, j + l) w. p. π(i,j),(i+k,j+l) :=

(
i+k−1
k

)(
j+l−1
l

)(
i+j+k+l−1

k+l

) pi+j, i+j+k+l

(i− k, j − l) w. p. π(i,j),(i−k,j−l) :=

(
i
k

)(
j
l

)(
i+j
k+l

) pi+j, i+j−k−l
(i, j) w. p. π(i,j),(i,j) := pi+j, i+j ,

(4.1)

with the convention that
(
i
j

)
= 0 if i < 0, j < 0 or j > i. In particular, once one

component of the process is 0, it stays zero forever. We denote by

Π := (π(i,j),(k,l))(i,j),(k,l)∈Z2
+
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the transition matrix of the Markov process (X,Y ).
The state space of the Markov chain Z will be denoted by SZ , and the state space

of (X,Y ) by S. We are going to consider two cases: the case where Z has finite state
space SZ := {0, 1, . . . , N} for some N ≥ 0, and the case where Z has infinite state space
SZ := Z+. In the first case, the state space of (X,Y ) is the set

TN := {(i, j) ∈ Z2
+ : i+ j ≤ N}. (4.2)

In the second case, S := Z2
+.

We also define the sets S∗ := S ∩ N2, T ∗N := TN ∩ N2 and S∗Z := SZ \ {0}. Finally,
let Π̃0 be the restriction of the matrix Π0 to S∗Z (i.e. the matrix obtained from Π0 by
suppressing the row and column of index 0) and let Π̃ be the restriction of the matrix Π

to S∗.
Extending the usual definition for Markov chains, we will say that a matrix M =

(mij)i,j∈A is reversible with respect to the measure (µi)i∈A if µi > 0 and µimij = µjmji

for all i, j ∈ A.
For all d ≥ 0, we define

Vd := {v ∈ RS : vi,j = Pd(i, j)ui+j with u ∈ RSZ},

where we recall that the polynomials Pd are defined in Theorem 3.1 and P1 = P
(1)
1 .

Note that, by Proposition 3.2 (e), a vector vi,j = Pd(i, j)ui+j ∈ Vd is characterized by the
values of uk for k ≥ d only.

For all d ≥ 0, we also define the matrix Πd := (p
(d)
n,m)(n,m)∈S, n≥d, m≥d, where for all

(n,m) ∈ S such that n ≥ d and m ≥ d,

p(d)
n,m :=



(
m+d−1
m−n

)(
m−1
m−n

) pn,m if m > n,(
n−d
n−m

)(
n

n−m
) pn,m if m < n,

pn,n if m = n.

(4.3)

All these notation, as well as those introduced in the rest of the paper, are gathered
for convenience in Appendix A.

The following result is the basis of all results in this section.

Proposition 4.1. For all d ≥ 0, the vector space Vd is stable for the matrix Π. In
addition, for all vi,j = Pd(i, j)ui+j ∈ Vd,

(Πv)i,j = Pd(i, j)(Πdu)i+j .

Proof. Using (3.1a) inductively, we have

n∑
k=0

(
n

k

)
X(X + 1) . . . (X + k − 1)Y (Y + 1) . . . (Y + n− k − 1)Pd(X + k, Y + n− k)

= (X + Y + d)(X + Y + d+ 1) . . . (X + Y + d+ n− 1)Pd(X,Y )

for all d ≥ 0 and n ≥ 1, which can be written as

n∑
k=0

(
X + k − 1

k

)(
Y + n− k − 1

n− k

)
Pd(X + k, Y + n− k)

=

(
X + Y + d+ n− 1

n

)
Pd(X,Y )
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for (X,Y ) ∈ Z2
+. Similarly, an inductive use of (3.1b) yields

n∑
k=0

(
X

k

)(
Y

n− k

)
Pd(X − k, Y − n+ k) =

(
X + Y − d

n

)
Pd(X,Y )

for all d ≥ 0, n ≥ 1 and (X,Y ) ∈ Z2
+, where we recall the convention

(
a
b

)
= 0 if a < 0,

b < 0 or b > a.
Proposition 4.1 then easily follows from these equations and from the transition

probabilities (4.1).

4.1 The case of finite state space

4.1.1 Eigenvectors of Π for finite state spaces

In the case where Z has finite state space, the main result of this section is the following.

Theorem 4.2. Assume that SZ = TN for some N ≥ 0.

(a) For all d ≥ 0 and all right eigenvector (un)n∈SZ , n≥d of Πd for some eigenvalue θ, the
vector

v(i,j) = Pd(i, j)ui+j , (i, j) ∈ S (4.4)

is a right eigenvector of the matrix Π for the same eigenvalue, where the polyno-
mials Pd are defined in Theorem 3.1 and where P1 = P

(1)
1 .

In addition, if d ≥ 2, v is also a right eigenvector of the matrix Π̃ for the same
eigenvalue.

(b) All the right eigenvectors of Π are of the form (4.4), or possibly a linear combination
of such eigenvectors in the case of multiple eigenvalues.

(c) Assume that Π̃0 admits a positive reversible measure (µn)n∈S∗Z . Then, the matrix Π̃

is reversible w.r.t. the measure

ν(i,j) :=
(i+ j)µi+j

ij
, ∀(i, j) ∈ S∗, (4.5)

and hence is diagonalizable in a basis orthonormal for this measure, composed of
vectors of the form (4.4) for d ≥ 2.
In addition, Π is diagonalizable in a basis of eigenvectors of the form (4.4) for
d ≥ 0.

Hence, the right eigenvectors of the transition matrix of a finite N2dMC can be
decomposed as the product of two terms, one depending on each population size, but
“universal” in the sense that it does not depend on the transitions matrix Π0 of Z, and
the other depending on the matrix Π0, but depending only on the total population size.

Remark 4.3. There is some redundancy among the right eigenvectors of Π of the form
P (i, j)ui+j for P = P0, P (1)

1 or P (2)
1 : if u is a right eigenvector of Π1, the vectors

(iui+j)(i,j)∈S and (jui+j)(i,j)∈S

are right eigenvectors of Π for the same eigenvalue. In particular, iui+j + jui+j is an
eigenvector of Π of the form P0(i, j)u′i+j . This will also be true when Z has infinite state
space.

Remark 4.4. In the following proof (and also in the case of infinite state space), no
specific use is made of the fact that the matrix Π is stochastic. Therefore, Theorem 4.2
also holds true in the case of a continuous-time N2dMC, where the matrix Π0 is now
the infinitesimal generator of the process Zt = Xt + Yt.
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Proof. Point (a) is an easy consequence of Proposition 4.1.
For all 0 ≤ d ≤ N , the matrix Πd is conjugate with its Jordan normal form. Let

{u(d),k}d≤k≤N denote the basis of CN−d+1 corresponding to this normal form, where

u(d),k = (u
(d),k
d , u

(d),k
d+1 . . . , u

(d),k
N ). Then, the family of vectors

F :=
{

(Pd(i, j)u
(d),k
i+j )(i,j)∈TN : 0 ≤ d ≤ N, d ≤ k ≤ N

}
is composed of (N + 1) + N + (N − 1) + . . . + 1 = (N + 1)(N + 2)/2 = |TN | elements.
Moreover, one can prove that it is linearly independent as follows: since {u(d),k}d≤k≤N
is a basis of CN−d+1, it is sufficient to check that

N∑
d=0

Pd(i, j)v
(d)
i+j = 0, ∀(i, j) ∈ TN (4.6)

implies that v(d) = 0 for all 0 ≤ d ≤ N , where v(d) = (v
(d)
d , . . . , v

(d)
N ) ∈ CN−d+1, seen

as a subspace of CN+1 by putting the d first coordinates to be zero. Given k ≤ N , the
equality (4.6) for i+ j = k combined with Proposition 3.2 (f) yields v(0)

k = . . . = v
(k)
k = 0.

Therefore, F is a basis of CTN and, by point (a), the matrix Π has a Jordan normal
form in this basis. Point (b) is then staightforward.

If Π̃0 admits a positive reversible measure µ, it is straightforward to check that the
vector ν in (4.5) is a reversible measure for Π̃, and hence the first part of Point (c) is
true.

In addition, the matrix Π1 is reversible w.r.t. the measure

µ(1)
n := 2n2 µn, n ∈ S∗Z ,

which implies that Π1 admits a basis of right eigenvectors orthonormal w.r.t. µ(1). Sim-
ilarly, Π̃0 admits a basis of right eigenvectors orthonormal w.r.t. µ. By Point (a), this
gives N + 1 (resp. N ) right eigenvectors of Π of the form (4.4) for d = 0 (resp. d = 1).
Together with the basis of right eigenvectors of Π̃ obtained above (extended by zero on
{0}×N andN×{0}), this gives a basis of eigenvectors of Π and ends the proof of (c).

4.1.2 Example: 3-colors urn model (or 3-types Moran model)

The class of transition matrices given in (4.1) can be obtained by composition and
linear combinations of the transition matrices Π(n)+ = (π

(n)+
(i,j),(k,l)))(i,j),(k,l)∈S , Π(n)− =

(π
(n)−
(i,j),(k,l)))(i,j),(k,l)∈S and Π(n) = (π

(n)
(i,j),(k,l)))(i,j),(k,l)∈S , where for all n ≥ 1

π(n)+ =


i
i+j , if k = i+ 1, l = j, i+ j = n
j
i+j , if k = i, l = j + 1, i+ j = n

0 otherwise,

π(n)− =


i
i+j , if k = i− 1, l = j, i+ j = n
j
i+j , if k = i, l = j − 1, i+ j = n

0 otherwise,

and for all n ≥ 0

π(n) =

{
1, if k = i, l = j, i+ j = n

0 otherwise.

One easily checks, first that the vector spaces Vd for all d ≥ 0 are stable for all these
matrices, and second that, for the matrix (4.1),

Π =
∑

n<m∈SZ

pn,m(Π(n)+)m−n +
∑

n>m∈SZ

pn,m(Π(n)−)n−m
∑
n∈SZ

pn,nΠ(n).
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Hence, the vector spaces Vd are trivially stable for such matrices.
One may however recover a much larger class of matrices for which Vd are stable

vector spaces, by considering the algebra of matrices spanned by the matrices Π(n)±

and Π(n). Below, we study in detail such an example.

Consider an urn with N balls of three different colors and consider the following
process: one picks a ball at random in the urn, notes its color, puts it back in the urn,
picks another ball in the urn and replaces it by a ball of the same color as the first one.
The number of balls of each colors then forms a Markov chain, which can be viewed as
the embedded Markov chain of the 3-types Moran model, defined as follows: consider
a population of N individuals, with 3 different types. For each pair of individuals, at
rate 1, the second individual is replaced by an individual of the same type as the first
individual in the pair.

Let i denote the number of balls of the first color, and j the number of balls of the
second color. Then, there areN−i−j balls of the third color. The transition probabilities
of this Markov chain are as follows: given that the current state of the process is (i, j),
the state at the next time step is

(i+ 1, j) with probability i(N−i−j)
N2 ,

(i− 1, j) with probability i(N−i−j)
N2 ,

(i, j + 1) with probability j(N−i−j)
N2 ,

(i, j − 1) with probability j(N−i−j)
N2 ,

(i+ 1, j − 1) with probability ij
N2 ,

(i− 1, j + 1) with probability ij
N2 ,

(i, j) with probability i2+j2+(N−i−j)2
N2 .

These transition probabilities do not not have the form (4.1). However, a variant of
Proposition 4.1, and hence of Theorem 4.2, apply to this process, because of the fol-
lowing observation: let us construct the matrices Π+, Π−, Π̂+, Π̃+ from the matrices
Π+

0 = (p+
n,m)n,m∈SZ , Π−0 = (p−n,m)n,m∈SZ , Π̂+

0 = (p̂+
n,m)n,m∈SZ , Π̃+

0 = (p̃+
n,m)n,m∈SZ respec-

tively, exactly as Π was constructed from Π0 in (4.1), where

p+
n,n+1 = k

N , p+
n,n = 1− k

N , p+
n,m = 0 otherwise,

p−n,n−1 = k
N , p+

n,n = 1− k
N , p+

n,m = 0 otherwise,

p̂+
n,n+1 = k(N−k)

N2 , p̂+
n,n = 1− k(N−k)

N2 , p̂+
n,m = 0 otherwise,

p̃+
n,n+1 = k(N−k−1)

N2 , p̃+
n,n = 1− k(N−k−1)

N2 , p̃+
n,m = 0 otherwise.

Then the transition matrix of the 3-colors urn model is given by

Π = Π+Π− + Π̂+ − Π̃−.

In particular, the vector spaces Vd for 0 ≤ d ≤ N are all stable for this matrix.
The transition matrix Π has absorbing sets {(i, 0) : 0 ≤ i ≤ N}, {(0, i) : 0 ≤ i ≤ N}

and {(i,N− i) : 0 ≤ i ≤ N}, and absorbing states (0, 0), (N, 0) and (0, N). The restriction
of the matrix Π on the set

S∗∗ := {(i, j) : i ≥ 1, j ≥ 1, i+ j ≤ N − 1}

admits the reversible measure

ν(i,j) =
1

ij(N − i− j)
.

Hence the matrix Π admits a family of right eigenvectors null on the absorbing sets,
which forms an orthonormal basis of L2(S∗∗, ν).
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One easily checks, using (3.13), that v(i,j) = Pd(i, j)ui+j is a right eigenvector of Π

for an eigenvalue θ if and only if for all d ≤ k ≤ N

θ′uk = (N − k) [(k + d)uk+1 − 2kuk + (k − d)uk−1]

= (N − k) [k(uk+1 − 2kuk + uk−1) + d(uk+1 − uk−1)] , (4.7)

where

θ = 1 +
θ′ − d(d− 1)

N2
.

Now, the Hahn polynomials Qn(x;α, β,N) introduced in (3.14) satisfy (cf. e.g. [15])

− n(n+ α+ β + 1)Qd(x) = x(N + β − x)Qn(x− 1) + (N − 1− x)(α+ 1 + x)Qn(x+ 1)

− [x(N + β − x) + (N − 1− x)(α+ 1 + x)]Qn(x).

Hence, for all 0 ≤ n ≤ N − d, (4.7) admits the polynomial (in k) solution of degree n

uk = Qn(k − d; 2d− 1,−1, N − d+ 1).

If n ≥ 1, this polynomial must be divisible by (N − k), so we can define the polynomial

R
(N,d)
n (X) of degree n− 1 as

(N −X)R(N,k)
n (X) = Qn(X − d; 2d− 1,−1, N − d+ 1).

Obviously, the family of vectors (1, . . . , 1) and ((N − d)R
(N,d)
n (d), . . . , R

(N,d)
n (N − 1), 0) for

1 ≤ n ≤ N − d is linearly independent and hence forms a basis of the vector space
RN−d+1 of real vectors indexed by d, d + 1, . . . , N . In addition, (4.7) cannot admit any
other linearly independent solution and hence, necessarily, R(N,d)

n (k) = 0 for all n >

N − d and d ≤ k ≤ N − 1.
We have obtained a basis of right eigenvectors of Π of the form

{Pd(i, j)}0≤d≤N
⋃{

Pd(i, j)(N − i− j)R(N,d)
n (i+ j)

}
0≤d≤N−1, 1≤n≤N−d

,

and the eigenvalue corresponding to the eigenvector Pd(i, j) if n = 0, or Pd(i, j)(N − i−
j)R

(N,d)
n (i+ j) if n ≥ 1, is

θd,n := 1− n(n− 1) + 2nd− d(d− 1)

N2
= 1− (d+ n)(d+ n− 1)

N2
.

Similarly as in the proof of Proposition 3.3, this family of eigenvectors can be seen
as a singular limit case of those obtained in [15] for the multitype Moran model with
mutation or immigration.

Note that in the case of the 2-colors urn model, one can easily check that a basis
of right eigenvectors of the corresponding transition matrix is given by (1, . . . , 1) and

(NR
(N,0)
n (0), . . . , R

(N,0)
n (N − 1), 0) for 1 ≤ n ≤ N . Hence the spectrum is the same in the

2- and 3-colors urn models, although the multiplicity of each eigenvalue is different. In
the case of two colors, the eigenvalues have the form 1 − k(k − 1)/N2 for 0 ≤ k ≤ N ,
each with multiplicity 1 (except for the eigenvalue 1, with multiplicity 2). In the case
of three colors, the eigenvalue 1 − k(k − 1)/N2 has multiplicity k + 1 (except for the
eigenvalue 1, which has multiplicity 3).

Concerning the eigenvectors in L2(S∗∗, ν). they are given by{
ij(N − i− j)Qd(i, j)R(N,d)

n (i+ j)
}

2≤d≤N−1, 1≤n≤N−d
,
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and for all 3 ≤ k ≤ N , the eigenspace for the eigenvalue 1− k(k − 1)/N2 is

Vk := Vect{ij(N − i− j)Q2(i, j)R
(N,2)
k−2 (i+ j), . . . ,

ij(N − i− j)Qk−1(i, j)R
(N,k−1)
1 (i+ j)}.

We shall end the study of this example by giving an apparently non-trivial relation
between the polynomials Pd and R(N,d)

n . Because of the symmetry of the colors, we have

Vk = Vect{ij(N − i− j)Q2(i,N − i− j)R(N,2)
k−2 (N − j), . . . ,

ij(N − i− j)Qk−1(i,N − i− j)R(N,k−1)
1 (N − j)}

= Vect{ij(N − i− j)Q2(N − i− j, j)R(N,2)
k−2 (N − i), . . . ,

ij(N − i− j)Qk−1(N − i− j, j)R(N,k−1)
1 (N − i)},

and hence

Vect{Q2(i, j)R
(N,2)
n−2 (i+ j), . . . , Qn−1(i, j)R

(N,n−1)
1 (i+ j)}(i,j)∈S∗∗

= Vect{Q2(i,N − i− j)R(N,2)
n−2 (N − j), . . . , Qn−1(i,N − i− j)R(N,n−1)

1 (N − j)}(i,j)∈S∗∗

= Vect{Q2(N − i− j, j)R(N,2)
n−2 (N − i), . . . , Qn−1(N − i− j, j)R(N,n−1)

1 (N − i)}(i,j)∈S∗∗ .

4.2 The case of infinite state space

The goal of this subsection is to extend Theorem 4.2 to the case where Z has infinite
state space and the matrix Π0 is a compact operator and admits a reversible measure.
To this aim, we need first some approximation properties of Π by finite rank operators.

4.2.1 Approximation properties

Recall that Π0 is a Markov kernel on Z+ absorbed at 0 and that Π̃0 denotes its restriction
to N (equivalently, Π̃0 is the sub-Markovian kernel on N corresponding to Π0 with a
Dirichlet condition at 0). We assume that Π̃0 is reversible with respect to a positive
measure µ on N (not necessarily finite). For any N ∈ N, consider the sub-Markovian
kernel Π̃

(N)
0 on N defined by

∀x, y ∈ N, Π̃
(N)
0 (x, y) :=

{
Π0(x, y) if x, y ≤ N
0 otherwise.

In other words, Π̃
(N)
0 = PrN Π̃0PrN , where PrN is the projection operator defined by

PrN (u1, u2, . . .) = (u1, . . . , uN , 0, . . .).

The kernel Π̃
(N)
0 is not Markovian (since Π̃

(N)
0 (x,N) = 0 for x > N ), but it can be seen

as the restriction to N of a unique Markovian kernel Π
(N)
0 on Z+ absorbed at 0. With

this interpretation, we can construct the matrix Π̃(N) from Π
(N)
0 exactly as the matrix Π̃

was constructed from Π0 in the beginning of Section 4.
Of course Π̃

(N)
0 remains reversible with respect to µ, and thus, like Π̃0, it can be

extended into a self-adjoint operator on L2(N, µ). We denote by |||·|||0 the natural operator
norm on the set of bounded operators on L2(N, µ), namely if K is such an operator,

|||K|||0 := sup
u∈L2(N,µ)\{0}

‖Ku‖µ
‖u‖µ

.

If furthermore K is self-adjoint, we have, via spectral calculus,

|||K|||0 := sup
u∈L2(N,µ)\{0}

|〈u,Ku〉µ|
‖u‖2µ

.
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The next result gives a simple compactness criterion for Π̃0.

Lemma 4.5. The operator Π̃0 acting on L2(N, µ) is compact if and only if

lim
N→∞

|||Π̃0 − Π̃
(N)
0 |||0 = 0.

Proof. Since for any N ∈ Z+, Π̃
(N)
0 has finite range, if the above convergence holds, Π̃0

can be strongly approximated by finite range operators and it is well-known that this
implies that Π̃0 is compact.

The converse implication can be proved adapting a standard argument for compact
operators: assume that Π̃0 is compact and let ε > 0 be fixed. Then Π̃0(B) is compact,
where B is the closed unit ball of L2(N, µ). Hence

Π̃0(B) =

n⋃
i=1

B(ψ(i), ε),

for some n < +∞ and ψ(1), . . . , ψ(n) ∈ Π̃0(B), where B(ψ, ε) is the closed ball centered
at ψ with radius ε. For any i ≤ n, since ψ(i) ∈ L2(N, µ), there exists Ni such that∑
k≥Ni

(ψ
(i)
k )2µk ≤ ε, and thus

Π̃0(B) =

n⋃
i=1

B(PrNi
ψ(i), 2ε).

In other words, for all ϕ ∈ B, there exists i ≤ n such that ‖Π̃0ϕ− PrNi
ψ(i)‖µ ≤ 2ε. This

implies that

‖Π̃0ϕ− PrN Π̃0ϕ‖µ ≤ 2ε,

where N = sup{N1, . . . , Nn}, i.e. |||Π̃0 − PrN Π̃
(N)
0 |||0 ≤ 2ε. Since Π̃

(N)
0 = PrN Π̃0Pr, we

obtain that

lim
N→+∞

|||Π̃0PrN − Π̃
(N)
0 |||0 = 0.

In order to complete the proof, it only remains to check that

lim
N→+∞

|||Π̃0 − Π̃0PrN |||0 = 0.

If this was false, one could find a sequence (ϕ(N))N≥1 in B such that ϕ(N)
k = 0 for all

k ≤ N and ‖Π̃0ϕ
(N)‖µ would not converge to 0. Such a sequence (ϕ(N))N≥1 weakly

converges to 0. Now, another usual characterization of compact operators is the fact
that the image of weakly converging subsequences strongly converges to the image
of the limit. In other words, ‖Π̃0ϕ

(N)‖µ → 0. This contradiction ends the proof of
Lemma 4.5.

The interest of Π̃
(N)
0 is that it brings us back to the finite situation. Let Π̂

(N)
0 be the

restriction of Π̃
(N)
0 to {1, . . . , N}, which can be seen as a N × N matrix. We have for

instance that the spectrum of Π̃
(N)
0 is the spectrum of Π̂

(N)
0 plus the eigenvalue 0.

We are now going to see how the results of Section 4.1 are affected by the change
from Π0 to Π

(N)
0 . More generally, we consider two Markov kernels Π0 and Π′0 on Z+

absorbed at 0, whose restrictions toN, Π̃0 and Π̃′0, are both reversible with respect to µ.
We associate to them Π and Π′ defined on Z2

+ as in (4.1), and their respective restriction

to N2, Π̃ and Π̃′. We also define the matrices Πd and Π′d for d ≥ 1, as in (4.3). Note that
Π̃ and Π̃′ are reversible with respect to ν, defined in (4.5) and it is straightforward to
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check that, for any d ≥ 1, Πd and Π′d are both reversible w.r.t. µ(d) = (µ
(d)
n )n∈SZ , n≥d

defined by

µ(d)
n := 2n

(
n+ d− 1

2d− 1

)
µn, n ∈ N, n ≥ d. (4.8)

We will denote ||| · ||| and ||| · |||d the operator norms in L2(N2, ν) and L2(Nd, µ
(d)), where

Nd := {d, d+ 1, . . .}. The next result shows that, if one takes Π′0 = Π
(N)
0 , the approxima-

tion of Π̃0 by Π̃
(N)
0 behaves nicely.

Proposition 4.6. We always have

|||Π̃− Π̃′||| = sup
d≥2
|||Πd −Π′d|||d

Furthermore, if Π̃0 − Π̃′0 ≥ 0 (in the sense that all the entries of this infinite matrix are
non-negative), then

∀d ≥ 1, |||Πd+1 −Π′d+1|||d+1 ≤ |||Πd −Π′d|||d (4.9)

and
|||Π1 −Π′1|||1 = |||Π̃0 − Π̃′0|||0. (4.10)

In particular,
|||Π̃− Π̃′||| = |||Π2 −Π′2|||2 ≤ |||Π̃0 − Π̃′0|||0.

Proof. For d ≥ 2, denote by V ′d the set of v ∈ L2(N2, ν) of the form

∀i, j ∈ N, vi,j = Pd(i, j)ui+j

with u ∈ L2(Nd, µ
(d)). We denote by v(d, u) the sequence v defined by the above r.h.s.

The definitions of ν, µ(d) and Proposition 3.2 (h) enable us to see that the mapping

L2(Nd, µ
(d)) 3 u 7→ v(d, u) ∈ L2(N2, ν)

is an isometry.
Proposition 3.2 (h) also shows that V ′d and V ′d′ are orthogonal subspaces of L2(N2, ν)

for all d, d′ ≥ 2, d 6= d′. We actually have

L2(N2, ν) =
⊕
d≥2

V ′d. (4.11)

Indeed, let v ∈ L2(N2, ν) be orthogonal to V ′d for all d ≥ 2. For all d ≥ 2, we define the
vector

v
(d)
l =

1(
l+d−1
2d−1

) l−1∑
i=1

vi,l−i
Pd(i, l − i)
i(l − i)

, l ≥ d.

The Cauchy-Schwartz inequality and Proposition 3.2 (h) imply that v(d) ∈ L2(Nd, µ
(d))

and since v is orthogonal to V ′d, by the definition of V ′d, the vector v(d) is orthogonal to
L2(Nd, µ

(d)), i.e. v(d) = 0. Fixing l ≥ 2 and applying Proposition 3.2 (f), one deduces

from the equations v(d)
l = 0 for 2 ≤ d ≤ l that vi,l−i = 0 for 1 ≤ i ≤ l − 1, and thus v = 0,

ending the proof of (4.11).
Now, Proposition 4.1 show that V ′d is stable by Π̃ and Π̃′ and, more precisely,

∀u ∈ L2(Nd, µ
(d)), Π̃[v(d, u)] = v(d,Πdu) and Π̃′[v(d, u)] = v(d,Π′du).

It then follows from (4.11) that

|||Π̃− Π̃′||| = sup
d≥2
|||Πd −Π′d|||d.
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Let us now come to the proof of (4.9). Let d ≥ 1 be fixed and define

g(d) =
dµ(d+1)

dµ(d)
and h(d) =

d(Πd+1 −Π′d+1)

d(Πd −Π′d)
,

i.e.

∀n ≥ d+ 1, g(d)
n :=

(n− d)(n+ d)

2d(2d+ 1)

and

∀i, j ≥ d+ 1, h
(d)
i,j :=


j + d

i+ d
if j > i,

j − d
i− d

if j < i,

1 if i = j.

For any u ∈ L2(Nd+1, µ
(d+1)), we get∣∣∣∣∣ 〈u, (Πd+1 −Π′d+1)u〉µ(d+1)

‖u‖2
µ(d+1)

∣∣∣∣∣ ≤
∑
i,j∈N µ

(d)
i (Πd −Π′d)i,j g

(d)
i h

(d)
i,j |ui| |uj |∑

i∈N µ
(d)
i g

(d)
i u2

i

=
〈ũ, (Πd −Π′d)ũ〉µ(d)

‖u‖2
µ(d)

sup
i,j∈Nd+1

√√√√g
(d)
i

g
(d)
j

h
(d)
i,j ,

where

∀i ≥ d, ũi :=

√
g

(d)
i |ui(x)|,

and ũi = 0 if i = d. It is clear that ũ ∈ L2(Nd, µ
(d)), so, taking the supremum over

u ∈ L2(Nd+1, µ
(d+1)), we have

|||Πd+1 −Π′d+1|||d+1 ≤ sup
i,j∈Nd+1

√√√√g
(d)
i

g
(d)
j

h
(d)
i,j |||Πd −Π′d|||d.

Hence, it only remains to show that

sup
i,j∈Nd+1

√√√√g
(d)
i

g
(d)
j

h
(d)
i,j ≤ 1.

Since

√
g
(d)
i

g
(d)
i

h
(d)
i,i = 1 for all i ≥ 1, it is sufficient to prove that

∀j > i ≥ d+ 1,

√√√√g
(d)
i

g
(d)
j

h
(d)
i,j ≤ 1

since the l.h.s. is symmetrical in i, j. For j > i ≥ d+ 1, we compute√√√√g
(d)
i

g
(d)
j

h
(d)
i,j =

√
(i− d)(j + d)

(j − d)(i+ d)
≤ 1,

ending the proof of (4.9). A similar computation using the fact that

g(0) :=
dµ(1)

dµ
and h(0) :=

d(Π1 −Π′1)

d(Π̃0 − Π̃′0)

are given by

∀i, j ≥ 1, g
(0)
i = 2i2 and h

(0)
i,j =

j

i
leads to (4.10).
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Again, let Π̂(N) be the restriction of Π̃(N) to T ∗N , which can thus be seen as a finite
T ∗N × T ∗N matrix. Similarly to the remark after the proof of Lemma 4.5, the spectrum of
Π̃(N) is the spectrum of Π̂(N) plus the eigenvalue 0.

4.2.2 Spectral decomposition of infinite, compact, reversible N2dMC

The following result is an immediate consequence of Lemma 4.5 and Proposition 4.6.

Corollary 4.7. If Π̃0 is compact and reversible, the same is true for Π̃.

We can now extend Theorem 4.2 to the infinite compact, reversible case.

Theorem 4.8. Assume that Z has an infinite state space, i.e. SZ = Z+.

(a) Theorem 4.2 (a) also holds true in this case.

(b) If Π̃0 is compact and reversible w.r.t. the measure (µn)n∈N, then, there exists an
orthonormal basis of L2(N2, ν) of right eigenvectors of Π̃ of the form (4.4) for d ≥ 2,
where ν is defined in (4.5). Moreover, any right eigenvector of Π̃ in L2(N2, ν) is a
linear combination of eigenvectors of the form (4.4) all corresponding to the same
eigenvalue.

(c) Under the same assumptions as (b), there exists a family of right eigenvectors of Π

of the form

{1} ∪
{
P

(1)
1 (i, j)u

(1),l
i+j , P

(2)
1 (i, j)u

(1),l
i+j

}
l≥1
∪
⋃
d≥2

{
Pd(i, j)u

(d),l
i+j

}
l≥1

, (4.12)

which is a basis of the vector space

V :=
{
v ∈ RZ

2
+ : vi,j = a+

i

i+ j
v

(1)
i+j +

j

i+ j
v

(2)
i+j + v

(3)
i,j , ∀i, j ∈ Z+,

with a ∈ R, v(1), v(2) ∈ L2(N, µ) and v(3) ∈ L2(N2, ν)
}

(4.13)

in the sense that, for all v ∈ V , there exist unique sequences {αl}l≥1, {βl}l≥1, and
{γdl}d≥2, l≥1 and a unique a ∈ R such that

vi,j = a+
∑
l≥1

αliu
(1),l
i+j +

∑
l≥1

βlju
(1),l
i+j +

∑
d≥2 l≥1

γdlPd(i, j)u
(d),l
i+j , (4.14)

where the series
∑
l αlku

(1),l
k and

∑
l βlku

(1),l
k both converge for ‖·‖µ and the series∑

d,l γdlPd(i, j)u
(d),l
i+j converges for ‖ · ‖ν .

Example 4.9. Assume that Zn = Xn + Yn is a birth and death process, i.e. that the
matrix Π0 is tridiagonal. Assume moreover that all the entries just above or below
the diagonal are positive (except of course for p0,1, which is 0 since p0,0 = 1). It is

well-known in this case that there always exists a reversible measure µ for Π̃0. A well-
known sufficient condition for the compactness of Π̃0 is the case where this operator is
Hilbert-Schmidt, which translates in our reversible, discrete case as∑

i,j∈N
pi,jpj,i <∞. (4.15)

For a birth and death process, letting pk (resp. qk) denote the birth (resp. death) proba-
bility in state k and rk := 1− pk − qk ≥ 0, this gives∑

i≥0

(
r2
i + piqi+1

)
<∞.
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As a side remark, note that Π̃ is not necessarily Hilbert-Schmidt when Π̃0 is, as the
condition

∑
(i,j),(k,l) π(i,j),(k,l)π(k,l),(i,j) <∞ is not equivalent to (4.15).

Proof. Point (a) can be proved exactly the same way as Theorem 4.2 (a).
The fact that compact selfadjoint operators admit an orthonormal basis of eigenvec-

tors is classical. To prove (b), we only have to check that all these eigenvectors can be
taken of the form (4.4) for d ≥ 2. This easily follows from the fact that Πd is compact
selfadjoint in L2(Nd, µ

(d)) for all d ≥ 2, from (4.11) and from Point (a).
The proof of (c) is similar to the proof of Theorem 2.4 (b). Fix v ∈ V and define

a, v(1), v(2) and v(3) as in (4.13). Since µ(1)
k = k2µk/2, (v

(1)
k /k) ∈ L2(N, µ(1)) and there

exists (αl)l≥1 such that

v
(1)
k = k

∑
l≥1

αlu
(1),l
k =

∑
l≥1

αlku
(1),l
k , ∀k ∈ S∗Z , (4.16)

where the convergence of the first series holds for ‖ ·‖µ(1) , and thus of the second series
for ‖ · ‖µ. A similar decomposition for v(2) and the use of (b) for v(3) complete the proof
of (4.14).

It only remains to observe that, for all v ∈ V , the equation

vi,j = a+
i

i+ j
v

(1)
i+j +

j

i+ j
v

(2)
i+j + v

(3)
i,j

uniquely characterizes a ∈ R, v(1), v(2) ∈ L2(N, µ) and v(3) ∈ L2(N2, ν). Indeed, since

v
(3)
0,j = v

(3)
i,0 = 0, one must have a = v0,0, v(1)

i = vi,0 − a and v(2)
j = v0,j − a.

5 On Dirichlet eigenvalues in the complement of triangular sub-
domains

In this section, we consider the same model as in the previous section, and we
assume either that S = TN is finite or that S = Z2

+ and the restriction Π̃0 of Π0 to N is
compact and reversible w.r.t. some measure µ. We recall that Tk = {(i, j) ∈ Z2

+ : i+ j ≤
k} and T ∗k = Tk ∩ N2 and we define S∗k := S∗ \ T ∗k−1 for all k ≥ 2. Note that S∗2 = S∗.
We also define S∗1 := S \ ({0} × Z+). Finally, for k ≥ 0, we call Π̃k the restriction of the
matrix Π0 to {i ∈ SZ : i > k}, and for k ≥ 1, Π̂k the restriction of the matrix Π to S∗k .
Note that this notation is consistent with the previous definition of Π̃0 and that Π̂2 = Π̃.
Again, all the notations of this section are gathered for reference in Appendix A.

5.1 The case of finite state space

Let us first assume that S = TN for some N ≥ 1.
For 1 ≤ k ≤ N , the Dirichlet eigenvalue problem for the matrix Π in the set S∗k

consists in finding θ ∈ C and v in RTN , such that{
(Πv)(i,j) = θv(i,j) ∀(i, j) ∈ S∗k ,
v(i,j) = 0 ∀(i, j) ∈ S \ S∗k .

(5.1)

This is equivalent to finding a right eigenvector of Π̂k and extending this vector by 0

to indices in S \ S∗k . For all k ≥ 1, we define θDk as the supremum of the moduli of all
Dirichlet eigenvalues in S∗k . By Perron-Fröbenius’ theory, θDk is a Dirichlet eigenvalue in
S∗k .

For all d ≥ 0, we also define θ(d) as the supremum of the moduli of all eigen-
values of Π corresponding to right eigenvectors of the form Pd(i, j)ui+j . Again, by
Theorem 4.2 (a) and Perron-Fröbenius’ theory, θ(d) is an eigenvector of Π of the form
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Pd(i, j)ui+j . Note that, for all d ≥ 2, because of Proposition 3.2 (c) and (e), any right
eigenvector of Π of the form Pd(i, j)ui+j is a Dirichlet eigenvector of Π in S∗d′ for all
1 ≤ d′ ≤ d. In particular, θDd′ ≥ θ(d). The next result gives other inequalities concerning
these eigenvealues.

Theorem 5.1. Assume that S = TN .

(a) Then,

θD1 ≥ θD2 ≥ θD3 ≥ . . . ≥ θDN−1 ≥ θDN

= = ≤ . . . ≤ =

1 = θ(0) ≥ θ(1) ≥ θ(2) ≥ θ(3) ≥ . . . ≥ θ(N−1) ≥ θ(N) = pN,N .

(b) If Π̃k−1 is irreducible for some 1 ≤ k ≤ N − 1, then

θDk > θDk+1, θ(k) > θ(k+1) (5.2)

and
θDk > θ(k), if k ≥ 3. (5.3)

If Π̃0 is irreducible and pi,0 > 0 for some 1 ≤ i ≤ N , then θ(1) < 1.

Proof. Since the matrix Π0 is stochastic, it is clear from Theorem 4.2 (a) that θ(0) = 1.
By (4.3), p(1)

n,m = m
n pn,m for all 1 ≤ n,m ≤ N and thus Π̃0u = θu if and only if Π1v = θv,

where vn = un/n. Hence, the largest eigenvalue of Π̃0 is θ(1). Since

Π0 =

(
1 0

v Π̃0

)
for some (column) vector v ∈ RN+ , it is clear that θ(1) ≤ θ(0). Ordering conveniently the

states in S∗1 , the matrix Π̂1 has the form

Π̂1 =

(
Π̃0 0

Q Π̂2

)
(5.4)

for some rectangular nonnegative matrix Q, since the set {0, 1, . . . , N} × {0} is ab-
sorbing for the Markov chain. Again, since this matrix is block triangular, we have
θD1 = max{θ(1), θD2 }. Since Π̂2 = Π̃, Theorem 4.2 (b) shows that

θD2 = sup
k≥2

θ(k).

Since in addition Π̂N = pN,N Id and ΠN = pN,N , Theorem 5.1 (a) will hold true if we
prove that the sequences (θ(k))1≤k≤N and (θDk )2≤k≤N are both non-increasing.

By Perron-Fröbenius’ characterization of the spectral radius of nonnegative matrices
(cf. e.g. [12]), for all 1 ≤ k ≤ N ,

θ(k) = sup
u∈RNk , u≥0, u 6=0

inf
i∈Nk

∑
j∈Nk

p
(k)
i,j uj

ui
, (5.5)

where, by convention, the fraction in the r.h.s. is +∞ if ui = 0. Using the notation of
the proof of Proposition 4.6, for all 1 ≤ k ≤ N − 1 and u ∈ RNk+1

+ \ {0}, we have

inf
i∈Nk+1

∑
j∈Nk+1

p
(k+1)
i,j uj

ui
= inf
i∈Nk+1

∑
j∈Nk+1

p
(k)
i,j ũj

√
g

(k)
i /g

(k)
j h

(k)
i,j

ũi

≤ inf
i∈Nk

∑
j∈Nk

p
(k)
i,j ũj

ũi
.
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Taking the supremum over u ∈ RNk+1

+ \ {0} yields

θ(k+1) ≤ θ(k). (5.6)

For all k ≥ 2, the Dirichlet eigenvectors in S∗k belong to the vector space

Uk := {v ∈ RTN : v = 0 on TN \ S∗k}.

By Perron-Fröbenius’ theory again, for all k ≥ 2,

θDk = sup
w∈Uk\{0}, w≥0

inf
(i,j)∈S∗k

∑
(k,l)∈S∗k

π(i,j),(k,l)w(k,l)

w(i,j)
. (5.7)

Since S∗k ⊂ S∗k−1, for all 2 ≤ k ≤ N − 1,

θDk+1 = sup
w∈Uk+1\{0}, w≥0

inf
(i,j)∈S∗k

∑
(k,l)∈S∗k

π(i,j),(k,l)w(k,l)

w(i,j)
≤ θDk . (5.8)

This ends the proof of (a).
In the case where Π̃k−1 is irreducible for some 2 ≤ k ≤ N − 1, it is clear that Π̂k and

Πk are both irreducible. Then, by Perron-Fröbenius’ theory, θDk (resp. θ(k)) is an eigen-
value of Π̂k (resp. Πk) with multiplicity one, and the corresponding nonnegative eigen-
vector has all its entries positive. In addition, θDk (resp. θ(k)) is the only eigenvalue of Π̂k

(resp. Πk) corresponding to a positive eigenvector. In particular, the supremum in (5.7)
(resp. (5.5) ) is attained only at vectors w ∈ V (k−1) having all coordinates corresponding
to states in S∗k−1 positive (resp. at vectors u ∈ (0,∞)Nk ). Hence, the inequalities in (5.8)
and (5.6) are strict.

In the case where Π̃0 is irreducible, the same argument shows that θ(1) > θ(2), and
since θ(1) = θD1 and θ(2) = θD2 , we also have θD1 > θD2 . This ends the proof of (5.2).

In the case where Π̃k−1 is irreducible for 3 ≤ k ≤ N − 1, let (ui)i∈Nk
be a positive

right eigenvector of Πk. Then the vector Pk(i, j)ui+j belongs to Uk and its restriction to

S∗k is a right eigenvector of Π̂k. However, its has positive and negative coordinates by
Proposition 3.2 (g). Therefore (5.3) is proved.

Finally, if Π̃0 is irreducible and pi,0 > 0 for some 1 ≤ i ≤ N , then the absorbing state
0 is accessible by the Markov chain from any initial state (possibly after several steps).
It is then standard to prove that there exists n such that the sums of the entries of each
line of (Π̃0)n is strictly less than 1. This proves that (Π̃0)n cannot have 1 as eigenvalue,
and thus θ(1) < 1.

5.2 The case of infinite state space

Our goal here is to extend the previous result to the case where S = Z2
+ and Π̃0 is

compact reversible. So let us assume that Π̃0 is compact and is reversible w.r.t. some
measure µ.

In the case of infinite state space, when k ≥ 2 the Dirichlet eigenvalue problem for
Π in S∗k consists in finding θ ∈ C and v ∈ L2(Z2

+, ν) (where the measure ν is extended by
convention by zero on Z+ × {0} ∪ {0} × Z+) satisfying (5.1). Defining the vector space
where Dirichlet eigenvectors are to be found

Uk := {v ∈ L2(Z2
+, ν) : v = 0 on Z2

+ \ S∗k},

the supremum θDk of the moduli of all Dirichlet eigenvalues in S∗k is given by

θDk = sup
u∈Uk\{0}

∣∣∣〈u, Π̃u〉ν∣∣∣
‖u‖2ν

. (5.9)
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In view of Theorem 4.8 (c), the natural space to define the Dirichlet eigenvalue
problem in S∗1 is

U1 :=
{
v ∈ RZ

2
+ : v = 0 in {0} ×Z+ and vi,j =

i

i+ j
v

(1)
i+j + v

(3)
i,j ∀(i, j) ∈ S

∗
1 ,

where v(1) ∈ L2(N, µ) and v(3) ∈ L2(N2, ν)
}
,

equipped with the norm ‖·‖U1 , where ‖v‖2U1 = ‖v(1)‖2µ+‖v(3)‖2ν (this norm is well-defined

since v(1) and v(3) are uniquely defined from v ∈ U1). Then, the Dirichlet eigenvalue
problem in S∗1 consists in finding θ ∈ C and v ∈ U1 satisfying (5.1). We also define θD1 as
the supremum of the moduli of all Dirichlet eigenvalues in S∗1 .

For all d ≥ 1, we also define θ(d) as the supremum of the moduli of all eigenvalues of
Π corresponding to right eigenvectors of the form Pd(i, j)ui+j with u ∈ L2(Nd, µ

(d)). By
Theorem 4.8 (a),

θ(d) = sup
u∈L2(Nd,µ(d))\{0}

∣∣〈u,Πdu〉µ(d)

∣∣
‖u‖2

µ(d)

, ∀d ≥ 0.

In addition, using the notation V ′d defined in the proof of Proposition 4.6, it follows
from (4.11) that

θ(d) = sup
u∈V′d

∣∣∣〈u, Π̃u〉ν∣∣∣
‖u‖2ν

, ∀d ≥ 2.

Comparing this with (5.9), we again deduce from Proposition 3.2 (c) and (e) that θDd′ ≥
θ(d) for all 2 ≤ d′ ≤ d.

Finally, since the matrix Π0 is not reversible, we need to define θ(0) in a slightly
different way: θ(0) is the supremum of the moduli of all eigenvalues of Π corresponding
to right eigenvectors of the form Pd(i, j)ui+j with u = a1 + v, where a ∈ R, 1 is the
vector of RZ+ with all coordinates equal to 1, v ∈ L2(N, µ) with the convention v0 = 0.

Theorem 5.2. Assume that S = Z2
+ and that Π̃0 is compact and reversible w.r.t. a

positive measure µ. Then, for all d ≥ 1, θDd is a Dirichlet eigenvalue of Π in the set
S∗d and θ(d) is a right eigenvalue of Π for an eigenvector of the form Pd(i, j)ui+j with
u ∈ L2(Nd, µ

(d)). In addition,

θD1 ≥ θD2 ≥ θD3 ≥ θD4 ≥ . . .

= = ≤ ≤

1 = θ(0) ≥ θ(1) ≥ θ(2) ≥ θ(3) ≥ θ(4) ≥ . . .

Proof. For all k ≥ 1, the fact that θ(k) is an eigenvalue of Π for a right eigenvector of the
form Pk(i, j)ui+j with u ∈ L2(Nk, µ

(k)) follows from Theorem 4.8 (a) and from the fact
that Πk is compact reversible. Indeed, |||Πk|||k is an eigenvalue of the compact reversible
matrix Πk (the corresponding eigenvector can be obtained for example as the limit of
nonnegative eigenvectors of finite dimensional projections of Πk). The result follows
since, necessarily, |θ(k)| ≤ |||Πk|||k.

For all k ≥ 2, we define Π(k) as the matrix whose restriction to S∗k is Π̂k and with all
other coordinates equal to zero. As the projection of a compact operator, this matrix is
compact. Since it is trivially reversible for the measure ν, Theorem 4.8 (b) applies to
Π(k). Then, Proposition 4.6 tells us that θDk = |||Π(k)

2 |||2, where Π
(k)
2 is defined from Π(k)

as Π2 has been defined from Π. Therefore, the fact that θDk is a Dirichlet eigenvalue for
Π in S∗k can be deduced exactly as above.

Recall the definition of Π̃(N) in Section 4.2.1. For any N ∈ N, replacing Π̃ by Π̃(N),
we define similarly as above the quantities θD,(N)

k and θ(k,N). Due to the remark after
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the proof of Proposition 4.6, we are again brought back to the finite framework. The
following result is an immediate consequence of Lemma 4.5 and Proposition 4.6.

Lemma 5.3. We have

∀k ≥ 2, lim
N→∞

θ
D,(N)
k = θDk

∀k ≥ 1, lim
N→∞

θ(k,N) = θ(k)

From this lemma and Theorem 5.1 immediately follow all the inequalities in Theo-
rem 5.2 that concern θDk for k ≥ 2 and θ(k) for k ≥ 1.

As in the finite case, we easily deduce from the facts that p(1)
i,j = j

i pi,j and µ(1)
i = 2i2µi

that Π̃0u = θu with u ∈ L2(N, µ) iff Π1v = θv with vi = ui/i and v ∈ L2(N, µ(1)).
Therefore,

θ(1) = sup
u∈L2(N,µ)\{0}

〈u, Π̃0〉µ
‖u‖µ

.

Since for all a ∈ R and v ∈ L2(N, µ), Π0(a1 + v) = a1 + Π̃0v, we deduce that θ(0) =

sup{1; θ(1)}. Since Π̃0 is substochastic and reversible w.r.t. µ, we have for all u ∈ L2(N, µ)

〈u, Π̃0〉µ
‖u‖µ

=

∑
i,j≥1 µipi,juiuj∑

i≥1 u
2
iµi

≤

√∑
i,j u

2
iµipi,j

√∑
i,j u

2
jµipi,j∑

i≥1 u
2
iµi

≤ 1.

This yields
θ(0) = 1 ≥ θ(1).

In order to complete the proof, it only remains to check that θD1 = θ(1) and that
θD1 is a Dirichlet eigenvalue in S∗1 . As in the finite case, Π̂1 has the block-triangular
form (5.4). Therefore, we obviously have θD1 ≥ θD2 . In addition, any Dirichlet eigenvalue
in S∗1 which corresponds to an eigenvector in U1 which is nonzero on the set of indices
N× {0}, must be an eigenvalue of Π̃0 corresponding to a right eigenvector in L2(N, µ).
Now, if u ∈ L2(N, µ) satisfies Π̃0u = θ(1)u, then Π1v = θ(1)v with vi = ui/i and it follows
from Theorem 4.8 (a) that the vector i

i+jui+j is a right eigenvector of Π̂1. Since this

vector obviously belongs to U1, we obtain that θD1 = θ(1) and that θD1 is a Dirichlet
eigenvalue in S∗1 .

6 Application to quasi-stationarity in nearly neutral finite absor-
bed two-dimensional Markov chains

In this section, we restrict ourselves to the finite state space case for simplicity: let
S = TN for some N ∈ N. The first coordinate will be referred to as type 1 and the
second coordinate as type 2. Recall that the sets Z+ × {0}, {0} × Z+ and {(0, 0)} are
absorbing for the N2dMC considered above, which means that each sub-population in
the model can go extinct. This means that the transition matrix Π has the form

Π =

(
1 0

r Q

)
, (6.1)

after ordering the states as (0, 0) first. Ordering the states in S \ {0} as {1, . . . , N}× {0}
first and {0} × {1, . . . , N} second, the matrix Q has the form

Q =

Q1 0 0

0 Q2 0

R1 R2 Q3

 (6.2)
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where Qi (1 ≤ i ≤ 3) are square matrices and Ri (1 ≤ i ≤ 2) rectangular matrices.

In this section, we study the problem of quasi-stationary distributions (QSD) and
quasi-limiting distributions (QLD, see the introduction) for Markov processes, not nec-
essarily neutral, whose transition matrix has the form (6.1–6.2). The classical case [7]
for such a study is the case when Q is irreducible, which does not hold here. A general
result is proved in Subsection 6.1. Our results of Section 5 are then applied in Sub-
section 6.2 to study the quasi-limiting distribution of nearly neutral two-dimensional
Markov chains.

6.1 Yaglom limit for general absorbing two-dimensional Markov chains

Let (Xn, Yn, n ≥ 0) be a Markov chain on S = TN , with transition matrix of the
form (6.1–6.2). We do not assume that this process is neutral. We call such processes
A2dMC for “absorbed two-dimensional Markov chains”.

Under the assumption that the matricesQ1, Q2 andQ3 are irreducible and aperiodic,
Perron-Frobenius’ theory ensures the existence of a unique eigenvalue θi with maximal
modulus for Qi, which is real and has multiplicity one. Moreover, Qi admits unique
(strictly) positive right and left eigenvectors for θi, ui and vi respectively, normalised
as vi1 = 1 and viui = 1, where we use the convention that ui is a row vector and vi
is a column vector, and where 1 denotes the column vector with adequate number of
entries, all equal to 1. In the following result, we use the classical identification of
column vectors and measures: for example, v1 = ((v1)i)(i,0)∈S\{(0,0)} is identified with∑

(i,0)∈S\{(0,0)}(v1)iδi, and v3 = ((v3)(i,j))(i,j)∈S∗ is identified with
∑

(i,j)∈S∩N2(v3)(i,j)δ(i,j).

With this notation, using the results of Darroch and Seneta [7], v1 ⊗ δ0 and δ0 ⊗ v2

are trivial QSDs for the Markov chain (X,Y ).

Theorem 6.1. Assume that the matrices Q1, Q2 and Q3 are irreducible and aperiodic,
R1 6= 0 and R2 6= 0. Then, for any i ≥ 1 such that (i, 0) ∈ S,

lim
n→+∞

L(i,0)[(Xn, Yn) | (Xn, Yn) 6= (0, 0)] = v1 ⊗ δ0, (6.3)

and similarly for the initial state (0, i) ∈ S, where L(i,j) denotes the law of the Markov
chain (Xn, Yn)n≥0 with initial consition (i, j).

Moreover, for any (i, j) ∈ S∗,

lim
n→+∞

L(i,j)[(Xn, Yn) | (Xn, Yn) 6= (0, 0)]

=



v1 ⊗ δ0 if θ1 ≥ θ3 and θ1 > θ2,

δ0 ⊗ v2 if θ2 ≥ θ3 and θ2 > θ1,
v3 + w1 ⊗ δ0 + δ0 ⊗ w2

1 + w11 + w21
if θ3 > θ1, θ2,

pi,j v1 ⊗ δ0 + (1− pi,j) δ0 ⊗ v2 if θ1 = θ2 > θ3,

q v1 ⊗ δ0 + (1− q) δ0 ⊗ v2 if θ1 = θ2 = θ3.

(6.4)

where

wi = v3Ri(θ3I −Qi)−1, i = 1, 2, (6.5)

pi,j =
δ(i,j)(θ1I −Q3)−1 R1u1

δ(i,j)(θ1I −Q3)−1 (R1u1 +R2u2)
(6.6)

and q =
v3R1u1

v3(R1u1 +R2u2)
. (6.7)

EJP 17 (2012), paper 63.
Page 33/41

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1830
http://ejp.ejpecp.org/


On Dirichlet eigenvectors for neutral two-dimensional Markov chains

To give an interpretation of this result, we will say that there is extinction of type i
conditionally on non-extinction if the QLD (6.4) gives mass 0 to all states with positive
i-th coordinate. Conversely, we say that there is coexistence conditionally on non-
extinction if the QLD (6.4) gives positive mass to the set S∗. We also say that type 1
is stronger than type 2 (or type 2 is weaker than type 1) if θ1 > θ2, and conversely if
θ2 > θ1.

Theorem 6.1 says that the limit behaviour of the population conditionally on non-
extinction essentially depends on whether the largest eigenvalue of Q is θ1, θ2 or θ3.
If either θ1 > θ2 and θ1 ≥ θ3 or θ2 > θ1 and θ2 ≥ θ3, the QLD is the same as if there
were no individual of the weaker type in the initial population, and there is extinction of
the weaker type conditionally on non-extinction. If θ3 > θ1, θ2, there is coexistence of
both types conditionally on non-extinction. Finally, when θ1 = θ2, both types can survive
under the QLD, so none of the types go extinct (according to the previous terminology),
but there is no coexistence, as one (random) type eventually goes extinct. Observe
also that the case θ1 = θ2 > θ3 is the only one where the QLD depends on the initial
condition.

Note also that, in the case where θ3 ≤ max{θ1, θ2} and θ1 6= θ2, the QLD does not
depend on any further information about the matrix Q3. In other words, if one knows
a priori that θ3 ≤ max{θ1, θ2} and θ1 6= θ2, the precise transition probabilities of the
Markov chain from any state in S∗ have no influence on the QLD. The QLD is only
determined by the monotype chains of types 1 and 2.

Our next result says that, for any values of θ1, θ2 and θ3, all the QSDs of the Markov
chain are those given in the r.h.s. of (6.4), when they exist and are nonnegative.

Proposition 6.2. Under the same assumptions and notation as in Theorem 6.1, the set
of QSDs of the Markov chain is composed of the probability measures p v1 ⊗ δ0 + (1 −
p) δ0 ⊗ v2 for all p ∈ [0, 1], with the additional QSD

v3 + w1 ⊗ δ0 + δ0 ⊗ w2

1 + w11 + w21
(6.8)

in the case where θ3 > max{θ1, θ2}.

Proof. The fact that all the QSDs giving no mass to the set S∗ are of the form p v1 ⊗
δ0 + (1 − p) δ0 ⊗ v2 for some p ∈ [0, 1] is an immediate consequence of the facts that
the sets {1, . . . , N} × {0} and {0} × {1, . . . , N} do not communicate and the only QSD of
an irreducible and aperiodic Markov chain on a finite set is given by the only positive
normalized left eigenvector of the transition matrix of the Markov chain (cf. [7]).

Assume now that µ is a QSD for the Markov chain (Xn, Yn)n≥0 such that µ(S∗) > 0,
and write µ = (µ1, µ2, µ3), where µ1 (resp. µ2, resp. µ3) is the restriction of µ to the
set {1, . . . , N} × {0} (resp. {0} × {1, . . . , N}, resp. S∗). The equation µQ = θQ for some
θ > 0, which characterizes QSDs, implies that µ3 is a nonnegative left eigenvector for
Q3. Thus, by the Perron-Frobenius theorem, µ3 = av3 for some a > 0 and θ = θ3. Using
again the formula µQ = θ3Q, one necessarily has

µi(θ3Id−Qi) = av3Ri, i = 1, 2. (6.9)

In the case where θ3 > max{θ1, θ2}, the matrices θ3Id−Q1 and θ3Id−Q1 are invert-
ible, as shown in Lemma 6.3 below. Thus µ is given by (6.8).

In the case where θ3 ≤ θi for i = 1 or 2, we deduce from (6.9) that (θ3 − θi)µiui =

av3Riui. This is impossible since the l.h.s. of this formula is non-positive and the r.h.s.
is positive as Ri 6= 0, v3 > 0 and ui > 0.
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Proof of Theorem 6.1. For all (k, l) ∈ S \ {(0, 0)}, we want to compute the limit of

P(i,j)[(Xn, Yn) = (k, l) | (Xn, Yn) 6= (0, 0)] =
Q

(n)
(i,j),(k,l)∑

(k′,l′)6=(0,0)Q
(n)
(i,j),(k′,l′)

(6.10)

as n → +∞, where Q
(n)
(i,j),(k,l) denotes the element of Qn on the line corresponding to

state (i, j) ∈ S and the column corresponding to state (k, l) ∈ S.
Therefore, we need to analyse the behaviour ofQn as n→ +∞. We have by induction

Qn =

 Qn1 0 0

0 Qn2 0

R
(n)
1 R

(n)
2 Qn3

 (6.11)

where

R
(n)
i =

n−1∑
k=0

Qk3RiQ
n−1−k
i , i = 1, 2. (6.12)

By the Perron-Frobenius Theorem (see e.g. [12]),

Qni = θni uivi +O((θiα)n1) (6.13)

for some α < 1 as n → +∞, where 1 denotes the square matrix of appropriate di-
mension, whose entries are all equal to 1. We need the following result. Its proof is
postponed at the end of the subsection.

Lemma 6.3. If θ1 > θ3, the matrix θ1Id−Q3 is invertible, its inverse has positive entries
and

R
(n)
1 ∼ θn1 (θ1Id−Q3)−1R1u1v1 (6.14)

as n→ +∞. If θ1 < θ3, the matrix θ3Id−Q1 is invertible, its inverse has positive entries
and

R
(n)
1 ∼ θn3 u3v3R1(θ3Id−Q1)−1 (6.15)

as n→ +∞. If θ1 = θ3, as n→ +∞,

R
(n)
1 ∼ nθn−1

1 u3v3R1u1v1. (6.16)

Theorem 6.1 can be proved from this result as follows. Let D denote the denomina-
tor of (6.10). If θ1, θ2 > θ3, (6.14) and (6.13) yield for all (i, j) ∈ S∗

D ∼ θn1 δ(i,j)(θ1Id−Q3)−1R1u1v11 + θn2 δ(i,j)(θ2Id−Q3)−1R2u2v21 + θn3 δ(i,j)u3v31

as n → +∞. In the case when θ1 > θ2, since (θ1Id − Q3)−1 has positive entries, we
have D ∼ θn1 δ(i,j)(θ1Id − Q3)−1R1u1. The limit of (6.10) when n → +∞ then follows
from (6.14). The case θ2 > θ1 is treated similarly. In the case when θ1 = θ2,

D ∼ θn1 δ(i,j)
[
(θ1Id−Q3)−1R1u1 + (θ2Id−Q3)−1R2u2

]
,

and the fourth line of (6.4) follows from Lemma 6.3.
In the case when θ3 > θ1, θ2, we obtain

D ∼ θn3 δ(i,j)u3v3

[
R1(θ3Id−Q1)−11 +R2(θ3Id−Q2)−11 + 1

]
,

which implies the third line of (6.4).
Similarly, it follows from (6.13) and Lemma 6.3 that

D ∼ θn1 δ(i,j)(θ1Id−Q3)−1R1u1 if θ1 > θ3 > θ2,

D ∼ nθn−1
1 δ(i,j)u3v3R1u1 if θ1 = θ3 > θ2,

D ∼ nθn−1
1 δ(i,j)u3v3(R1u1 +R2u2) if θ1 = θ2 = θ3.

The proof is easily completed in each of these cases.
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Proof of Lemma 6.3. Assume first that θ1 > θ3. One easily checks that

(θ1Id−Q3)

n−1∑
k=0

θ−k1 Qk3 = θ1Id− θ−n+1
1 Qn3 . (6.17)

Because of (6.13), the series in the previous equation converges when n→ +∞. There-
fore, θ1Id−Q3 is invertible and

(θ1Id−Q3)−1 =
∑
n≥0

θ−n−1
1 Qn3 ,

which has positive entries since Q3 is irreducible. Therefore, it follows from (6.13)
and (6.17) that

R
(n)
1 =

n−1∑
k=0

Qk3R1

[
θn−1−k

1 u1v1 +O((θ1α)n−1−k1)
]

= θn−1
1 (θ1Id− θ−n+1

1 Qn3 )(θ1Id−Q3)−1R1u1v1 +O

(
u3v3R11

n−1∑
k=0

θk3 (θ1α)n−1−k

)
= θn1 (θ1Id−Q3)−1R1u1v1 +O(θn3 1) +O ((θn3 + (θ1α)n)1) ,

where we used the fact that α may be increased without loss of generality so that
θ3 6= θ1α, in which case

n−1∑
k=0

θk3 (θ1α)n−1−k =
θn3 − (θ1α)n

θ3 − θ1α
.

Since R1 6= 0 has nonnegative entries and (θ1Id−Q3)−1 and u1v1 have positive entries,
the matrix (θ1Id − Q3)−1R1u1v1 also has positive entries, and (6.14) follows. The case
θ3 > θ1 can be handled similarly.

Assume finally that θ1 = θ3. By (6.13),

R
(n)
1 =

n−1∑
k=0

(
θk3u3v3 +O((θ3α)k1)

)
R1

(
θn−k−1

1 u1v1 +O((θ1α)n−k−11)
)

= nθn−1
1 u3v3R1u1v1 +O

(
θn−1

1

1− α
(
1R1u1v1 + u3v3R11

))
+O(n(αθ1)n−11),

which ends the proof of Lemma 6.3.

6.2 The nearly neutral case

Since Π in (6.1) is a block triangular matrix, we have

Sp′(Π) = {1} ∪ Sp′(Q1) ∪ Sp′(Q2) ∪ Sp′(Q3),

where Sp′(A) denotes the spectrum of the matrix A, where eigenvalues are counted
with their multiplicity.

In the case of a N2dMC satisfying the assumptions of Theorem 6.1, with the no-
tation of Section 4, we have Q1 = Q2 = Π̃0. By Theorem 4.2 (b) and Remark 4.3,
{1} ∪ Sp′(Q1) ∪ Sp′(Q2) is the set of eigenvalues corresponding to right eigenvectors
of Π of the form P0(i, j)ui+j and P1(i, j)ui+j , counted with their multiplicity. More

precisely, Sp′(Q1) corresponds to eigenvectors of the form P
(1)
1 (i, j)ui+j , and Sp′(Q2)

to eigenvectors of the form P
(2)
1 (i, j)ui+j . In particular, θ1 = θ2 = θ(1) = θD1 , with

the notation of Theorem 5.1. Moreover, since Q3 = Π(2), Theorem 5.1 shows that

EJP 17 (2012), paper 63.
Page 36/41

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1830
http://ejp.ejpecp.org/


On Dirichlet eigenvectors for neutral two-dimensional Markov chains

θ3 = θ(2) = θD2 < θ1 = θ2 and Sp′(Q3) is the set of eigenvalues corresponding to right
eigenvectors of Π of the form Pd(i, j)ui+j for d ≥ 2, counted with their multiplicity.

In other words, with the terminology defined after Theorem 6.1, coexistence is
impossible in the neutral case. Since the eigenvalues of Q1, Q2 and Q3 depend con-
tinuously on the entries of these matrices, we deduce that coexistence is impossible
in the neighborhood of neutrality:

Corollary 6.4. Let Π be the transition matrix of some fixed N2dMC in TN such that
Π̃0 and Π̃1 are both irreducible and there exists i ∈ {1, . . . , N} such that pi,0 > 0. For
any A2dMC (X,Y ) in TN with transition matrix Π′ sufficiently close to Π, coexistence
is impossible in the QLD of (X,Y ). Let θ′1, θ

′
2, θ
′
3 denote the eigenvalues θ1, θ2, θ3 of

Theorem 6.1 corresponding to the matrix Π′. If θ′1 6= θ′2, the QLD of (X,Y ) is the trivial
QSD corresponding to the stronger type: if θ′1 > θ′2, the QLD of (X,Y ) is v′1 ⊗ δ0, where
v′1 is the QLD of (X, 0), and if θ′2 > θ′1, the QLD of (X,Y ) is δ0 ⊗ v′2, where v′2 is the QLD
of (0, Y ).

A Notations

We gather here all the notations used at several places in the paper. Most of these
notations are introduced in Sections 4 and 5.

A.1 General definitions

• For any measurable subset Γ of Rd and any σ-finite positive measure µ on Γ,
L2(Γ, µ) is the set of Borel functions f on Γ defined up to µ-negligible set such
that

∫
Γ
f2dµ < +∞. We denote by 〈·, ·〉µ the canonical inner product on L2(Γ, µ)

and ‖ · ‖µ the associated norm. In the case when Γ is discrete, we make the usual
abuse of notation to identify the measure µ and the corresponding function on Γ.

• For all I × I square matrix M , where I is a finite or denumerable set of indices,
and for all J ⊂ I, we call “restriction of the matrix M to J” the matrix obtained
from M by removing all rows and columns corresponding to indices in I \ J .

A.2 Polynomials

H2(X), H3(X), . . . are defined in Proposition 2.2.
P0(X,Y ) = 1.

P
(1)
1 (X,Y ) = P1(X,Y ) = X.

P
(2)
1 (X,Y ) = Y .
P2(X,Y ), P3(X,Y ), . . . are defined in Theorem 3.1.

A.3 Sets

Z+ = {0, 1, . . .}.
N = {1, 2, . . .}.
Nd = {d, d+ 1, . . .}.
TN = {(i, j) ∈ Z2

+ : i+ j ≤ N}, where N ≥ 0 is fixed below.
T ∗N = TN ∩N2.
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Finite case

SZ = {0, 1, . . . , N}.
S∗Z = {1, 2, . . . , N}.
S = TN .
S∗ = T ∗N .
S∗k = {(i, j) ∈ Z2

+ : k ≤ i+ j ≤ N}, for all
k ≥ 2.
S∗1 = TN ∩ (N×Z+).

Infinite case

SZ = Z+.
S∗Z = N.
S = Z2

+.
S∗ = N2.
S∗k = {(i, j) ∈ Z2

+ : k ≤ i+j}, for all k ≥ 2.
S∗1 = N×Z+.

A.4 Matrices

Π0 = (pn,m)n,m∈SZ is a stochastic matrix such that p0,0 = 1.

Π̃k is the restriction of Π0 to the set of indices SZ ∩Nk+1, for all k ≥ 0.
PrN is the projection operator on RN defined by PrN (u1, u2, . . .) = (u1, . . . , uN , 0, . . .).

Π̃
(N)
0 = PrN Π̃0PrN , in the infinite case (i.e. when SZ = Z+).

Π
(N)
0 is the Markovian kernel on Z+ whose restriction to N is Π̃

(N)
0 .

Π̂
(N)
0 is the restriction of Π̃

(N)
0 to {1, . . . , N}.

Π = (π(i,j),(k,l))(i,j),(k,l)∈S , where

π(i,j),(i+k,j+l) =



(
i+k−1
k

)(
j+l−1
l

)(
i+j+k+l−1

k+l

) pi+j, i+j+k+l if (k, l) ∈ Z2
+ \ {0},(

i
k

)(
j
l

)(
i+j
k+l

) pi+j, i+j−k−l if (−k,−l) ∈ Z2
+,

0 otherwise,

with the convention that
(
i
j

)
= 0 if i < 0, j < 0 or j > i.

Π̃ is the restriction of Π to S∗.
Π̂k is the restriction of the matrix Π to S∗k , for all k ≥ 1.

Π̃(N) is constructed from Π
(N)
0 exactly as Π̃ is defined from Π0.

Π̂(N) is the restriction of Π̃(N) to T ∗N .

Πd = (p
(d)
n,m)(n,m)∈S, n,m≥d for all d ≥ 0, where for all (n,m) ∈ S, n,m ≥ d,

p(d)
n,m =



(
m+d−1
m−n

)(
m−1
m−n

) pn,m if m > n,(
n−d
n−m

)(
n

n−m
) pn,m if m < n,

pn,n if m = n.

For A2dMC (see Section 6.1)

Π =

(
1 0

r Q

)
, where Q =

Q1 0 0

0 Q2 0

R1 R2 Q3

.

A.5 Measures and vectors

µ = (µi)i∈S∗Z is a reversible measure for the matrix Π̃0.

ν = (ν(i,j))(i,j)∈S∗ , where ν(i,j) =
(i+ j)µi+j

ij
.

µ(d) = (µ
(d)
n )n∈SZ∩Nd

for all d ≥ 1, where

µ(d)
n = 2n

(
n+ d− 1

2d− 1

)
µn for all n ∈ SZ ∩Nd.

g(d) = (g
(d)
i )i∈SZ∩Nd+1

for all d ≥ 0, where
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g
(0)
i = 2i2 for all i ∈ S∗Z and

g
(d)
i =

(i− d)(i+ d)

2d(2d+ 1)
for all d ≥ 1 and i ∈ SZ ∩Nd+1.

h(d) = (h
(d)
i,j )(i,j)∈S, i,j≥d+1 for all d ≥ 0, where

h
(0)
i,j =

j

i
for all (i, j) ∈ S∗ and

h
(d)
i,j =


j + d

i+ d
if j > i,

j − d
i− d

if j < i,

1 if i = j.

for all d ≥ 1 and (i, j) ∈ S, i, j ≥ d+ 1.

A.6 Operator norms (in the infinite, reversible case)

||| · |||0 is the natural operator norm on the set of bounded operators on L2(N, µ).
||| · ||| is the natural operator norm on the set of bounded operators on L2(N2, ν).
||| · |||d is the natural operator norm on the set of bounded operators on L2(Nd, µ

(d)), for
all d ≥ 1.

A.7 Eigenvalues

We refer to Sections 5.1 and 5.2 for precise definitions in the finite and infinite cases.

θDk is the biggest Dirichlet eigenvalue of Π in S∗k , for all k ≥ 1.
θ(d) is the biggest eigenvalue of Π corresponding to right eigenvectors of the form
Pd(i, j)ui+j , for all d ≥ 0.

For A2dMC (see Section 6.1)
θ1, θ2 and θ3 are the Perron-Fröbenius eigenvalues of Q1, Q2 and Q3, respectively.

A.8 Vector spaces

Vd := {v ∈ RS : vi,j = Pd(i, j)ui+j with u ∈ RSZ}.

Finite case
Uk = {v ∈ RTN : v = 0 on TN \ S∗k} for all k ≥ 1.

Infinite, reversible case
Uk = {v ∈ L2(Z2

+, ν) : v = 0 on Z2
+ \ S∗k} for all k ≥ 2.

U1 =
{
v ∈ RZ

2
+ : vi,j = i

i+j v
(1)
i+j + v

(3)
i,j , v

(1) ∈ L2(N, µ), v(3) ∈ L2(N2, ν)
}

.

V ′d =
{
v ∈ L2(N2, ν) : vi,j = Pd(i, j)ui+j with u ∈ L2(Nd, µ

(d))
}

for all d ≥ 2.
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