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Abstract. Let M be a complete Riemannian manifold, N ∈ N and p ≥ 1.

We prove that almost everywhere on x = (x1, . . . , xN ) ∈ MN for Lebesgue

measure in MN , the measure µ(x) =
1

N

N∑
k=1

δxk has a unique p-mean ep(x).

As a consequence, if X = (X1, . . . , XN ) is a MN -valued random variable with

absolutely continuous law, then almost surely µ(X(ω)) has a unique p-mean.

In particular if (Xn)n≥1 is an independent sample of an absolutely continuous
law in M , then the process ep,n(ω) = ep(X1(ω), . . . , Xn(ω)) is well-defined.

Assume M is compact and consider a probability measure ν in M . Us-

ing partial simulated annealing, we define a continuous semimartingale which
converges in probability to the set of minimizers of the integral of distance at

power p with respect to ν. When the set is a singleton, it converges to the

p-mean.

1. Introduction

Finding the mean of the median or more generaly the p-mean ep of a probability
measure in a manifold (the point which minimizes integral with respect to this
measure of distance at power p) has numerous applications. There is not much to
say for the mean in Rd, almost the only case where there is a closed formula, and
the most important case as the most useful estimator in statistics when the measure
is uniform law on a sample. For medians in Rd the situation is more complicated.
Uniqueness holds as soon as the support of the probability measure is not carried
by a line. The first algorithm for computing e1 is due to Weisfeld in [24]. As for the
computation of e∞ (the center of the smallest ball containing the support of the
measure), Badŏiu and Clarkson gave a fast and simple algorithm in [6]. For many
applications in biology, signal processing, information geometry, extension to other
spaces is necessary. The median in Hilbert space is computed in [9]. In nonlinear
spaces with convexity assumptions, uniqueness has been established in [18] for the
mean, [1] for the p-mean. Many algorithms of computation now exist. As far
as deterministic algorithms are concerned, one can cite [19], [12], [13], [2] for the
mean in Riemannian manifolds, [3] for the mean in Finsler manifolds, [11] and more
generally [25] for the median, [5] for e∞. Stochastic algorithms avoid to compute
the gradient of the functional to minimize. They can be found in [23], [4]. For other
functionals to minimize, see [8].

In this paper we investigate the case of non necessarily convex, complete Rie-
mannian manifolds. Our first result (Theorem 2.1) concerns uniqueness of the
p-mean of the uniform measure on a finite set {x1, . . . , xn} of points, almost every-
where on x = (x1, . . . , xn) for the Lebesgue measure. This generalizes Bhattacharya
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and Patrangenaru result on the circle ([7], case p = 2). See also [10] for more general
uniqueness criterions on the circle.

For computation of the p-mean, usual deterministic algorithms are not possible
any more, due to the fact that the functional to minimize may have many local
minima. So restricting to symmetric spaces we use a simulated annealing method
with a continuous stochastic process, together with an estimation of the gradient
to minimize via a drift moving faster and faster. With this method we are able
to define a process which converges in distribution to the p-mean for p ∈ [1,∞)
(Theorem 4.3, and Theorem 3.2 for more general but smooth functionals).

The main applications are in signal processing with polarimetric signal, but also
for the group of rotations of Rn, so as to determine averages on rotations. Also
this solves many problems of optimization which may arise in economy, decision
support, operation research. Notice that on the circle, fast computation of the mean
has been performed in [17]. In fact this is a case where a closed formula can be
found. For general case the situation is much more complicated and the convergence
of our processes is slower and weaker. Jump processes and algorithms related to the
continuous processes presented here will be investigated in a forthcoming paper.

2. Uniqueness of p-means for uniform measures with finite support

Let M be a d-dimensional complete Riemannian manifold with Riemannian dis-
tance denoted by ρ. For ν a probability measure on M and p ≥ 1, we define

Hp,ν : M → R+ ∪ {+∞},

y 7→
∫
M

ρp(y, z) ν(dz).
(2.1)

Either Hp,ν ≡ ∞ or for all y ∈ M , Hp,ν(y) < ∞. In the latter case we denote by
Qp,ν the set of minimizers of Hp,ν . When Qp,ν has only one element we denote
it by ep,ν and call it the p-mean of ν. When there is no possible confusion we let
ep = ep,ν . For x = (x1, . . . , xN ) ∈MN , we let

(2.2) µ(x) =
1

N

N∑
k=1

δxk .

Clearly Hp,µ(x) is finite.

Theorem 2.1. Assume p > 1 or {d > 1 and N > 2}. For almost all x ∈ MN ,
Qp,µ(x) has a unique element ep,µ(x)

Remark 2.2. This theorem extends Theorem 4.15 in [26] where the same result
has been established for p = 1 and M compact.

Proof. We begin with the case p > 1.
Since µ(x) has a finite support, we can assume that M is a compact Riemannian

manifold. For this a smooth modification outside a large ball is sufficient. For
instance we can choose a radius so that the boundary is smooth, double the ball
and finally smoothen the metric locally around the place where the pasting has
been performed.

So in the sequel we will assume that M is compact, with diameter L. For y ∈M
we denote by SyM ⊂ TyM the set of unit tangent vectors above y. Let

(2.3) Ṽ = {(y, n), y ∈M, n = (n1, . . . , nN ), nj ∈ SyM, j = 1, . . . N} × [0, 2L]N .
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Note Ṽ is a compact smooth (N + 1)d-dimensional manifold with boundary.
Define

φ̃ : Ṽ →MN

(y, n, r) 7→
(
expy(n1r1), . . . , expy(nNrN

)
.

(2.4)

The map φ̃ is onto. If x = (x1, . . . , xN ) ∈MN , consider y ∈M minimizing Hp,µ(x).
Then among all (n, r) such that

(2.5) φ̃(y, n, r) = x

we can choose one so that for all k = 1, . . . , N the map s 7→ expy(snk) is a minimal
geodesic for s ∈ [0, rk]. For this choice we have

(2.6) Hp,µ(x)(y) =
1

N

N∑
k=1

rpk.

Let us prove that

(2.7)

N∑
k=1

rp−1
k nk = 0.

For this it is sufficient to check that for all u ∈ TyM

(2.8)

〈
N∑
k=1

rp−1
k nk, u

〉
= 0.

For k = 1, . . . , N , consider any smooth variation ck(s, a) of s 7→ expy(snk), s ∈
[0, rk], defined on [0, sk] × [−ε, ε] for some ε > 0, satisfying ck(s, 0) = expy(snk)
for s ∈ [0, rk], ck(0, a) = expy(au) for a ∈ [−ε, ε] and ck(rk, a) = expy(rknk) = xk,
a ∈ [−ε, ε]. Denote by `k(a) the length of the path s 7→ ck(s, a), s ∈ [0, rk]. By the
variation of arc length formula, we have

(2.9) −1

p

N∑
k=1

(`pk)′(0) =

N∑
k=1

`p−1
k (0)〈nk, u〉 =

〈
N∑
k=1

rp−1
k nk, u

〉
.

Now since y minimizes Hp,µ(x) and by definition

Hp,µ(x)(expy(au)) ≤ 1

N

N∑
k=1

`pk(a), Hp,µ(x)(y) =
1

N

N∑
k=1

`pk(0),

we have that 0 minimizes a 7→ 1
p

∑N
k=1 `

p
k(a) and by (2.9) this implies (2.8). So

equation (2.7) is proved.
Letting

(2.10) W̃p =

{
(y, n, r) ∈ Ṽ ,

N∑
k=1

rp−1
k nk = 0

}
and φ̃p = φ̃|W̃p

the restriction of φ̃ to W̃p, φ̃p is onto, on MN by (2.5) and (2.7).

By Sard’s theorem, the set C1 ⊂MN of singular values of φ̃p has measure 0. It

is closed since W̃p is compact.
Let us prove that the set

(2.11) C2 :=
{

(x1, . . . , xN ) ∈MN , {x1, . . . , xN} ∩Qp,µ(x1,...,xN ) 6= ∅
}
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has Lebesgue-measure 0: we can assume that for i 6= j, xi 6= xj since we exclude

0-measure sets. So the elements we consider are images by φ̃p of

(2.12) Ŵp =
{

(y, n, r) ∈ W̃p, r1 = 0, ∀k ≥ 2 rk > 0
}
.

The set Ŵp is a submanifold of codimension 1 of W̃p. Now dim W̃p = Nd = dimMN

so dim Ŵp = dimMN − 1 and its image by φ̃p is of measure 0 in MN . As a
conclusion, C2 has measure 0.

Define

(2.13) C3 :=
{

(x1, . . . , xN ) ∈MN , ∃i 6= j s.t. xi = xj
}

and C = C1 ∪ C2 ∪ C3. The set C is closed in MN and has measure 0. Letting

(2.14) Wp =
{

(y, n, r) ∈ W̃p, ∀k = 1, . . . N, rk ∈ (0, 2L)
}
,

we proved that φ̃p|Wp
is onto on MN\C. Denote φp = φ̃p|Wp

. Since Wp has same

dimension as MN and W̃p is compact, every point x of MN\C has a neighbourhood
Vx such that φ−1

p (Vx) = U1,x ∪ · · · ∪Umx,x where the Uj,x are disjoint open subsets
of Wp and

(2.15) φp|Uj,x : Uj,x → φp(Uj,x)

is a diffeomorphism. Now since MN\C is second countable we can cover it by a
countable number of such sets Vx. So to prove that the p-mean is almost everywhere
unique it is sufficient to prove it on Vx.

For x′ ∈ Vx denote x′ = (x′1, . . . , x
′
N ), and for i ∈ {1 . . .mx}, write

(φ|Ui,x)−1(x′) = (yi(x
′), ni1(x′), . . . nid(x

′), ri1(x′), . . . , rid(x
′)).

Let i, j ∈ {1 . . .mx} satisfy i 6= j. If yi(x
′), yj(x

′) ∈ Qp,µ(x′) then we have

(2.16) Hp,µ(x′) ◦ yi(x′) = Hp,µ(x′) ◦ yj(x′).
We can assume with the same argument as for (2.5) and (2.6) that the maps

(2.17) γi,k,x′ : s 7→ expyi(x′)(sn
i
k(x′)) and γj,k,x′ : s 7→ expyj(x′)(sn

j
k(x′))

are minimal geodesics respectively on [0, rik(x′)] and [0, rjk(x′)]. So letting hp :

Wp → R, (y, n, r) 7→
∑N
k=1 r

p
k, we have

1

N
hp◦(φp|Ui,x)−1(x′) = Hp,µ(x′)◦yi(x′),

1

N
hp◦(φp|Uj,x)−1(x′) = Hp,µ(x′)◦yj(x′).

It is sufficient to prove that for all x′ ∈ Vx,

(2.18) hp ◦ (φp|Ui,x)−1(x′) = hp ◦ (φp|Uj,x)−1(x′)

implies

(2.19) gradx′

(
hp ◦ (φp|Ui,x)−1

)
6= gradx′

(
hp ◦ (φp|Uj,x)−1

)
.

Indeed with (2.19) we will be able to deduce that the set

(2.20)
{

(x′ ∈ Vx, hp ◦ (φp|Ui,x)−1 = hp ◦ (φp|Uj,x)−1
}

has codimension ≥ 1 in Vx and this will imply that

(2.21)
{

(x′ ∈ Vx, Hp,µ(x′) ◦ yi(x′) = Hp,µ(x′) ◦ yj(x′)
}

has codimension ≥ 1 in Vx.
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Let us prove (2.19). For k = 1, . . . , N let

mi
k(x′) = −γ̇i,k,x′(rik(x′)) and mj

k(x′) = −γ̇j,k,x′(rjk(x′)).

These unit vectors satisfy

expx′
k
(rik(x′)mi

k(x′)) = yi(x
′) and expx′

k
(rjk(x′)mj

k(x′)) = yj(x
′).

Then noting that
(
hp ◦ (φp|Ui,x)−1

)
(x′) =

∑N
k=1(rik)p(x′k) we get

dx′
(
hp ◦ (φp|Ui,x)−1

)
(·)

=

〈
−p

N∑
k=1

(rik)p−1(x′)nik(x′), Tx′yi(·)

〉
Tyi(x′)M

− p
〈(

(ri1(x′))p−1mi
1(x′), . . . , (riN (x′))p−1mi

N (x′)
)
, ·
〉
Tx′M

N .

Due to the fact that (yi(x
′), ni(x′), ri(x′)) ∈Wp, the first term in the right vanishes.

So
(2.22)

gradx′

(
hp ◦ (φp|Ui,x)−1

)
= −p

(
(ri1(x′))p−1mi

1(x′), . . . , (riN (x′))p−1mi
N (x′)

)
and similarly
(2.23)

gradx′

(
hp ◦ (φp|Uj,x)−1

)
= −p

(
(rj1(x′))p−1mj

1(x′), . . . , (rjN (x′))p−1mj
N (x′)

)
.

Since yi(x
′) 6= yj(x

′) we have (ri1(x′),mi
1(x′)) 6= (rj1(x′),mj

1(x′)), so (ri1(x′))p−1mi
1(x′) 6=

(rj1(x′))p−1mj
1(x′), from which we conclude that

gradx′

(
hp ◦ (φp|Ui,x)−1

)
6= gradx′

(
hp ◦ (φp|Uj,x)−1

)
.

This achieves the proof for the case p > 1.
Let us now consider the case p = 1. The result is due to Yang in [26], we give

the proof here for completeness.
The main difference is that the subset of MN of points x = (x1, . . . , xN ) so that

xi ∈ Q1,µ(x) for some i has positive measure.

First consider the open subset U of MN of points x such that for all i = 1, . . . , N ,
xi 6∈ Q1,µ(x).

Consider the closed subset C0 of MN of points (x1, . . . , xN ) = φ̃(y, n, r), with

(y, n, r) ∈ Ṽ such that for all j, k = 1, . . . N , nj = ±nk. Since d > 1 and N > 2
this subset has Lebesgue measure 0.

Replacing MN by U and C by C0 ∪C, the argument is similar until (2.18). But
now we will be able to prove that (2.18) implies (2.19) only in some neighbourhoods
Vx,x′ to be precised later, of x′ ∈ Vx such that the geodesics

s 7→ expyi(x′)(sn
i
k(x′)) and s 7→ expyj(x′)(sn

j
k(x′))

are minimal respectively on [0, rik(x′)] and [0, rjk(x′)]. But this will be sufficient
since every compact subset of Vx can be covered by a finite number of these neigh-
bourhoods Vx,x′ .

Making the above assumption on x′, the proof is similar until (2.22) and (2.23).
Then we have

(2.24) gradx′

(
h1 ◦ (φ1|Ui,x)−1

)
= −

(
mi

1(x′), . . . ,mi
N (x′)

)
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and

(2.25) gradx′

(
h1 ◦ (φ1|Uj,x)−1

)
= −

(
mj

1(x′), . . . ,mj
N (x′)

)
.

Assume

gradx′

(
h1 ◦ (φ1|Ui,x)−1

)
= gradx′

(
h1 ◦ (φ1|Uj,x)−1

)
.

Then for all k = 1, . . . , N , mi
k(x′) = mj

k(x′). In particular for k = 1 this im-
plies (possibly by exchanging i and j) that yi(x

′) lies in the minimizing geodesic
from x′1 to yj(x

′). Now since x′ 6∈ C0 there exists k ∈ {1, . . . N} such that x′k 6∈
{expyi(x′)(sn

i
1(x′)), s ∈ [−2L, 2L]}. On the other hand since mi

k(x′) = mj
k(x′),

yj(x
′) (or yi(x

′)) lies on the minimizing geodesic from x′k to yi(x
′) (or yj(x

′)).
As a consequence there are two minimizing geodesics from yi(x

′) to yj(x
′). But

this is impossible since the geodesic from x′1 to yj(x
′) is minimizing, contains

yi(x
′) and x′1 6= yi(x

′) by the fact that we have supposed that x′1 6∈ Q1,µ(x′) and
yi(x

′) ∈ Q1,µ(x′). So

gradx′

(
h1 ◦ (φ1|Ui,x)−1

)
6= gradx′

(
h1 ◦ (φ1|Uj,x)−1

)
,

and by continuity this is true in a neighbourhood Vx,x′ of x′.
Now we consider the case where x′1 ∈ Q1,µ(x′) and x′2 6∈ Q1,µ(x′). We follow the

same lines as in the previous part with the difference that now yi(x
′) = x′1 and for

the definition of Ui,x W1 is replaced by

W i
1 = {(y, n, r) ∈ V, r1 = 0}.

The definition of Uj,x remains unchanged. By [25] Theorem 1∥∥∥∥∥ 1

N

N∑
k=2

nik(x′)

∥∥∥∥∥ ≤ µN (x′)({x′1})

which gives

(2.26)

∥∥∥∥∥
N∑
k=2

nik(x′)

∥∥∥∥∥ ≤ 1.

Since d > 1 and N > 2, the submanifolds of Vx images of{
(y, n, r) ∈ Ui,x,

∥∥∥∥∥
N∑
k=2

nk

∥∥∥∥∥ = 1

}
and {

(y, n, r) ∈ Ui,x,
N∑
k=2

nk = 0

}
by φ1 have measure 0, so we can exclude them. On the subset{

(y, n, r) ∈ Ui,x, 0 <

∥∥∥∥∥
N∑
k=2

nk

∥∥∥∥∥ < 1

}
,

the function h1 is smooth and on its image by φ1,

(2.27) gradx′

(
h1 ◦ (φ1|Ui,x)−1

)
= −

(
0,mi

2(x′), . . . ,mi
N (x′)

)
.

Again

(2.28) gradx′

(
h1 ◦ (φ1|Uj,x)−1

)
= −

(
mj

1(x′), . . . ,mj
N (x′)

)
.
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They are not equal, and this achieves the proof for this case by the same argument
as before.

Finally we consider the case where x′1, x
′
2 ∈ Q1,µ(x′) with x′1 = yi(x

′) and x′2 =
yj(x

′). We follow the same line as in the previous case, but now for the definition
of Uj,x, W1 is replaced by

W j
1 = {(y, n, r) ∈ V, r2 = 0}.

Again we can exclude the submanifolds of Vx images of(y, n, r) ∈ Uj,x,

∥∥∥∥∥∥
∑

k∈{1,...,N},k 6=2

nk

∥∥∥∥∥∥ = 1


and (y, n, r) ∈ Uj,x,

∑
k∈{1,...,N},k 6=2

nk = 0


by φ1 and work on

φ1

(y, n, r) ∈ Uj,x, 0 <

∥∥∥∥∥∥
∑

k∈{1,...,N},k 6=2

nk

∥∥∥∥∥∥ < 1




∩ φ1

({
(y, n, r) ∈ Ui,x, 0 <

∥∥∥∥∥
N∑
k=2

nk

∥∥∥∥∥ < 1

})
.

On this set h1 ◦ (φ1|Ui,x)−1 and h1 ◦ (φ1|Uj,x)−1 are smooth and

(2.29) gradx′

(
h1 ◦ (φ1|Ui,x)−1

)
= −

(
0,mi

2(x′), . . . ,mi
N (x′)

)
.

(2.30) gradx′

(
h1 ◦ (φ1|Uj,x)−1

)
= −

(
mj

1(x′), 0,mj
3(x′), . . . ,mj

N (x′)
)
.

They are not equal, and this achieves the proof. �

Corollary 2.3. Let p ∈ [1,∞) and X = (X1, . . . , XN ) a random variable with
values in MN , which has an absolutely continuous law. Then almost-surely µ(X(ω))
has a unique p-mean ep(X(ω)).

Corollary 2.4. Let p ∈ [1,∞) and (Xn)n≥1 a sequence of i.i.d. M -valued random
variables with absolutely continuous laws. Then the process of empirical p-means(

ep,n(ω) := ep
(
X1(ω), . . . , Xn(ω)

))
n≥1

is well-defined.

Remark 2.5. For p = 2 and M a circle, it has been proved in [7] that the assump-
tion can be weakened: the same result holds if the law has no atom.

We believe that it would be interesting to study the behaviour of the process
(ep,n)n≥1 in many situations. For instance when the law of X1 is uniform on a
compact symmetric space (even the case of the circle is highly non trivial) one
would observe a recurrent but irregular and slower and slower process. Again
on a compact symmetric space, when the law ν of X1 has a finite number of p-
means due to a finite group of symmetries, one would observe an almost stationary
behaviour, and at increasingly spaced times jumps between smaller and smaller
neighbourhoods of the p-means of ν.
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3. Finding the minimizers of some integrated functionals with
simulated annealing

Let M be a compact Riemannian manifold. For simplicity and without loss of
generality we assume that M has Lebesgue volume 1. On M consider a probability
law ν with a density with respect to Lebesgue measure, also denoted by ν. Assume
we are given a continuous function κ : M ×M → R+, where κ(θ, y) is interpreted
as some kind of cost for going from θ to y. Assume furthermore that for all y ∈M
the function θ 7→ κ(θ, y) is smooth and that its first and second derivative in θ are
uniformly bounded in (θ, y). Consider on M the functional

U : M → R+

θ 7→
∫
M

κ(θ, y)ν(dy)
(3.1)

Denote by M the set of minimizers of U . The aim of this section is to find a
continuous semimartingale which converges in law to M. Also we try to avoid
using the gradient of U , which in many cases is difficult or impossible to compute.

For this we will use a sequence (Pk)k≥0 of independent random variables with

law ν, a Poisson process Nt on N with intensity γ−1
t where

(3.2) γt = (1 + t)−1.

Define

(3.3) c(U) = 2 sup
θ,y∈M

(
inf

φ∈Cθ,y
e(φ)

)
,

Cθ,y denoting the set of continuous paths [0, 1]→M and for φ ∈ Cθ,y, the elevation
e(φ) being defined as

(3.4) e(φ) = sup
0≤t≤1

U(φ(t))− U(θ)− U(y) + inf
z∈M

U(z).

Let

(3.5) βt =
1

k
ln(1 + t),

the constant k satisfying k > c(U).
We assume that (Nt)t≥0 is independent of the sequence (Pk)k≥0. We let (Bt)t≥0

be a Brownian motion with values in Rr for some r ∈ N, independent of (Nt)t≥0

and (Pk)k≥0, and σ a smooth section of TM ⊗ (Rr)∗: for all θ ∈M , σ(θ) is a linear
map Rr → TθM . We assume that for all θ ∈ M , we have σ(θ)σ(θ)∗ = idTθM . We
fix θ0 ∈M and let Θt be the solution started at θ0 of the Itô equation

(3.6) dΘt = σ(Θt) dBt − βt gradΘt κ(·, Yt) dt with Yt = PNt .

Recall that if P (Θt) : Tθ0M → TΘtM is the parallel transport map along (Θt),
then

(3.7) dΘt = P (Θt)d

(∫ ·
0

P (Θs)
−1 ◦ dΘs

)
t

.

Also define Θ0
t the solution started at θ0 of the Itô equation

(3.8) dΘ0
t = σ(Θ0

t ) dBt − βt
(∫

M

gradΘ0
t
κ(·, y) ν(y)dy

)
dt.
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Note (3.8) rewrites as

(3.9) dΘ0
t = σ(Θ0

t ) dBt − βt gradΘ0
t
U dt,

so that the same equation with fixed β instead of βt has an invariant law with
density

(3.10) µβ(θ) =
1

Zβ
e−2βU(θ), with Zβ =

∫
M

e−2βU(θ′) dθ′.

The process Θ0
t is an inhomogeneous diffusion with generator

(3.11) L0
t (θ) =

1

2
∆(θ)− βt gradθ U

(here and in the sequel a vector field A is identified with the map f 7→ A(f) =
〈grad f,A〉 which acts on C1 functions on M). Denote by mt(θ) the density of Θt.

The process (Θt, Yt) is Markovian with generator Lt given by

Ltf(θ, y) =

(
1

2
∆(θ)− βt gradθ κ(·, y)

)
f(·, y) + γ−1

t

∫
M

(f(θ, z)− f(θ, y)) ν(dz)

= L1,tf(·, y)(θ) + L2,tf(θ, ·)(y).

(3.12)

We know that for all neighbourhood N of M,
∫
N µβ(θ) dθ converges to 1 as

β → ∞. So to prove that
∫
N mt(θ) dθ converges to 1 it is sufficient to prove the

following proposition:

Proposition 3.1. The entropy

(3.13) Jt :=

∫
M

ln

(
mt(θ)

µβt(θ)

)
mt(θ) dθ

converges to 0 as t→∞.

Proof. There will be 3 steps.
In the sequel we will denote by mt(θ, y) the joint density of (Θt, Yt), and mt(y|θ)

the density of Yt conditioned by Θt = θ.
Step 1: Let us prove that

(3.14)
dJt
dt
≤ 4‖κ‖∞
k(1 + t)

− c2(βt ∨ 1)−p exp (−c(U)βt) Jt + β2
t 32K2It

with

(3.15) It =

∫
M×M

ln

(
mt(y|θ)
ν(y)

)
mt(θ, y) dθdy

and c2, p,K > 0 defined below (in (3.20) and (3.22)).
We compute

dJt
dt

=

∫
M

dmt(θ)

dt
dθ −

∫
M

d lnµβt(θ)

dt
mt(θ) dθ +

∫
M

ln

(
mt(θ)

µβt(θ)

)
dmt(θ)

dt
dθ.

(3.16)

Since for all t mt(θ) is a probability density, the first term in the right vanishes. So
we get
(3.17)
dJt
dt

= 2β′t

∫
M

U(θ)(mt(θ)− µβt(θ)) dθ +

∫
M×M

Lt

[
ln

(
mt(θ)

µβt(θ)

)]
mt(θ, y) dθdy
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where the last term comes from Dynkin formula. For the first term in the right we
have using (3.5)

2β′t

∫
M

U(θ)(mt(θ)− µβt(θ)) dθ ≤ 4‖U‖∞|β′t| ≤
4‖κ‖∞
k(1 + t)

.(3.18)

Now by writing Lt = L0
t +Rt, we split the second term in the right of (3.17) into

∫
M×M

Lt

[
ln

(
mt(θ)

µβt(θ)

)]
mt(θ, y) dθdy

=

∫
M

L0
t

[
ln

(
mt(θ)

µβt(θ)

)]
mt(θ) dθ +

∫
M×M

Rt(θ, y)

[
ln

(
mt(θ)

µβt(θ)

)]
mt(θ, y) dθdy.

(3.19)

We have ∫
M

L0
t

[
ln

(
mt(θ)

µβt(θ)

)]
mt(θ) dθ

=

∫
M

L0
t

[(
mt(θ)

µβt(θ)

)]
µβt(θ) dθ −

1

2

∫
M

∥∥∥∥gradθ ln

(
mt(θ)

µβt(θ)

)∥∥∥∥2

mt(θ) dθ

= −2

∫
M

∥∥∥∥∥gradθ

√
mt(θ)

µβt(θ)

∥∥∥∥∥
2

µβt(θ) dθ

≤ −2c2(βt ∨ 1)−p exp (−c(U)βt) Jt

(3.20)

for some c2 > 0 and integer p > 0 by logarithmic Sobolev inequality ([15] and
[16], for more details see [20]). Note we used again Dynkin formula to prove the
vanishing of the first term in the right of the second line.

As for the second term in the right of (3.19) we have∫
M×M

Rt(θ, y)

[
ln

(
mt(θ)

µβt(θ)

)]
mt(θ, y) dθdy

=

∫
M×M

−βt
〈

gradθ ln

(
mt(θ)

µβt(θ)

)
, gradθ κ(·, y)−

∫
M

gradθ κ(·, z) ν(dz)

〉
mt(θ, y) dθ dy

= −βt
∫
M

〈
gradθ ln

(
mt(θ)

µβt(θ)

)
,

∫
M

gradθ κ(·, y) (mt(y|θ)− ν(y)) dy

〉
mt(θ) dθ

= 2βt

∫
M

√
µβt
mt

(θ)

〈
gradθ

√
mt

µβt
(θ), Rt(θ)

〉
mt(θ) dθ

with

Rt(θ) = −
∫
M

gradθ κ(·, y)(mt(y|θ)− ν(y)) dy.

So by Cauchy-Schwarz inequality∫
M×M

Rt(θ, y)

[
ln

(
mt(θ)

µβt(θ)

)]
mt(θ, y) dθdy

≤ 2βt

(∫
M

∥∥∥∥gradθ

√
mt

µβt
(θ)

∥∥∥∥2

µβt(θ) dθ

)1/2(∫
M

‖Rt(θ)‖2mt(θ) dθ

)1/2

≤ β2
t

∫
M

‖Rt(θ)‖2mt(θ) dθ +

∫
M

∥∥∥∥gradθ

√
mt

µβt
(θ)

∥∥∥∥2

µβt(θ) dθ.
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Summing with (3.20) and using (3.19) we get∫
M×M

Lt

[
ln

(
mt(θ)

µβt(θ)

)]
mt(θ, y)) dθdy

≤ β2
t

∫
M

‖Rt(θ)‖2mt(θ) dθ −
∫
M

∥∥∥∥gradθ

√
mt

µβt
(θ)

∥∥∥∥2

µβt(θ) dθ

≤ β2
t

∫
M

‖Rt(θ)‖2mt(θ) dθ − c2(βt ∨ 1)−p exp (−c(U)βt) Jt.

(3.21)

Defining

(3.22) K = sup
θ,y∈M

‖ gradθ κ(·, y)‖,

let us now bound

∫
M

‖Rt(θ)‖2mt(θ) dθ =

∫
M

∥∥∥∥∫
M

gradθ κ(·, y)(mt(y|θ)− ν(y)) dy

∥∥∥∥2

mt(θ) dθ

≤
∫
M

∥∥∥∥K ∫
M

|mt(y|θ)− ν(y)| dy
∥∥∥∥2

mt(θ) dθ

≤ 32K2

∫
M

(∫
M

ln

(
mt(y|θ)
ν(y)

)
mt(y|θ) dy

)
mt(θ) dθ

= 32K2It

(3.23)

where It is defined in (3.15).
We also used classical bound of total variation by entropy ([16]):∫

M

|mt(y|θ)− ν(y)| dy ≤ 4
√

2

(∫
M

ln

(
mt(y|θ)
ν(y)

)
mt(y|θ) dy

)1/2

.

At this stage, combining (3.17), (3.18), (3.21), (3.23) and (3.15), we proved (3.14).

Step 2 Let us prove that

(3.24)
dIt
dt
≤ 4‖κ‖∞β′t +K ′(βt ∨ 1)βt −

dJt
dt
− γ−1

t It

with

(3.25) K ′ = sup
θ,y∈M

|∆θκ(·, y)|+ 2K2.

As before

dIt
dt

=

∫
M×M

Lt

[
ln

(
mt(y|θ)
ν(y)

)]
mt(y, θ) dθdy

=

∫
M×M

(L2,t + L1,t)

[
ln

(
mt(y|θ)
ν(y)

)]
mt(y, θ) dθdy.

(3.26)
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We begin with the first term:∫
M×M

L2,t

[
ln

(
mt(y|θ)
ν(y)

)]
mt(θ, y) dθdy

= γ−1
t

∫
M×M

∫
M

[
ln

(
mt(z|θ)
ν(z)

)
− ln

(
mt(y|θ)
ν(y)

)]
ν(dz)mt(θ, y) dθdy

= γ−1
t

∫
M×M

ln

(
mt(y|θ)
ν(y)

)
(ν(y)−mt(y|θ))mt(θ) dθdy.

By Jensen inequality we have∫
M×M

ln

(
mt(y|θ)
ν(y)

)
ν(y)mt(θ) dydθ

=

∫
M

(∫
M

ln

(
mt(y|θ)
ν(y)

)
ν(y) dy

)
mt(θ) dθ

≤
∫
M

ln

(∫
M

mt(y|θ)
ν(y)

ν(y) dy

)
mt(θ) dθ

=

∫
M

ln(1)mt(θ) dθ = 0

Consequently ∫
M×M

L2,t

[
ln

(
mt(y|θ)
ν(y)

)]
mt(θ, y) dθdy

≤ −γ−1
t

∫
M×M

ln

(
mt(y|θ)
ν(y)

)
mt(y|θ)mt(θ) dθdy

which rewrites as

(3.27)

∫
M×M

L2,t

[
ln

(
mt(y|θ)
ν(y)

)]
mt(θ, y) dθdy ≤ −γ−1

t It.

Let us now consider the second term in the right of (3.26). Since

ln

(
mt(y|θ)
ν(y)

)
= ln

(
mt(θ|y)

mt(θ)

)
(recall that Yt has law ν) it rewrites as∫

M×M
L1,t

[
ln

(
mt(θ|y)

mt(θ)

)]
mt(θ, y) dθdy

=

∫
M×M

L1,t [ln(mt(θ|y))− ln(mt(θ))]mt(θ, y) dθdy.

(3.28)

But

∫
M×M

L1,t ln(mt(θ|y))mt(θ, y) dθdy

=
1

2

∫
M×M

∆ ln(mt(θ|y))mt(θ, y)dθdy − βt
∫
M×M

〈gradθ lnmt(·|y), gradθ κ(·, y)〉mt(θ, y) dθdy.

(3.29)
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We compute∫
M×M

∆ ln(mt(θ|y))mt(θ, y)dθdy∫
M

(∫
M

∆mt(θ|y) dθ

)
ν(y) dy −

∫
M×M

‖gradθ lnm(θ|y)‖2m(θ, y) dθdy

= −4

∫
M×M

∥∥∥gradθ
√
m(θ|y)

∥∥∥2

ν(y) dθdy

where we used the fact that the first term in the right of the first equality vanishes.
Consequently, ∫

M×M
L1,t ln(mt(θ|y))mt(y, θ) dθdy

= −2

∫
M×M

∥∥∥gradθ
√
mt(θ|y)

∥∥∥2

dθν(dy)

− βt
∫
M×M

〈gradθmt(·|y), gradθ κ(·, y)〉 ν(y) dθdy.

(3.30)

Let us bound the absolute value of the last term:∣∣∣∣−βt ∫
M×M

〈gradθmt(·|y), gradθ κ(·, y)〉 ν(y) dθdy

∣∣∣∣
=

∣∣∣∣2βt ∫
M×M

〈
gradθ

√
mt(θ|y), gradθ κ(θ, y)

〉√
mt(θ|y)ν(dy) dθdy

∣∣∣∣
≤ 2βtK

∫
M×M

∥∥∥gradθ
√
mt(θ|y)

∥∥∥√mt(θ|y)ν(y) dθdy

≤
∫
M×M

(
1

2
β2
tK

2mt(θ|y) + 2
∥∥∥gradθ

√
mt(θ|y)

∥∥∥2
)
ν(y) dθdy

=
1

2
β2
tK

2 + 2

∫
M×M

∥∥∥gradθ
√
mt(θ|y)

∥∥∥2

ν(y) dθdy.

(3.31)

This yields

(3.32)

∫
M×M

L1,t ln(mt(θ|y))mt(θ, y) dθdy ≤ 1

2
β2
tK

2

We also have to bound the last term in (3.28):

−L1,t ln(mt(θ)) = −L1,t ln

(
mt(θ)

µβt(θ)

)
− L1,t ln(µβt(θ)).(3.33)

From (3.17) we get

dJt
dt
≤ 4‖κ‖∞β′t +

∫
M×M

L1,t ln

(
mt(θ)

µβt(θ)

)
mt(θ, y) dθdy

or equivalently

(3.34) −
∫
M×M

L1,t ln

(
mt(θ)

µβt(θ)

)
mt(θ, y) dθdy ≤ −dJt

dt
+ 4‖κ‖∞β′t.
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For the second term we have

−L1,t ln(µβt(θ)) = 2βtL1,tU(θ)

= βt∆U(θ) + 2β2
t 〈dU, gradθ κ(·, y)〉

= βt

∫
M

∆θκ(θ, y)ν(dy) + 2β2
t

∫
M

‖gradθ κ(θ, y)‖2 ν(dy)

≤ K ′(βt ∨ 1)βt

(3.35)

with K ′ defined in (3.25).
Finally we obtain (3.24).

Step 3 We finally prove that

(3.36) lim
t→∞

Jt = 0.

With inequalities (3.24) and (3.14) we can use the end of the proof of theorem 1
in [21] to obtain that under assumptions (3.5) and (3.3) then (3.36) holds (notice
that in Section 4 we will prove this in a more general context). �

Theorem 3.2. Assume

(3.37) βt =
1

k
ln(1 + t), and γt = (1 + t)−1,

where k > c(U), (c(U) defined in (3.3)). Then for any neighbourhood N of M,

(3.38) lim
t→∞

P [Θt ∈ N ] = 1.

Proof. We use Proposition 3.1 together with the fact that

‖mt − µβt‖ ≤ 4
√

2Jt

and

lim
t→∞

µβt(N ) = 1.

�

4. Application to location of p-means in symmetric spaces

In this section we assume that M is a compact symmetric space endowed with the
canonical Riemannian metric of volume 1. Denote by ρ the Riemannian distance
in M , D its diameter. We fix p ≥ 1 and consider a probability measure ν on M .
We aim to find at least one element of Qp,ν by using the result of the previous
section. In particular if ν has a unique p-mean ep, then we will be able to construct
a process which converges in probability to ep as t→∞.

Denote by p(s, x, y) the heat kernel on M , and for s > 0 let νs be the probability
measure with density

(4.1) νs(y) =

∫
M

p(s, y, z)ν(dz),

and let

κs : M ×M → R+

(θ, y) 7→
∫
M

p(s, θ, z)ρp(z, y) dz,
(4.2)
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and

Us1,s2 : M → R+

θ 7→
∫
M

κs1(θ, y)νs2(y) dy.
(4.3)

Also let U = Hp,ν . Clearly νs1 and κs2 satisfy the assumption of the previous
section. Moreover, denoting by Ms1,s2 the set of minimizers of Us1,s2 then as
s1, s2 → 0 we have Ms1,s2 → Qp,ν is the sense that for any neighbourhood N of
Qp,ν , we have Ms1,s2 ⊂ N for all s1, s2 sufficiently small. This is due to the fact
that as s1, s2 → 0, Us1,s2(θ)→ U(θ) uniformly in θ.

Lemma 4.1. For all s1, s2 > 0 we have

(4.4) Us1,s2(θ) = U0,s1+s2(θ) =

∫
M

ρp(θ, y)νs1+s2(y) dy.

Proof. Fix θ, y ∈ M , let m be the middle point of a minimal geodesic from θ to y
and im the symmetry centered at m. We have∫

M

p(s1, θ, z)ρ
p(z, y) dz =

∫
M

p(s1, im(θ), im(z))ρp(im(z), im(y)) dz

=

∫
M

p(s1, im(θ), z′)ρp(z′, im(y)) dz′

=

∫
M

p(s1, y, z
′)ρp(z′, θ) dz′

=

∫
M

ρp(θ, z′)p(s1, z
′, y) dz′

where we first used the invariance by isometry of the heat kernel and then did the
change of variable z′ = im(z) in the integral and finally used the symmetry of the
heat kernel. To finish the proof we are left to use the convolution property of the
heat semigroup. �

Corollary 4.2. We have for all s1, s2 > 0, θ, y ∈M ,

(4.5) ‖ gradθ κs1(·, y)‖ ≤ pDp−1 =: K and ‖ gradθ Us1,s2‖ ≤ K.

With all these properties we would like to find s1(t) ↘ 0 and s2(t) ↘ 0 such
that the process Θt started at θ0 and solution to

(4.6) dΘt = σ(Θt) dBt − βt gradΘt κs1(t)(·, Y s2t ) dt

converges in law to ep, where by definition Y s2t = YTNt and Yn is the second
coordinate of a Poisson point process (Tn, Yn)n≥1 taking its values in [0,∞) ×M
with intensity γ(t)−1νs2(t)(y) dt dy, independent of (Bt). The process Nt is the
counting function of T1 < T2 < · · · . So Nt is a Poisson process on N with intensity
γ−1
t , and conditioned by (Ns)s≥0, Yn has law νs2(Tn), consequently Y s2t has law
νs2(TNt )

.
We also need to define T0 = 0 and to let Y0 be a random variable with law ν1,

independent of all the other random variables and processes.
This convergence in law is the object of the next theorem in which we will take

s1(t) = s2(t) = st = (ln(1 + t))−1.
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So define Θ0
t the solution started at θ0 of the Itô equation

(4.7) dΘ0
t = σ(Θ0

t ) dBt − βt
(∫

M

gradΘ0
t
κst(·, y) νst(y)dy

)
dt.

Notice that using Lemma 4.1, (4.7) rewrites as

(4.8) dΘ0
t = σ(Θ0

t ) dBt − βt gradΘ0
t
U2st dt,

where U2st := U0,2st , so that the same equation with fixed (β, s) instead of (βt, st)
has an invariant law with density

(4.9) µβ,s(θ) =
1

Zβ,s
e−2βU2s(θ), with Zβ,s =

∫
M

e−2βU2s(θ
′) dθ′.

The process Θ0
t is an inhomogeneous diffusion with generator

(4.10) L0
t (θ) =

1

2
∆(θ)− βt gradθ U2st .

Denote by mt(θ) the density of Θt.
Let Yt := Y st . The process (Θt, Yt) is Markovian with generator Lt given by

Ltf(θ, y) =

(
1

2
∆(θ)− βt gradθ κst(·, y)

)
f(·, y) + γ−1

t

∫
M

(f(θ, z)− f(θ, y)) νst(dz)

= L1,tf(·, y)(θ) + L2,tf(θ, ·)(y).

(4.11)

We know that for all neighbourhood N of Qp,ν ,
∫
N µβ,s(θ) dθ converges to 1 as

β →∞, uniformly in s sufficiently small (depending on N ). Again define

(4.12) Jt :=

∫
M

ln

(
mt(θ)

µβt,st(θ)

)
mt(θ) dθ.

Theorem 4.3. Assume

(4.13) βt =
1

k
ln(1 + t), γt = (1 + t)−1, s1(t) = s2(t) = s(t) = (ln(1 + t))−1.

where k > c(U), (c(U) defined in (3.3)). Then for any neighbourhood N of Qp,ν ,
the process Θt defined in equation (4.6) satisfies

(4.14) lim
t→∞

P [Θt ∈ N ] = 1.

Proof. We use Proposition 4.4 below together with the fact that

‖mt − µβt,st‖ ≤ 4
√

2Jt

and

lim
t→∞

µβt,st(N ) = 1.

�

Proposition 4.4. The entropy

(4.15) Jt =

∫
M

ln

(
mt(θ)

µβt,st(θ)

)
mt(θ) dθ

converges to 0 as t→∞.
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Proof. As for proposition 3.1, we split the proof into 3 steps
Step 1 Let us establish

dJt
dt
≤ C

(1 + t)k
(1 + ln(1 + t))

− c2(βt ∨ 1)−p exp (−c(U2st)βt) Jt + β2
t 32K2It

(4.16)

with c2,K defined in (4.26) and (4.5), and where

(4.17) It =

∫
M×M

ln

(
mt(y|θ)
νst(y)

)
mt(θ, y) dy,

mt(y|θ) being the density of Y s conditioned by Θt = θ.
Let us compute as before

(4.18)
dJt
dt

= −
∫
M

∂t ln(µβt,st(θ))mt(θ)) dθ +

∫
M

Lt

[
ln

(
mt(θ)

µβt,st(θ)

)]
mt(θ, y) dθdy.

For the first term in the right we have using (4.9)

∂t ln(µβt,st(θ))

= −2β′tU2st − 2βt

∫
M×M

2s′t∂s ln p(2st, θ, z)p(2st, θ, z)ρ
p(z, y) ν(dy)dz

+ 2β′t

∫
M

U2st(θ
′)µβt,st(θ

′) dθ′

+ 2βt

∫
M

(∫
M×M

2s′t∂s ln p(2st, θ
′, z)p(2st, θ

′, z)ρp(z, y) dzν(dy)

)
µβt,st(θ

′) dθ′.

(4.19)

It is known that there exists C0 > 0 such that ∀s ∈ (0, 1]

(4.20) |∂s ln p(s, θ, z)| ≤ C0

s2
,

see e.g. [14] and [22] where bounds of the type | gradθ ln p(s, θ, z)| ≤ C1

s
and

| grad2
θ ln p(s, θ, z)| ≤ C2

s2
are given. Here we use

|∂s ln p(s, θ, z)| = 1

2

∣∣∣∣∆θp(s, θ, z)

p(s, θ, z)

∣∣∣∣ ≤ dimM

2

(
| grad2

θ ln p(s, θ, z)|+ | gradθ ln p(s, θ, z)|2
)
.

So (4.19) and (4.20) yield

|∂t ln(µβt,st(θ))| ≤ Dp

(
4β′t +

C0βt|s′t|
s2
t

)
.(4.21)

which implies

|∂t ln(µβt,st(θ))| ≤ C
(
β′t +

βt|s′t|
s2
t

)
.(4.22)

with

C = Dp(4 + C0).(4.23)
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Evaluating with (4.13) and integrating on M we get

(4.24)

∣∣∣∣−∫
M

∂t ln(µβt,st(θ))mt(θ) dθ

∣∣∣∣ ≤ C

(1 + t)k
(1 + ln(1 + t)) .

Now we split the second term in the right of (4.18) into

∫
M

Lt

[
ln

(
mt(θ)

µβt,st(θ)

)]
mt(θ, y) dθdy

=

∫
M

L0
t

[
ln

(
mt(θ)

µβt,st(θ)

)]
mt(θ) dθ +

∫
M

Rt(θ, y)

[
ln

(
mt(θ)

µβt,st(θ)

)]
mt(θ, y) dθdy.

(4.25)

We have as for (3.20)

∫
M

L0
t

[
ln

(
mt(θ)

µβt,st(θ)

)]
mt(θ) dθ = −2

∫
M

∥∥∥∥∥gradθ

√
mt(θ)

µβt,st(θ)

∥∥∥∥∥
2

µβt,st(θ) dθ

≤ −2c2(βt ∨ 1)−p exp (−c(U2st)βt) Jt

(4.26)

for some c2 > 0 and integer p > 0 by logarithmic Sobolev inequality ([20]).
The computation for the second term is similar to the one after (3.20) and we

get ∫
M

Rt(θ, y)

[
ln

(
mt(θ)

µβt,st(θ)

)]
mt(θ, y) dθdy

= 2βt

∫
M

√
µβt,st
mt

(θ)

〈
d

√
mt

µβt,st
(θ), Rt(θ)

〉
mt(θ) dθ

with

Rt(θ) = −
∫
M

gradθ κst(·, y)(mt(y|θ)− νst(y)) dy,

and again∫
M

Rt(θ, y)

[
ln

(
mt(θ)

µβt,st(θ)

)]
mt(θ) dθ

≤ β2
t

∫
M

‖Rt(θ)‖2mt(θ) dθ +

∫
M

∥∥∥∥gradθ

√
mt

µβt,st
(θ)

∥∥∥∥2

µβt,st(θ) dθ.

Summing with (4.26) we get∫
M×M

Lt

[
ln

(
mt(θ)

µβt,st(θ)

)]
mt(θ, y)) dθdy

≤ β2
t

∫
M

‖Rt(θ)‖2mt(θ) dθ − c2(βt ∨ 1)−p exp (−c(U2st)βt) Jt.

(4.27)

Here again ∫
M

‖Rt(θ)‖2mt(θ) dθ ≤ 32K2It

where It is defined in (4.17). At this stage we proved (4.16).
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Step 2 Let us establish

dIt
dt
≤ C0

(1 + t)
+
K ′

k2
(ln(1 + t) ∨ k)(ln(1 + t))3 − dJt

dt
− (1 + t)It(4.28)

for some K ′ defined below.
As before

dIt
dt

= −
∫
M×M

∂t ln(νst(y))mt(θ, y) dθdy

+

∫
M×M

Lt

[
ln

(
mt(y|θ)
νst(y)

)]
mt(θ, y) dθdy

(4.29)

and ∣∣∣∣∫
M×M

∂t ln(νst(y))mt(θ, y) dθdy

∣∣∣∣
=

∣∣∣∣∫
M×M

∂t

(∫
M

p(st, y, z)ν(dz)

)
mt(θ, y)

νst(y)
dθdy

∣∣∣∣
≤
∫
M×M

(∫
M

|∂t ln p(st, y, z)| p(st, y, z)ν(dz)

)
mt(θ, y)

νst(y)
dθdy

≤ |s
′
t|C0

s2
t

∫
M×M

(∫
M

p(st, y, z)ν(dz)

)
mt(θ, y)

νst(y)
dθdy

=
|s′t|C0

s2
t

∫
M×M

νst(y)
mt(θ, y)

νst(y)
dθdy

=
|s′t|C0

s2
t

=
C0

1 + t

(4.30)

where we used (4.20) for the last inequality. Now∫
M×M

Lt

[
ln

(
mt(y|θ)
νst(y)

)]
mt(θ, y) dθdy

=

∫
M×M

(L2,t + L1,t)

[
ln

(
mt(y|θ)
νst(y)

)]
mt(θ, y) dθdy.

(4.31)

We begin with the first term:∫
M×M

L2,t

[
ln

(
mt(y|θ)
νst(y)

)]
mt(θ, y) dθdy

= γ−1
t

∫
M×M

ln

(
mt(y|θ)
νst(y)

)
(νst(y)−mt(y|θ))mt(θ) dθ

and estimate it as for (3.27):

(4.32)

∫
M×M

L2,t

[
ln

(
mt(y|θ)
νst(y)

)]
mt(θ, y) dθdy ≤ −γ−1

t It.

For the second term in the right of (4.29) we need to introduce the density ft(y) of
Y st . Since

ln

(
mt(y|θ)
νst(y)

)
= ln

(
mt(θ|y)

mt(θ)

)
+ ln

(
ft(y)

νst(y)

)
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and the last term does not depend on θ, it rewrites as∫
M×M

L1,t

[
ln

(
mt(θ|y)

mt(θ)

)]
mt(θ, y) dθdy

=

∫
M×M

L1,t [ln(mt(θ|y))− ln(mt(θ))]mt(θ, y) dθdy.

(4.33)

Similarly to (3.29)

∫
M×M

L1,t ln(mt(θ|y))mt(θ, y) dθdy

=
1

2

∫
M×M

∆ ln(mt(θ|y))mt(θ, y) dθdy − βt
∫
M×M

〈gradθ lnmt(·|y), gradθ κst(·, y)〉mt(θ, y) dθdy

= −2

∫
M×M

∥∥∥gradθ
√
mt(θ|y)

∥∥∥2

dθft(y)dy

− βt
∫
M×M

〈gradθmt(·|y), gradθ κst(·, y)〉 ft(y) dθdy.

(4.34)

For the absolute value of the last term:∣∣∣∣−βt ∫
M×M

〈gradθmt(·|y), gradθ κ(·, y)〉 ft(y) dθdy

∣∣∣∣
≤ 1

2
β2
tK

2 + 2

∫
M×M

∥∥∥gradθ
√
mt(θ|y)

∥∥∥2

ft(y) dθdy.

(4.35)

We get as in (3.32)

(4.36)

∫
M×M

L1,t ln(mt(θ|y))mt(θ, y) dθdy ≤ 1

2
β2
tK

2

Then we bound the last term in (4.33):

−L1,t ln(mt(θ)) = −L1,t ln

(
mt(θ)

µβt,st(θ)

)
− L1,t ln(µβt,st(θ)).(4.37)

We already know by (4.18) and (4.24) that
(4.38)

−
∫
M×M

L1,t ln

(
mt(θ)

µβt,st(θ)

)
mt(θ, y) dθdy ≤ −dJt

dt
+

C

(1 + t)k
(1 + ln(1 + t)) .

For the second term we have

L1,t ln(µβt,st(θ)) = −2βtL1,tU2st(θ)

= −βt∆U2st(θ) + 2β2
t 〈dU2st , gradθ κst(·, y)〉

≤ K ′(βt ∨ 1)βts
−2
t

(4.39)

for some K ′ > 0, where we used

∆U2s =

∫
M

(
∆θ ln p(2s, θ, y) + ‖ gradθ ln p(2s, θ, y)‖2

)
p(2s, θ, y)ρp(y, z) ν(dz)

and standard bounds for the first and second derivatives of the heat kernel ([14]
and [22] and the explanation after (4.20)).
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Finally we obtain (4.28). This together with (4.16) yields:
(4.40)
dJt
dt
≤ C

(1 + t)k
(1 + ln(1 + t))− c2(βt ∨ 1)−p exp (−c(U2st)βt) Jt + 2β2

t 32K2It

which rewrites as

dIt
dt
≤ k1(ln(1 + t))4 − dJt

dt
− (1 + t)It(4.41)

and

(4.42)
dJt
dt
≤ c1

(
ln(1 + t)

1 + t
+ (ln(1 + t))2It

)
− c2(ln(1 + t))−p(1 + t)−

c(U2st
)

k Jt

for some constants c1, k1 > 0, as soon as t ≥ 2.

Step 3 Let us finally prove that

(4.43) lim
t→∞

Jt = 0.

We can use a similar computation to the end of the proof of theorem 1 in [21] to
obtain it under assumptions (4.13) and (3.3). However we will do the calculation
for completeness, and because there are some small differences. Recall Us → U
uniformly as s→ 0. Moreover 2st → 0 as t→∞, so we get

lim sup
t→∞

c(U2st) ≤ c(U).

As a consequence, for t sufficiently large we have

(4.44)
c(U2st)

k
≤ 1− ε

for some ε > 0. Let

(4.45) `t =
c1(ln(1 + t))2

1 + t+ c1(ln(1 + t))2 − c2(ln(1 + t))−p(1 + t)−(1−ε)

where ε > 0 is defined in (4.44). It is easily checked that for t sufficiently large `t
is positive and decreasing, and that it converges to 0 as t→∞. Define

(4.46) Kt = Jt + `tIt.

We will prove that Kt → 0 as t→∞ and from this we will get (4.43).
for t sufficiently large,

(4.47)
dKt

dt
≤ dJt

dt
+ `t

dIt
dt

and this yields with (4.41) and (4.42)

dKt

dt
≤ (1− `t)c1

ln(1 + t)

1 + t
+ c1(ln(1 + t))2It

− `tc1(ln(1 + t))2It − (1− `t)c2(ln(1 + t))−p(1 + t)−
c(U2st

)

k Jt

+ `tk1(ln(1 + t))4 − (1 + t)`tIt.

Replacing c1(ln(1 + t))2 at the end of the first line by

`t

(
1 + t+ c1(ln(1 + t))2 − c2(ln(1 + t))−p(1 + t)−(1−ε)

)
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by the help of (4.45) we obtain

dKt

dt
≤ c1

ln(1 + t)

1 + t
− c2`t(ln(1 + t))−p(1 + t)−

c(U2st
)

k It

− (1− `t)c2(ln(1 + t))−p(1 + t)−
c(U2st

)

k Jt + `tk1(ln(1 + t))4

and this yields using −(1 + t)−
c(U2st

)

k ≤ −(1 + t)−(1−ε):

(4.48)
dKt

dt
≤ At −BtKt

with

(4.49) At = c1
ln(1 + t)

1 + t
+ `tk1 ln(1 + t))4

and

(4.50) Bt = (1− `t)c2(ln(1 + t))−p(1 + t)−(1−ε).

A sufficient condition for Kt to converge to 0 as t→∞ is

(4.51)

∫ ∞
·

Bt dt = +∞

and

(4.52) lim
t→∞

At
Bt

= 0.

Condition (4.51) clearly is realized. As for condition (4.52) we easily see that

c1
ln(1+t)

1+t

(1− `t)c2(ln(1 + t))−p(1 + t)−(1−ε) → 0

and also
`tk1(ln(1 + t))4

(1− `t)c2(ln(1 + t))−p(1 + t)−(1−ε) → 0

from the fact that

`t ≤
c(ln(1 + t))2

1 + t
for some c > 0. �
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Institut de Mathématique de Toulouse

CNRS: UMR 5219
118, route de Narbonne

F–31062 Toulouse Cedex 9, France

E-mail address: laurent.miclo@math.univ-toulouse.fr


