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1 Introduction

Weighted discrete Hardy’s inequalities are a simple and very efficient way to evaluate spectral
gaps on trees, since theoretically this method enables one to get an estimation up to a factor
32 (or 8 if, as below, the tree is the usual one on ZZ). The purpose of this note is to present
this approach and to give an example of such a calculation. The birth and death Markov kernels
under study were considered by C. Meise, who wanted to know the order of their spectral gap,
to evaluate the speed of convergence to equilibrium of an other Markov chain on the n-uples,
n ∈ IN∗ \ {1}, of elements of the additive group ZZ3, whose union set is generating (for more
details about this problem, see [8], where Meise gets its needed estimation by using a method due
to Zeifman [13, 5]).

In fact, there is already a lot of methods to evaluate the spectral gap of a birth and death
process, for instance: nonnegative matrix approach ([12]), Zeifman’s method ([13, 5]), optimal
path considerations ([6]), Chen’s coupling and distance arguments ([7]), variants of Cheeger’s
inequalities ([2]) . . . But in each of these approachs, there is a “good” choice to be made: one has
to find a function in [12] or [13, 5], a length function in [6], a distance in [7], a renormalisation
in [2], and there is no universal way to make such a suitable guess, one has to try and see on the
specific examples at hand.

The main advantage of the Hardy’s inequalities is that they do not depend on yours prediction
skills, they gives you a (relatively) explicit estimation of the spectral gap in terms of yours data
(birth and death rates and the associated reversible probability). Sure, this evaluation is only
good up to an universal factor 8, so in particular examples the previous methods can be more
efficient, nevertheless in practice this factor is not a crucial point (see for instance the consequences
of the estimation needed by Meise), and the robustess aspect of the Hardy’s inequalities seems
more important.

Furthermore, this approach is also valid for the estimation of the Sobolev-logarithmic constant
(see the third section below), and for the latter, there is no other general method. Indeed, the
Hardy’s inequalities give criteria for the existence of positive spectral gap and Sobolev-logarithmic
constant for birth and death processes, in the spirit of the work of Bobkov and Götze for diffusions
on IR (see [1]).

But the serious drawback of the discrete Hardy’s inequalities is that they can only be applied
to Markov processes whose underlying graph is a tree (nevertheless subtrees can be useful for
general finite Markov processes, see for instance [9]).

Let us first recall the weighted discrete Hardy’s inequalities on IN , with a short proof of these
bounds, directly adapted from the one given by Muckenhoupt [10] for the similar continuous
result on IR+. For the general case of weighted discrete Hardy’s inequalities on rooted trees, see
the appendice of [9], where these inequalities are deduced from those given by Evans, Harris and
Pick in [4] for continuous trees (whose proof was itself inspired by the approach considered by
Sawyer in [11] for IR+).

So let µ and ν be two positive functions on IN ∗, which will be seen as measures, we are
interested in the smallest constant A ∈ IR∗

+ " {+∞} such that the following inequalities are
satisfied for all functions f : IN∗ → IR,

∑

x∈IN∗
µ(x)




∑

0<y≤x

f(y)




2

≤ A
∑

x∈IN∗
ν(x)f 2(x)

2



To estimate A, let us introduce the constant B defined by

B = sup
x>0




x∑

y=1

1

ν(y)




∑

y≥x

µ(y)

Then the weighted (by µ and ν) discrete Hardy’s inequalities on IN just say

Proposition 1
∣∣∣∣∣∣∣∣∣∣

The constant B is a good approximation of A, in the sense that we are always
assured of

B ≤ A ≤ 4B

Proof:

We begin by proving that A ≤ 4B: let f be any function of IL2(IN∗, ν), we have to see that

∑

x∈IN∗




∑

0<y≤x

f(y)




2

µ(x) ≤ 4B
∑

x∈IN∗
f 2(x) ν(x)(1)

For x ∈ IN∗, denote

N(x) =
x∑

y=1

1

ν(y)

We start from the left hand side of (1), for which we use a Cauchy-Schwarz inequality, to
obtain the following upper bound

∑

x∈IN∗
µ(x)

∑

0<y≤x

f 2(y)ν(y)N
1
2 (y)

∑

0<z≤x

1

ν(z)

1

N
1
2 (z)

To deal with the last sum, we use the concavity inequality saying that for all a, b > 0,

b
1
2 − a

1
2 ≥ 1

2

1

b
1
2

(b − a)

so we are assured that for all z > 0 (with the convention that N(0) = 0),

1

ν(z)

1

N
1
2 (z)

≤ 2(N
1
2 (z) − N

1
2 (z − 1))

Thus we get

∑

0<z≤x

1

ν(z)

1

N
1
2 (z)

≤ 2N
1
2 (x)

≤ 2

(
B

µ([x, +∞[)

) 1
2

We now have to consider

2
√

B
∑

y∈IN∗
f 2(y)ν(y)N

1
2 (y)

∑

x≥y

µ(x)
1

µ
1
2 ([x, +∞[)
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and to do so we use again the previous convexity inequality, to obtain

∑

x≥y

µ(x)
1

µ
1
2 ([x, +∞[)

≤ 2
∑

x≥y

µ
1
2 ([x, +∞[) − µ

1
2 ([x + 1, +∞[)

= 2µ
1
2 ([y, +∞[)

≤ 2

(
B

N(y)

) 1
2

Putting together all these calculations, we end up with (1).

To prove the simpler lower bound A ≥ B, it is enough to apply the inequality

∑

x∈IN∗




∑

0<y≤x

f(y)




2

µ(x) ≤ A
∑

x∈IN∗
f 2(x) ν(x)

with well chosen functions f .
More precisely, for x0 ∈ IN ∗ fixed, let f be defined by

∀ y ∈ IN∗, f(y) =
{

1/ν(y) , if 0 < y ≤ x0

0 , otherwise

we get therefore

A
∑

0<y≤x0

1

ν(y)
≥

∑

x∈IN∗




∑

0<y≤x

f(y)




2

µ(x)

≥
∑

x≥x0




∑

0<y≤x0

1

ν(y)




2

µ(x)

from where we deduce that A ≥ µ([x0, +∞[)
∑

0<y≤x0
1/ν(y). To get the result we want, it remains

to take the supremum in x0 ∈ IN ∗.

!

Now let us see how this result can be applied to get an evaluation of the spectral gap for birth
and death processes on ZZ: so let (a(i))i∈ZZ and (b(i))i∈ZZ be two sequences of positive numbers,
which will respectively stand for the birth and death rates. Up to a multiplicative constant, there
is an unique associated reversible measure µ, i.e. satisfying for all i ∈ ZZ, µ(i)a(i) = µ(i+1)b(i+1).
Let us assume that µ is in fact of finite weight, so from now on we can restrict ourselves to the
case where it is a probability.

The spectral gap of this birth and death process is the ergodic constant defined by

λ = inf
f∈IL2(µ)\Vect(1I)

E(f, f)

µ((f − µ(f))2)

where the Dirichlet form E is given for all functions f ∈ IL2(µ) by

E(f, f) =
∑

i∈ZZ

(f(i + 1) − f(i))2µ(i)a(i)

For i ∈ ZZ, let us define

B+(i) = sup
x>i




x∑

y=i+1

1

µ(y)b(y)




∑

y≥x

µ(y)

B−(i) = sup
x<i

(
i−1∑

y=x

1

µ(y)a(y)

)
∑

y≤x

µ(y)
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Let m denote a median of µ (i.e. an integer m ∈ ZZ such that µ(] − ∞, m[) ≤ 1/2 and
µ(]m, +∞[) ≤ 1/2), and let

B = B+(m) ∨ B−(m)

Its interest appears in the following estimation:

Proposition 2
∣∣∣∣∣∣∣∣∣∣

With the previous notations, we have

1

4B
≤ λ ≤ 2

B

Proof:

We first prove the lower bound on the spectral gap: let f ∈ IL2(µ) \ Vect(1I) be given, we
consider the two functions defined by

∀ x ∈ ZZ,

f−(x) = (f(x) − f(m))1I]−∞,m](x)

f+(x) = (f(x) − f(m))1I[m,+∞[(x)

We have for them

E(f, f) = E(f − f(m)1I, f − f(m)1I)

= E(f−, f−) + E(f+, f+)

and

µ((f − µ(f))2) ≤ µ((f − f(m)1I)2)

= µ(f 2
−) + µ(f 2

+)

so

E(f, f)

µ((f − µ(f))2)
≥ min

(
E(f−, f−)

µ(f 2
−)

;
E(f+, f+)

µ(f 2
+)

)

≥ (A+ ∨ A−)−1

where A+ (respectively A−) is the best constant such that the following inequalities are satisfied
for all functions g : IN∗ → IR,

∑

x∈IN∗
µ(m + x)




∑

0<y≤x

g(y)




2

≤ A+

∑

x∈IN∗
µ(m − 1 + x)a(m − 1 + x)g2(x)

= A+

∑

x∈IN∗
µ(m + x)b(m + x)g2(x)

(resp.
∑

x∈IN∗ µ(m − x)
(∑

0<y≤x g(y)
)2

≤ A−
∑

x∈IN∗ µ(m − x)a(m − x)g2(x)).

This fact shows that the bound λ ≥ 1/(4B) follows from the Hardy’s inequalities.

For the reversed inequality λ ≤ 2/B, by symmetry of the problem we can assume for instance
that B = B+(m), and we begin by treating the case where B < +∞. Let 0 < ε < B+(m) be
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given and consider a function g : IN∗ → IR (without any restriction, we could assume that g is
taking values in IR+) such that

∑
x∈IN∗ µ(m + x)

(∑
0<y≤x g(y)

)2

∑
x∈IN∗ µ(m + x)b(m + x)g2(x)

≥ A+ − ε(2)

where the numerator can be supposed to be finite and non-zero.
We define a non-constant function f : ZZ → IR by setting

∀ x ∈ ZZ, f(x) =
{

0 , if x ≤ m
g(1) + · · ·+ g(x − m) , if x > m

As µ({f = 0}) ≥ µ(] −∞, m]) ≥ 1/2, we get by a Cauchy-Schwarz inequality that µ(f)2 ≤
µ({f > 0})µ(f 2) ≤ µ(f 2)/2, so

µ((f − µ(f))2) = µ(f 2) − µ(f)2

≥ µ(f 2)/2

≥ (A+ − ε)E(f, f)/2

≥ (B+ − ε)E(f, f)/2

≥ (B+ − ε)λµ((f − µ(f))2)/2

from which we get λ ≤ 2(B+−ε)−1. Letting ε go to 0+, we obtain the expected result. If B = +∞,
we proceed in same manner, but we have to consider functions g such that the left hand side of
(2) is finite but very large.

!

In practice, it can be difficult to find exactly a median, and sometimes it is better to consider
the constant

B′ = inf
i∈ZZ

(B+(i) ∨ B−(i))

because we are still assured of the same bounds (which also show that B and B′ are of the same
order).

Proposition 3
∣∣∣∣∣∣∣∣∣∣

As before, we can approximate λ by 1/B′:

1

4B′ ≤ λ ≤ 2

B′

Proof:

The first part of the proof of the proposition 2 shows in fact that for all i ∈ ZZ (cut the function
f − f(i)1I in i instead of cutting f − f(m)1I in m), we are assured of λ ≤ (4(B+(i) ∨ B−(i)))−1.
On the other hand, the bound λ ≤ 2/B′ follows from the trivial inequality B′ ≤ B. !

This result shows that if one wants to get a “good” lower bound of the spectral gap (which
is often the critical point), one only need to guess an “adequate choice” of x and to apply the
estimate

λ ≥ 1

4(B+(x) ∨ B−(x))
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Of course, the previous considerations are still valid if ZZ is replaced by a infinite or finite
discrete interval (this situation has to be considered for instance if the a(i) or the b(i), i ∈ ZZ, are
only assumed to be non-negative), as it will be the case below. In fact, when the interval is not
the whole ZZ, but the rates of birth and death are positive on this interval (except on the frontier
for one of them), we have furthermore unicity, up to a multiplicative constant, for the invariant
measure µ, which is then reversible. This was not necessarily true for ZZ.

2 The example

It is now time to introduce the example of Meise: it is a familly of birth and death processes
indexed by n ∈ IN ∗ \ {1}, taking values in {1, · · · , n}. More precisely, for all n ∈ IN∗ \ {1}, the
birth and death rates are respectively given by

∀ 1 ≤ i < n, an(i) =
i(n − i)

n(n − 1)

∀ 1 < i ≤ n, bn(i) =
i(i − 1)

pn(n − 1)

where p > 0 is a fixed parameter.
Meise was interested in showing that the spectral gaps λn of these chains are of order 1/n:

there exists two constants 0 < c1 < c2 < +∞ such that for all n ≥ 2, we have the bounds

c1

n
≤ λn ≤ c2

n
(3)

(in fact Meise has got a more precise result, as he can show that limn→∞ nλn = 1, note that
such equivalences are out of reach by using only Hardy’s bounds, but the goal of the following
calculations is only to illustrate this method because they have some interesting features, maybe
should we have chosen a more terrible example !).

In order to prove them, let us denote by µn the associated reversible probability on {1, · · · , n}.
It is quite immediate to calculate that it is given by

∀ 1 ≤ i ≤ n, µn(i) = ((1 + p)n − 1)−1pi

(
n
i

)

=
pin!

((1 + p)n − 1)i!(n − i)!

For n > 1 + +1/p,, let us define mn as +zn,+ 1, where zn = (pn− 1)/(1 + p) (and + · , denote
the integer part), it is an interesting point in {1, · · · , n} because µn is non-decreasing (respectively
decreasing) on {1, · · · , mn} (resp. {mn, · · · , n}). More precisely, as we have for all 1 ≤ i < n,

µn(i + 1)

µn(i)
=

an(i)

bn(i + 1)
=

p(n − i)

i + 1

this ratio is decreasing on {1, · · · , n} and take the value 1 only for the real number i = zn.
Using this remark, making the convention that µn(x) = 0 for x -∈ {1, · · · , n}, and defining

ln = 2+
√

n, + 3, we see that for all n > 1 + +1/p,,

µn(mn + ln)

µn(mn)
≤

(
p(n − zn −

√
n)

zn + 1 −
√

n

)√
n

=

(
1 − p/

√
n

1 + 1/
√

n

)√
n

≤ ρ1
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where ρ1 = exp(−p − 1/2) < 1 (we have made use of the concavity inequalities x/(x + 1) ≤
ln(1 + x) ≤ x, valid for all x > −1). With a similar calculation, we see that

∀ n > 1 + +1/p,, µn(mn − ln)

µn(mn)
≤ ρ2

with ρ2 = exp(−1 − p/(1 + p)) < 1 (in fact, it could be possible to be numerically more precise
here, and via Stirling formula, one can explicit the limit values, as n tends to infinity, of the
previous ratios).

We deduce from these bounds that we have for n > 1 + +1/p,,

∀ mn ≤ x ≤ n,
µn(x + ln)

µn(x)
≤ ρ1

∀ 1 ≤ x ≤ mn,
µn(x − ln)

µn(x)
≤ ρ2

But these estimations are only good near mn (this is related to the fact that if by an affine
transformation, we repace [1, n] by [−mn/

√
n, (n − 1 − mn)/

√
n], then the image of µn “looks

like” a centered Gaussian distribution with variance p/(1 + p)2), and as we are away from this
point with a distance of order n, it is easy to get better estimates: for instance, as

µn(kn − 1)

µn(kn)
≤ 1

2

with kn = +p(n + 1)/(2 + p),, we have

∀ 1 ≤ x ≤ kn,
µn(x − 1)

µn(x)
≤ 1

2

In fact these informations are mainly the only ones needed to get a lower bound on λn by
using the Hardy’s inequalities from the point mn. The heuristic reason is the following one: on
{mn, · · · , n} and on {kn, · · · , mn} (in reverse order), in a space scale

√
n, µn decreases somewhat

faster than power laws (whose parameters ρ1 and ρ2 do not depend on n) and the rates of transition
in the direction of mn are bounded below by a constant which does not depend on n, and this
contributes to an estimate of the spectral gap of order 1/n. On the other hand, on the interval
{1, · · · , kn} (also looked at in reverse order), in a space scale 1, µn decreases in some sense faster
than a power law (of parameter 1/2), but the rates of transition toward kn are at least 1/n (which
reduce the speed of escape from 1 by the same factor), so this also gives an estimation of the
spectral gap of order 1/n. Here are the more detailed calculations: we begin by evaluating

Bn,+ = max
x>mn




x∑

y=mn+1

1

µn(y)bn(y)



µn([x, n])

It is easy to explicit a n0 ≥ 1++1/p, large enough such that for all n ≥ n0 and all mn < y ≤ n,
b(y) ≥ p/(2(p + 1)2). Let x be fixed in {mn, · · · , n}, then we have

p

2(p + 1)2

x∑

y=mn+1

1

µn(y)bn(y)
≤

x∑

y=mn+1

1

µn(y)

=
∑

i∈IN

∑

mn∨(x−(i+1)ln)<y≤mn∨(x−iln)

1

µn(y)
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≤
∑

i∈IN : x−iln≥mn

ln
1

µn(x − iln)

≤
∑

i∈IN : x−iln≥mn

lnρi
1

1

µn(x)

≤ ln
1 − ρ1

1

µn(x)

while

µn([x, n]) ≤
∑

i∈IN

∑

n∧(x+iln)≤y<n∧(x+(i+1)ln)

µn(y)

≤
∑

i∈IN : x+iln≤n

lnµn(x + iln)

≤
∑

i∈IN : x−iln≤n

lnρi
1µn(x)

≤ ln
1 − ρ1

µn(x)

so we end up with

Bn,+ ≤ 2(p + 1)2

p

(
ln

1 − ρ1

)2

Then we look at

Bn,− = max
x<mn

(
mn−1∑

y=x

1

µn(y)an(y)

)

µn([1, x])

and we first consider the case of x ∈ {kn, · · · , mn−1}, because it is then possible to find explicitly
a n1 ≥ n0 large enough such that for all n ≥ n1, we are assured of infkn≤y<mn an(y) ≥ p/(2(2+p)2),
and thus we have as before, for n ≥ n1,

p

2(p + 2)2

mn−1∑

y=x

1

µn(y)an(y)
≤ ln

1 − ρ2

1

µn(x)

µn([1, x]) ≤ ln
1 − ρ2

µn(x)

so

max
kn≤x<mn

(
mn−1∑

y=x

1

µn(y)an(y)

)

µn([1, x]) ≤ 2(p + 2)2

p

(
ln

1 − ρ2

)2

For x ∈ {1, · · · , kn}, we use the following bounds, which are proved in same way

kn−1∑

y=x

1

µn(y)
≤ 1

1 − 1/2

1

µn(x)

µn([1, x]) ≤ 1

1 − 1/2
µn(x)

to obtain, via the inequality an(y) ≥ 1/n, satisfied for all 1 ≤ y < n,

max
1≤x<kn

kn−1∑

y=x

1

µn(y)an(y)
µn([1, x]) ≤ 4n
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but we are also assured of

max
1≤x<kn

mn−1∑

y=kn

1

µn(y)an(y)
µn([1, x]) ≤

mn−1∑

y=kn

1

µn(y)an(y)
µn([1, kn])

≤ 2(p + 2)2

p

(
ln

1 − ρ2

)2

so in the end

Bn,− ≤ 4n +
2(p + 2)2

p

(
ln

1 − ρ2

)2

from where we easily get the existence of a constant C1 > 0 such that

Bn,− ∨ Bn,+ ≤ C1n

i.e. the above mentionned lower bound for λn is proved with c1 = 1/(4C1), at least for n ≥ n1.

To prove a related upper bound, just use the definition of λn with the particular function 1I{1},
it gives λn ≤ (n[1 − pn/((1 + p)n − 1)])−1 ∼ 1/n, for n large.

3 Logarithmic-Sobolev inequalities

The weighted Hardy’s inequalities are also an efficient method to evaluate logarithmic Sobolev
constants on trees. By using some ideas and results of Bobkov and Götze [1], who have seen
logarithmic Sobolev inequalities as Poincaré’s inequalities in the Orlicz space associated to the
Young function Ψ : IR+ / x 0→ x ln(1 + x), we have presented this approach for the discrete
setting in [9]. Let us give these estimations in the special case of ZZ endowed with its natural tree
structure. So we come back to the general birth and death process of positive rates (a(i))i∈ZZ and
(b(i))i∈ZZ , reversible with respect to probability µ. The associated logarithmic Sobolev constant
is defined by

α = inf
f∈IL2(µ)\Vect(1I)

E(f, f)

Ent(f 2, µ)

where the entropy of the function f 2 with respect to µ is the quantity Ent(f 2, µ) =
∫

f 2 ln(f 2/
‖f‖2

IL2(µ)) dµ.
To give an approximation of this ergodic constant α, we introduce for all i ∈ ZZ, the numbers

C+(i) = sup
x>i




x∑

y=i+1

1

µ(y)b(y)



µ([x, +∞[) |ln(µ([x, +∞[))|

C−(i) = sup
x<i

(
i−1∑

y=x

1

µ(y)a(y)

)

µ(] −∞, x]) |ln(µ(] −∞, x]))|

and we consider

C = inf
i∈ZZ

(C−(i) ∨ C+(i))

Then it can be shown that
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Proposition 4
∣∣∣∣∣∣∣∣∣∣∣∣∣

The constant C−1 is of the same order as α, since the following bounds are always
satisfied

1

20

1

C
≤ α ≤ 4

3

(

1 −
√

5

2
√

2

)−2
1

C

If we restrict ourselves to the case of a finite interval, one deduces from the lower bound that

α ≥ λ

40 |ln(µ∗)|

where µ∗ is the minimum value taken by µ on the finite interval.
But there is a better result in this direction, due to Diaconis and Saloff-Coste [3], saying that

for all finite and irreducible Markov kernels (without assumptions on the underlying graph),

α ≥ 1 − 2µ∗

ln(µ−1
∗ − 1)

λ

where λ, α and µ∗ are respectively the spectral gap, the logarithmic Sobolev constant and the
minimum value of the invariant probability.

Of course, there is not a related upper bound (up to an universal constant, but we are assured
of α ≤ λ/2), nevertheless, in the example of Meise, this gives the right order of the logarithmic
Sobolev constants αn: there are two constants 0 < c3 < c4 < +∞, such that for all n ∈ IN∗ \ {1},

c3

n2
≤ αn ≤ c4

n2

To get the lower bound, just note that µn,∗ = µn(1) ∧ µ(n) = (pn ∧ pn)/((1 + p)n − 1), and
the upper bound can be obtained by considering the function 1I{1} in the definition of αn.
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