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We consider stochastic chains on abstract measurable spaces whose evolution at any
given time depends on the present position and on the occupation measure created by
the path up to this instant. This generalization of reinforced random walks enables
us to impose conditions ensuring L

p, p � 1, or a.s. convergence of the empirical
measures towards some fixed point of a probability-valued dynamical system. We
present two sets of hypotheses based on weak contraction properties, leading to two
different proofs, but in both situations the rates of convergence are optimal in the
examined level of generality.

Keywords: reinforced walk; weak contraction; L
p-rate of convergence;

a.s. convergence; Poisson equation; resolvent estimate

1. Introduction

In a recent article (Del Moral & Miclo 2002), we have considered stochastic chains
whose time evolution depends on the empirical measure created by the past trajectory
and also more specifically on the last state visited. Our objective in introducing
such algorithms was to ‘numerically’ approximate fixed points of certain dynamical
systems taking values in spaces of probability measures. We refer the reader to this
former paper for more information about our initial motivations and for examples
coming from genetical algorithms or nonlinear filtering theory. Our goal here is to
improve qualitatively and quantitatively our previous results. In particular, we will
prove almost-sure (a.s.) asymptotic behaviours.

(a) The framework

As we will work in an abstract setting, let us introduce some general notation in
order to describe the considered model. On a measurable space (E, E), we consider
B(E), P(E) and K(E), the set of numerical bounded and measurable functions, of
probability measures and of probability kernels, respectively. We recall that the latter
are mappings K from E × E to [0, 1] verifying the following two properties:

(i) for any x ∈ E, E � A �→ K(x, A) belongs to P(E);

(ii) for any A ∈ E , E � x �→ K(x, A) belongs to B(E).
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326 P. Del Moral and L. Miclo

As usual, such an element K ∈ K(E) can be seen as a right-acting (respectively,
left-acting) mapping on B(E) (respectively, P(E)) by

∀f ∈ B(E), ∀x ∈ E, K[f ](x) :=
∫

f(y)K(x,dy)

(respectively, ∀p ∈ B(E), ∀A ∈ E , pK[A] :=
∫

K(x, A)p(dx)).
Our main object of interest is a mapping K : P(E) � m �→ Km ∈ K(E) and

our original motivation in Del Moral & Miclo (2002) was to find a Π ∈ P(E) such
that ΠKΠ = Π. More precisely, our objective was to derive a new algorithm which
permits us to find such an invariant probability Π, or at least to give conditions on K

ensuring the existence and uniqueness of this solution Π and next the convergence
in some sense of our algorithm. Heuristically, it was based on a stochastic chain
X := (Xn)n�0 taking values in E, defined in some probability space (Ω, T , P) and
whose evolution is given by the conditional probabilities

∀n ∈ N
∗, ∀A ∈ E , P[Xn ∈ A | X0, X1, . . . , Xn−1] = KSn−1(Xn−1, A) (1.1)

(P-a.s.), where, for all n ∈ N, we have defined

Sn =
1

n + 1

∑
0�i�n

δXi ∈ P(E).

Indeed, there is no problem in constructing such a chain, as soon as, for all n ∈ N

and all A ∈ E , the mapping

En+1 � (x0, . . . , xn) �→ K(1/(n+1))
∑

0�i�n δxi
(xn, A) (1.2)

is E⊗(n+1)-measurable and then if the law of X0 is given, the law of X is uniquely
determined (on (EN, E⊗N)). So implicitly, we will always assume this measurability
property of K, to be sure to have at our disposal a Markov chain (Xn, Sn)n∈N whose
evolution is defined by (1.1). But clearly, much stronger assumptions on K are needed
to ensure that our algorithm is working, namely that Sn converges in probability to
the expected Π for n large.

In order to make this convergence precise, let us call a subset F ⊂ B(E) a test-
functions collection if for all f ∈ F its supremum norm satisfies ‖f‖∞ � 1 and if dF
is a complete metric on P(E), where by definition

∀p1, p2,∈ P(E), dF (p1, p2) = sup
f∈F

|p1[f ] − p2[f ]|.

The first example of a test-functions collection one thinks about is the largest
possible choice

F = {f ∈ B(E) : ‖f‖∞ � 1}.

In this case the distance dF is actually complete, since it is given by the total variation
norm.

One can also recover the latter norm by considering, for instance,

F = {f ∈ Cb(E) : ‖f‖∞ � 1},

Proc. R. Soc. Lond. A (2004)
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Occupational self-interactions 327

where Cb(E) is the set of bounded continuous functions, if E is a Polish topological
space (endowed with its Borelian σ-field E). But, in this context, one can also end
up with a distance dF metrizing the weak convergence, by considering for instance

F = {fn/(Mn‖fn‖∞) : n ∈ N},

where (Mn)n∈N is a sequence of real numbers larger than unity and diverging to +∞
and (fn)n∈N is a weak convergence determining sequence of Cb(E) \ {0} (recall that
this means that a sequence of probability measures (pl)l∈N is weakly convergent if
and only if for all fixed n ∈ N, (pl[fn])l∈N is Cauchy in R).

If F is a test-functions collection, we will always endow it with the σ-algebra E(F)
naturally generated by the mappings

F � f �→ p[f ] ∈ R

for all p ∈ P(E).
In a very reciprocal way, we endow P(E) with the weak topology associated to its

duality with F (i.e. a basis of neighbourhoods of a probability measure p ∈ P(E)
is given by the sets {q ∈ P(E) : ∀0 � i � n, |q(fi) − p(fi)| < ε}, where n ∈ N,
f1, . . . , fn ∈ F and ε > 0).

From now on, we assume that we are given a test-functions collection F and we
will impose convenient regularity conditions on K with respect to F to obtain the
expected convergence in probability (which is equivalent to the convergence in prob-
ability of Sn[f ] to Π[f ], for every fixed f ∈ F) or stronger asymptotic behaviours.

(b) Plan of the paper

In next section we will give a simple condition ensuring an L
2 convergence by a

direct proof. This method could be extended to obtain more general L
p, p � 1, or

a.s. convergence in the same way as it is done in § 4, but keeping the arguments
of this section.† Nevertheless, we prefer to present a little more involved approach,
which enables us to extend the hypotheses, at least if one has at his disposal more a
priori information on K and its associated invariant probabilities. So, in § 3, we deal
with some prerequisites on resolvent solutions of Poisson’s equation and in § 4 we
develop a second proof to obtain the required convergences. These results improve
the ones derived in our previous article (Del Moral & Miclo 2002), in particular, at
the level of obtained rates of convergence (even in the restrictive L

2 sense, which was
the only convergence treated in our previous article). A theoretical example is next
considered in order to illustrate the advantage of our second set of hypotheses and
other features of our conditions. We add two appendices, one concerning the discrete
version of a traditional differential inequality which is used throughout the paper,
and the other discussing further relations between our hypotheses.

2. A direct L
2-approach

Our objective here is to obtain by a simple proof L
2 bounds of convergence for the

algorithm presented in § 1 under appropriate conditions on K. More precisely, we will
assume in this section that the following hypothesis is fulfilled.

† For more details, contact the authors to obtain the corresponding LATEX file.
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328 P. Del Moral and L. Miclo

Hypothesis 2.1. For any (f, m) ∈ F × P(E) there exist two non-negative mea-
sures µf,m and νf,m on the measurable space (F , E(F)) satisfying

λ1 := sup{µf,m(1) : f ∈ F , m ∈ P(E)} < 1,

λ2 := sup{νf,m(1) : f ∈ F , m ∈ P(E)} < 1 − λ1,

and such that for any (f, m) ∈ F ×P(E) we are assured of the following inequalities
for all p1, p2 ∈ P(E),

|p1Km[f ] − p2Km[f ]| �
∫

|p1[h] − p2[h]|µf,m(dh),

|mKp1 [f ] − mKp2 [f ]| �
∫

|p1[h] − p2[h]|νf,p1(dh).

We note that, to get the latter upper bound, it is sufficient to consider Dirac
masses for m and this second condition can equivalently be written as

∀f ∈ F , ∀p1, p2 ∈ P(E), ‖(Kp1 − Kp2)[f ]‖∞ �
∫

|p1[h] − p2[h]|νf,p1(dh).

The interpretation of the above inequalities is quite obvious, ν serves to quantify a
contraction assumption on K as a mapping from P(E) to K(E), while µ is related
to mixing properties of its kernels Km, for m ∈ P(E).

We also remark that under some supplementary mild conditions, the measurability
of the mappings presented in (1.2) is a consequence of hypothesis 2.1. For instance,
this is the case if we assume that F is at most denumerable, that E is the σ-field
generated by F and that the ‖ · ‖∞-closure of the vector space generated by F is an
algebra. To show this affirmation, we introduce a metric d on E by

∀x, y ∈ E, d(x, y) := dF (δx, δy) = sup
f∈F

|f(x) − f(y)|.

Note that then E is nothing but the corresponding Borelian σ-field. With respect to
the induced product topology and due to the above inequalities, it appears easily
that the mappings defined in (1.2) are continuous, if we replace A by a function
f ∈ F . A monotonous class theorem then enables us to conclude.

Our main result in this section can now be stated as follows.

Theorem 2.2. Under hypothesis 2.1 on F and K, there exists a unique fixed point
Π ∈ P(E) for the equation Π = ΠKΠ and the occupation measures Sn constructed
in § 1 weakly converge to Π in probability for large n. Furthermore, if we define
Λ = λ2/(1 − λ1) ∈ [0, 1), we have three different types of upper bounds for the
L2-mean-error decays: there exists a constant c � 0 (depending only on Λ) such
that, for any f ∈ F and any n larger than two,

Λ < 1
2 ⇒ E((Sn[f ] − Π[f ])2) � c

n
,

Λ = 1
2 ⇒ E((Sn[f ] − Π[f ])2) � c ln(n)

n
,

Λ > 1
2 ⇒ E((Sn[f ] − Π[f ])2) � c

n2(1−Λ) .

Proc. R. Soc. Lond. A (2004)
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Occupational self-interactions 329

As is shown by an example given in Del Moral & Miclo (2002), these rates can be
optimal in certain situations.

The proof of this result will consist of two steps, corresponding to its first and last
assertions, one deterministic and the other stochastic.

(a) Existence and uniqueness of Π

We begin by noting that, for any m ∈ P(E), there exists a unique invariant
probability measure 	(m) relative to the kernel Km. Indeed, taking suprema in the
first inequality of hypothesis 2.1, we obtain

∀p1, p2 ∈ P(E), dF (p1Km, p2Km) � λ1dF (p1, p2), (2.1)

so that a usual fixed point theorem gives us the expected result.
In the same way, to show the uniqueness and existence of Π, it is sufficient to

verify that

∀m1, m2 ∈ P(E), dF (	(m1), 	(m2)) � λ1

1 − λ2
dF (m1, m2), (2.2)

since there then exists a unique fixed point Π such that Π = 	(Π) and this equation
is in fact easily seen to be equivalent to Π = ΠKΠ .

To prove the above bound, we come back to (2.1), which shows by iteration that,
for all n ∈ N and all m, p1, p2 ∈ P(E),

dF (p1K
n
m, p2K

n
m) � λn

1dF (p1, p2)

(the convention K0
m = Id will always be enforced), so that, for all n ∈ N and all

m1, m2 ∈ P(E),

dF (	(m1), 	(m2)) � dF (	(m1), 	(m1)Kn
m2

) + dF (	(m1)Kn
m2

, 	(m2))

�
∑

0�k�n−1

dF (	(m1)Kn−k
m1

Kk
m2

, 	(m1)Kn−k−1
m1

Kk+1
m2

)

+ dF (	(m1)Kn
m2

, 	(m2))

=
∑

0�k�n−1

dF (	(m1)Km1K
k
m2

, 	(m1)Km2K
k
m2

)

+ dF (	(m1)Kn
m2

, 	(m2)Kn
m2

)

�
∑

0�k�n−1

λk
1dF (	(m1)Km1 , 	(m1)Km2)

+ λn
1dF (	(m1), 	(m2))

�
∑

0�k�n−1

λk
1λ2dF (m1, m2) + λn

1dF (	(m1), 	(m2)),

where we have used the relation

∀m, p1, p2 ∈ P(E), dF (mKp1 , mKp2) � λ2dF (p1, p2),

which is deduced from the second inequality of hypothesis 2.1, also by considering
suprema over F . Now letting n tend to infinity, we get (2.2).

Proc. R. Soc. Lond. A (2004)
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330 P. Del Moral and L. Miclo

(b) L
2-estimates of convergence

Our proof of the bounds presented in theorem 2.2 is based on a recurrence relation
between some quantities, which we now introduce. For all n ∈ N and f, g ∈ F , we
note

In(f) := (n + 1)2E[(Sn[f ] − Π[f ])2],
Jn(f, g) := nE[(Sn−1[f ] − Π[f ])(g(Xn) − Π[g])]

(the latter term is equal to zero for n = 0), and we consider next

In := sup
f∈F

In(f),

Jn := sup
f,g∈F

|Jn(f, g)|.

Our estimates will be deduced from the following system.

Lemma 2.3. For all n ∈ N, we have

In+1 �
(

1 +
2λ2

n + 1

)
In + 2λ1Jn + 4(1 + λ1),

Jn+1 � λ2

n + 1
In + λ1Jn + 4λ1.

Proof . Let us start with a given function f ∈ F . For any n ∈ N, we have

In+1(f) = E

[( ∑
0�i�n+1

{f(Xi) − Π(f)}
)2]

= In(f) + 2Jn+1(f, f) + E[(f(Xn+1) − Π(f))2]
� In(f) + 2Jn+1(f, f) + 4.

But we also have for any n ∈ N and f, g ∈ F , using (1.1),

Jn+1(f, g) = (n + 1)E[(Sn[f ] − Π[f ])(KSn [g](Xn) − Π[g])]
= (n + 1)E[(Sn[f ] − Π[f ])(KSn [g](Xn) − KΠ [g](Xn))]

+ (n + 1)E[(Sn[f ] − Π[f ])(KΠ [g](Xn) − Π[g])].

We evaluate each of the last two terms separately. For the first term, its absolute
value is bounded above by

(n + 1)E
[
|Sn[f ] − Π[f ]|

∫
|Sn[h] − Π[h]|νg,Π(dh)

]

= (n + 1)
∫

E[|Sn[f ] − Π[f ]||Sn[h] − Π[h]|]νg,Π(dh)

� 1
n + 1

∫ √
In(f)In(h)νg,Π(dh)

� λ2
In

n + 1
.

Proc. R. Soc. Lond. A (2004)
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Occupational self-interactions 331

To treat the second term, note that the first bound of hypothesis 2.1 can be rewritten
as

∀(f, m) ∈ F × P(E), |qKm[f ]| �
∫

|q[h]|µf,m(dh),

where q is an arbitrary measure on (E, E) such that q(1) = 0.
Applying this to m = Π and to the measure qn defined by

∀A ∈ E , qn(A) = (n + 1)E[(Sn[f ] − Π[f ])(1A − Π(A))],

clearly verifying qn(1) = 0, we obtain

(n + 1)|E[(Sn[f ] − Π[f ])(KΠ [g](Xn) − Π[g])]|
= |qn[KΠ(g)]|

�
∫

|qn(h)|µg,Π(dh)

= (n + 1)
∫

|E[(Sn[f ] − Π[f ])(h(Xn) − Π[h])]|µg,Π(dh)

=
∫

|E[{n(Sn−1[f ] − Π[f ]) + f(Xn) − Π[f ]}(h(Xn) − Π[h])]|µg,Π(dh)

�
∫

4 + |Jn(f, h)|µg,Π(dh)

� λ1(4 + Jn)

and the above lemma follows at once. �
It seems that the simplest way to study the asymptotic behaviour of this sequence

(In, Jn)n∈N is to introduce

∀n ∈ N, Ln := In +
2λ1

1 − λ1
Jn,

because we are assured of

Ln+1 �
(

1 +
2λ2

n + 1

)
In + 2λ1Jn + 4(1 + λ1)

+
2λ1λ2

(1 − λ1)(n + 1)
In +

2λ2
1

1 − λ1
Jn +

4λ2
1

1 − λ1

=
(

1 +
2Λ

n + 1

)
In +

2λ1

1 − λ1
Jn +

4
1 − λ1

�
(

1 +
2Λ

n + 1

)
Ln +

4
1 − λ1

.

We are therefore naturally led to the first technical lemma of Appendix A (with
α = 2Λ and β = 0) to see there exists a constant c > 0 such that, for n large enough,
we have

Λ < 1
2 ⇒ Ln � cn,

Λ = 1
2 ⇒ Ln � cn ln(n),

Λ > 1
2 ⇒ Ln � cn2Λ.
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In particular, these bounds are also valid for In, which is just the result announced
in theorem 2.2, once we take into account the included factor (n + 1)2.

3. A resolvent method

In the classical situation of a mixing probability kernel, the simplest way to derive
the law of large numbers, or the central limit theorem, for the occupation measure,
is certainly to use a resolvent method. Our objective here is to adapt it to our setting
and to see what we obtain as an ersatz.

To do so we need to modify our set of hypotheses, and the first condition we impose
is as follows.

Hypothesis 3.1. There exist L0 � 0, n0 ∈ N
∗ and 0 � λ < 1 such that, for all

p, m1, m2 ∈ P(E), we are assured of

dF (m1Kp, m2Kp) � L0dF (m1, m2),
dF (m1K

n0
p , m2K

n0
p ) � λdF (m1, m2).

The first bound will be necessary to get round the lack of assumed stability of F
by the kernels of K. As in § 2 a, it readily follows from the second bound that, for all
p ∈ P(E), there exists a unique invariant probability 	(p) for the kernel Kn0

p . This
measure 	(p) is also invariant for Kp. Since we have

(	(p)Kp)Kn0
p = (	(p)Kn0

p )Kp = 	(p)Kp,

	(p)Kp is an invariant probability for Kn0
p , and thus by uniqueness 	(p)Kp = 	(p).

Clearly, 	(p) is indeed the unique invariant probability for Kp.
In order to present our second hypothesis, let us leave P(E) and denote by M0(E)

the vector space of signed bounded measures m on (E, E) with zero total mass. We
extend the distance dF by considering on M0(E) the norm ‖ · ‖F defined by

∀m ∈ M0(E), ‖m‖F := sup
f∈F

|m[f ]|.

We will also have resort to the total variation norm, which corresponds to the special
case F = {f ∈ B(E) : ‖f‖∞ � 1},

∀m ∈ M0(E), ‖m‖tv := sup
f∈B(E),
‖f‖∞�1

|m[f ]|.

We will furthermore assume that the following hypothesis holds.

Hypothesis 3.2. There exist two constants L1, L2 � 0 such that, for all m ∈
M0(E) and all p1, p2 ∈ P(E),

‖m(Kp1 − Kp2)‖F � L1‖m‖F‖p1 − p2‖tv,

‖	(p1) − 	(p2)‖F � L2‖p1 − p2‖tv.

As we will see in Appendix B, if we ask for the first bound to be verified for all
m ∈ M, the set of all signed bounded measures on (E, E) (on which ‖·‖F is extended
in the obvious way), then hypothesis 3.1 implies the second bound. Anyway, the latter
inequality will be a consequence of a new condition (hypothesis 4.1) we will impose
in § 4.

Proc. R. Soc. Lond. A (2004)
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Occupational self-interactions 333

We still need a supplementary notation: if (Xn, Sn)n∈N is a Markov chain on
E × P(E) constructed as in § 1, we denote for all n ∈ N,

S�
n :=

1
n + 1

∑
0�i�n

	(Si).

Now our main result from this section can be stated as the following.

Proposition 3.3. Under the hypotheses 3.1 and 3.2, for all p � 1, there exists a
constant Cp � 0 such that, for all n ∈ N

∗,

sup
f∈F

E[|Sn[f ] − S�
n [f ]|p]1/p � Cp√

n
.

In the traditional case of just one mixing probability kernel, K, verifying the second
condition of hypothesis 3.1, we have that, for all n ∈ N, S�

n = 	, the unique invariant
probability of K and the above result is a well-known bound for the Markovian law
of large numbers.

As announced, the proof will be based on resolvent estimates. If a couple (f, p) ∈
F × P(E) is given, the associated resolvent Ff,p is the function defined by

∀x ∈ E, Ff,p(x) =
∑
n∈N

(Kn
p [f ](x) − 	(p)[f ]).

To be convinced that this series is in fact absolutely convergent, we consider the term
associated in the sum to a generic n ∈ N, which we write n = kn0 + l, with k ∈ N

and 0 � l < n0. We then have

|Kn
p [f ](x) − 	(p)[f ]| = |(δx − 	(p))Kkn0+l

p [f ]|
� ‖(δx − 	(p))Kl+kn0

p ‖F

� λk‖(δx − 	(p))Kl
p‖F

� 2λk

(one will have noticed that the second condition of hypothesis 3.1 can be rewritten
as ‖mKn0

p ‖F � λ‖m‖F , for all m ∈ M0(E) and all p ∈ P(E)). This upper bound
enables us to see that Ff,p ∈ B(E) and more precisely that ‖Ff,p‖∞ � 2n0/(1 − λ).
Note that we have not yet used the first condition of hypothesis 3.1, but it will be
useful to deduce the main estimate needed to prove proposition 3.3, and that we now
set forth.

Lemma 3.4. Under hypothesis 3.1 and hypothesis 3.2, we have that, for all f ∈ F
and all p1, p2 ∈ P(E),

‖Ff,p1 − Ff,p2‖∞ �
{

2
(

Ln0
0 − 1

(L0 − 1)(1 − λ)

)2

L1 +
Ln0

0 − 1
(L0 − 1)(1 − λ)

L2

}
‖p1 − p2‖tv

(as usual, if L0 = 1, the fractions (Ln0
0 − 1)/(L0 − 1) should be understood as n0).
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Proof . Let us first admit that, for all f ∈ F , for all p1, p2 ∈ P(E) and for all
x ∈ E, we are assured of the equality

Ff,p1(x) − Ff,p2(x) + 	(p1)[Ff,p2 ]

=
∑

n,q∈N

(δx − 	(p1))Kn
p1

(Kp1 − Kp2)K
q
p2

[f − 	(p2)[f ]]. (3.1)

We then consider two generical natural integers, n, q, which we write n = kn0+ l and
q = rn0 + s, with k, r ∈ N and 0 � l, s < n0. We then have, for the corresponding
term,

|(δx − 	(p1))Kn
p1

(Kp1 − Kp2)K
q
p2

[f − 	(p2)[f ]]|
= |(δx − 	(p1))Kn

p1
(Kp1 − Kp2)K

q
p2

[f ]|
� ‖(δx − 	(p1))Kn

p1
(Kp1 − Kp2)K

q
p2

‖F

� λr‖(δx − 	(p1))Kn
p1

(Kp1 − Kp2)K
s
p2

‖F

� λrLs
0‖(δx − 	(p1))Kn

p1
(Kp1 − Kp2)‖F

� λrLs
0L1‖(δx − 	(p1))Kn

p1
‖F‖p1 − p2‖tv

� λr+kLs
0L1‖(δx − 	(p1))Kl

p1
‖F‖p1 − p2‖tv

� λr+kLs+l
0 L1‖δx − 	(p1)‖F‖p1 − p2‖tv

� 2λr+kLs+l
0 L1‖p1 − p2‖tv.

This computation enables us on one hand to see that the right-hand side of (3.1) is
absolutely convergent and on the other hand to deduce the upper bound presented
in the above lemma by summation, via the estimate

|	(p1)[Ff,p2 ]| =
∣∣∣∣	(p1)

[ ∑
n∈N

(Kn
p2

[f ] − 	(p2))
]∣∣∣∣

=
∣∣∣∣ ∑

n∈N

(	(p1) − 	(p2))[Kn
p2

[f ]]
∣∣∣∣

�
∑
n∈N

‖(	(p1) − 	(p2))Kn
p2

‖F

� (1 + L0 + · · · + Ln0−1
0 )

∑
k∈N

λk‖	(p1) − 	(p2)‖F

� Ln0
0 − 1

L0 − 1
1

1 − λ
L2‖p1 − p2‖tv.

So it remains to verify the validity of formula (3.1). But by the absolute convergence
of the right-hand side, it is sufficient to show that

Ff,p1(x) − Ff,p2(x) + 	(p1)[Ff,p2 ] = lim
N→∞

AN (f, p1, p2, x),
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where

AN (f, p1, p2, x) :=
∑

0�n,q�N

(δx − 	(p1))Kn
p1

(Kp1 − Kp2)K
q
p2

[f − 	(p2)[f ]]

= (δx − 	(p1))
( ∑

0�n,q�N

Kn
p1

(Kp1 − Kp2)K
q
p2

)
[f ].

But we remark that in the above sum there are a lot of cancellations and in fact

AN (f, p1, p2, x)

= (δx − 	(p1))
(

KN+1
p1

∑
0�q�N

Kq
p2

−
∑

0�n�N

Kn
p1

KN+1
p2

+
∑

0�n�N

Kn+1
p1

K0
p2

− K0
p1

∑
0�q�N

Kq+1
p2

)
[f ]

= (δx − 	(p1))
(

KN+1
p1

∑
0�q�N

Kq
p2

−
∑

0�n�N

Kn
p1

KN+1
p2

+
∑

−1�n�N

Kn+1
p1

−
∑

−1�q�N

Kq+1
p2

)
[f ]

= −(δx − 	(p1))
( ∑

0�n�N

Kn
p1

KN+1
p2

[f ] +
∑

0�q�N+1

Kq
p2

[f − 	(p2)[f ]]
)

+ (δx − 	(p1))
( ∑

0�q�N

KN+1
p1

Kq
p2

[f ] +
∑

0�n�N+1

Kn
p1

[f − 	(p1)[f ]]
)

.

But we have

(δx − 	(p1))
∣∣∣∣ ∑
0�n�N

Kn
p1

KN+1
p2

[f ]
∣∣∣∣

� (1 ∨ Ln0−1
0 )λ�N/n0�

∥∥∥∥(δx − 	(p1))
∑

0�n�N

Kn
p1

∥∥∥∥
F

� (1 ∨ Ln0−1
0 )λ�N/n0� Ln0

0 − 1
L0 − 1

1
1 − λ

‖δx − 	(p1)‖F

� 2(1 ∨ Ln0−1
0 )λ�N/n0� Ln0

0 − 1
L0 − 1

1
1 − λ

,

an expression which tends to zero as N goes to infinity. In a similar way we get

lim
N→∞

∣∣∣∣(δx − 	(p1))
∑

0�q�N

KN+1
p1

Kq
p2

[f ]
∣∣∣∣ = 0,

so, taking into account the definition of the resolvents, we obtain

lim
N→∞

AN (f, p1, p2, x) = −(δx − 	(p1))[Ff,p2 ] + (δx − 	(p1))[Ff,p1 ]

= Ff,p1(x) − Ff,p2(x) + 	(p1)[Ff,p2 ].

�
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The main interest in resolvent Ff,p is due to the fact that it is a solution F ∈ B(E)
of the Poisson equation

Kp[F ] − F = −(f − 	(p)[f ]),

	(p)[F ] = 0,

}
(3.2)

as it is checked at once (one could alternatively have used this property to verify (3.1),
replacing the factor Kp1 − Kp2 by Kp1 − Id −(Kp2 − Id)).

Remark 3.5. We are not sure that, under our general setting, there is a unique
solution to this equation. Hypothesis 3.1 implies there is at most one solution belong-
ing to Fp, the closure of Vect(

⋃
n∈N

Kn
p (F)) with respect to the uniform norm. So,

for instance, if we know that Kp maps B(E) into the previous vector space Fp (in
particular, if F = {f ∈ B(E) : ‖f‖∞ � 1}), then we can conclude to the unique-
ness of the solution F . In fact, in the cases where ‖ · ‖F is equivalent to ‖ · ‖tv, one
also gets the uniqueness property for the solution of (3.2) directly from hypothe-
sis 3.1. Nevertheless, we note that, in the general situation, one easily deduces from
the uniqueness of the invariant probability 	(p) that two solutions of the Poisson
equation are at least 	(p)-a.s. equal.

We have now at our disposal all the ingredients necessary for the proof of propo-
sition 3.3. The function f ∈ F being fixed, we consider the process M defined by

∀n ∈ N, Mn =
n−1∑
m=0

Ff,Sm(Xm+1) − KSm [Ff,Sm ](Xm)

(by a traditional convention, M0 = 0). Taking into account (1.1), it is clear that M
is a martingale with respect to the filtration (Tn)n∈N, where, for all n ∈ N, Tn is
the σ-algebra generated by X0, X1, . . . , Xn. Its non-predictable quadratic variation
process is given by

∀n ∈ N, 〈M〉n :=
n−1∑
m=0

(Ff,Sm(Xm+1) − KSm [Ff,Sm ](Xm))2,

so via the Burkholder–Davis–Gundy inequality for discrete time martingales (see,
for instance, Shiryaev 1996) and the uniform bound on the resolvent, we get that,
for all p � 1, there exists a constant c(p) > 0 such that

∀n ∈ N, E

[
sup

0�m�n−1
|Mm|p

]1/p

� c(p)E[〈M〉p/2
n ]1/p

� 2c(p)
( ∑

0�m�n−1

sup
p∈P(E)

‖Ff,p‖2
∞

)1/2

� 2n0c(p)
1 − λ

√
n.

Thus, denoting C(p) = 2n0c(p)/(1 − λ), we have that, for all n ∈ N,

E[|Mn|p] � C(p)np/2 (3.3)
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But we note that M is related to the process (Sn[f ] − S�
n [f ])n∈N, since we have, for

all n ∈ N,

(n + 1)(Sn[f ] − S�
n [f ]) =

∑
0�m�n

f(Xm) − 	(Sm)[f ]

=
∑

0�m�n

Ff,Sm(Xm) − KSm [Ff,Sm ](Xm)

=
∑

0�m�n

Ff,Sm(Xm+1) − KSm [Ff,Sm ](Xm)

+
∑

0�m�n

Ff,Sm+1(Xm+1) − Ff,Sm
(Xm+1)

+
∑

0�m�n

Ff,Sm(Xm) − Ff,Sm+1(Xm+1)

= Mn+1 +
∑

0�m�n

{Ff,Sm+1(Xm+1) − Ff,Sm(Xm+1)}

+ Ff,S0(X0) − Ff,Sn+1(Xn+1).

Lemma 3.4 enables us to evaluate the intermediate sum by showing there is a constant
C � 0 such that∣∣∣∣ ∑

0�m�n

Ff,Sm+1(Xm+1) − Ff,Sm(Xm+1)
∣∣∣∣

�
∑

0�m�n

‖Ff,Sm+1 − Ff,Sm‖∞

� C
∑

0�m�n

‖Sm+1 − Sm‖tv

� C
∑

0�m�n

1
m + 2

+ (m + 1)
(

1
m + 1

− 1
m + 2

)

� C
∑

0�m�n

2
m + 2

� 2C

∫ n+2

1

1
t
dt

= 2C ln(n + 2).

Thus, we obtain that there exists a constant C ′ � 0 such that, for all n ∈ N,

|(n + 1)(Sn[f ] − S�
n [f ]) − Mn+1| � C ′(1 + ln(2 + n))

and proposition 3.1 follows immediately from the upper bound (3.3).

4. Almost-sure convergence

The title of this section is a little misleading, as we will not prove that under appropri-
ate conditions, P-a.s. Sn converges F-weakly to Π, but rather that, for any f ∈ F ,
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P-a.s. Sn[f ] converges to Π[f ]. Of course there is no difference from the former
affirmation if F contains an at most denumerable subset determining the F-weak
convergence.

Our basic tool will be to first obtain convenient bounds on L
p convergence, for

p � 2, by using the result of § 3. But we will need to add the following hypothesis to
hypotheses 3.1 and 3.2.

Hypothesis 4.1. For any (f, m) ∈ F ×P(E) there exists a non-negative measure
γf,m on the measurable space (F , E(F)) satisfying

Λ := sup{γf,m(1) : f ∈ F , m ∈ P(E)} < 1

and such that, for any f ∈ F , we are assured of the following inequalities for all
p1, p2 ∈ P(E),

|	(p1)[f ] − 	(p2)[f ]| �
∫

|p1[h] − p2[h]|γf,p1(dh).

Here, as previously, for all p ∈ P(E), 	(p) is the invariant probability of Kp, whose
existence and uniqueness is ensured by hypothesis 3.1. We note that by considering
suprema over f ∈ F , hypothesis 4.1 implies a strict contraction property for the
mapping 	 : P(E) → P(E), from which one deduces, as in § 2 a, the existence
and uniqueness of the fixed probability Π. We also get that the second condition of
hypothesis 3.2 is satisfied with L2 = Λ < 1, due to the general bound ‖ · ‖F � ‖ · ‖tv.

This new hypothesis 4.1 reminds us of that of § 2 and indeed it is more general,
since we will verify in Appendix B that hypothesis 2.1 implies hypothesis 4.1 with
Λ = λ1/(1 − λ2) under a mild measurability condition.

Nevertheless, here we do not want to bother with logarithmic factors which flourish
naturally in upper bounds as in theorem 2.2, so we will say that a sequence (an)n∈N

of positive reals is at most of rate r ∈ R if

lim sup
n→∞

ln(an)
ln(n)

� r

(in particular, a negative rate ensures the convergence of the sequence to zero). With
this terminology, our main step in the proof of a.s. convergence can be as stated in
the following.

Proposition 4.2. Under hypotheses 3.1, 3.2 and 4.1, we have that, for any fixed
p � 1, the sequence (supf∈F E[|Sn[f ] − Π[f ]|p]1/p)n∈N is at most of rate −r with
r := (1

2) ∧ (1 − Λ) > 0.

At least for p = 2, this estimate is compatible with theorem 2.2.
Our goal is now a simple consequence of this result.

Theorem 4.3. Under the conditions of proposition 4.2, we have for any fixed
f ∈ F , the P-a.s. convergence of Sn[f ] towards Π[f ] for large n.

Proof . Proposition 4.2 shows in particular that, for any fixed p � 1 and f ∈ F , the
sequence (E[|Sn[f ] − Π[f ]|p])n∈N is at most of rate −pr, so if p > 1/r this sequence
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is summable. Thus, if ε > 0 is given, we have for such a fixed p > r,

∑
n∈N

P[|Sn[f ] − Π[f ]| > ε] � 1
εp

∑
n∈N

E[|Sn[f ] − Π[f ]|p]

< +∞,

which implies by the Borel–Cantelli lemma that P-a.s. lim supn→∞ |Sn[f ]−Π[f ]| � ε.
As the parameter ε > 0 can be arbitrary small, we conclude to the validity of the
above theorem. �

So it remains to prove the bounds of proposition 4.2. Due to proposition 3.3, which
shows that, for any given p � 1, (supf∈F E[|Sn[f ] − S�

n [f ]|p]1/p)n∈N is at most of rate
−(1

2), it is sufficient to see that (supf∈F E[|S�
n [f ] − Π[f ]|p]1/p)n∈N is at most of rate

−r. With the help of Hölder’s inequalities, we only need to consider the case where
p ∈ N

∗. This observation enables us to proceed by a recurrence argument; assume
that, for some fixed p ∈ N

∗, (supf∈F E[|S�
n [f ] − Π[f ]|p]1/p)n∈N is at most of rate −r

and let us check it for p+1. We first remark that (supf∈F E[|S�
n [f ] − Π[f ]|p′

])n∈N is
then at most of rate −rp′, for any 0 � p′ � p. We denote, for any f ∈ F and n ∈ N,

I(p+1)
n [f ] := E[|(n + 1)(S�

n [f ] − Π[f ])|p+1],

I(p+1)
n := sup

f∈F
I(p+1)
n [f ].

We have to verify that (I(p+1)
n )n∈N is at most of rate (1 − r)(p + 1).

In the same spirit as in the proof of theorem 2.2, we consider the expansion

I
(p+1)
n+1 [f ] = E

[∣∣∣∣ ∑
0�i�n+1

	(Si)[f ] − Π[f ]
∣∣∣∣
p+1]

�
∑

0�k�p+1

(
p + 1

k

)
E[|(n + 1)(S�

n [f ] − Π[f ])|p+1−k|	(Sn+1)[f ] − Π[f ]|k].

(4.1)

By our iteration assumption, it appears that the sequence( ∑
2�k�p+1

(
p + 1

k

)
E[|(n + 1)(S�

n [f ] − Π[f ])|p+1−k|	(Sn+1)[f ] − Π[f ]|k]
)
n∈N

(4.2)

is at most of rate (1 − r)(p − 1).
Thus, the more interesting term in inequality (4.1) is certainly the second one

(after I
(p+1)
n [f ]),

(p + 1)E[|(n + 1)(S�
n [f ] − Π[f ])|p|	(Sn+1)[f ] − Π[f ]|],
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whose absolute value is bounded via hypothesis 4.1 by

(p + 1)E[(n + 1)p|S�
n [f ] − Π[f ]|p|	(Sn+1)[f ] − 	(Π)[f ]|]

� (p + 1)E
[
(n + 1)p|S�

n [f ] − Π[f ]|p
∫

|Sn+1[h] − Π[h]|γf,Π(dh)
]

� (p + 1)
∫

E[(n + 1)p|S�
n [f ] − Π[f ]|p|Sn+1[h] − S�

n+1[h]|]γf,Π(dh)

+ (p + 1)
∫

E[(n + 1)p|S�
n [f ] − Π[f ]|p|S�

n+1[h] − S�
n [h]|]γf,Π(dh)

+ (p + 1)
∫

E[(n + 1)p|S�
n [f ] − Π[f ]|p|S�

n [h] − Π[h]|]γf,Π(dh).

We consider separately each term on the right-hand side of the last inequality.
Resorting again to Hölder’s inequality, the latter term is bounded by

p + 1
n + 1

∫
(I(p+1)

n [f ])p/(p+1)(I(p+1)
n [h])1/(p+1)γf,Π(dh) � Λ

p + 1
n + 1

I(p+1)
n .

Due to the observation that

‖S�
n+1 − S�

n ‖tv � 2/(n + 1),

the intermediate term cannot be larger than 2Λ(p + 1)I(p)
n /(n + 1), whose corre-

sponding sequence is at most of rate (1 − r)p − 1 by our recurrence assumption.
In order to treat the first term, we note that, for any ε > 0, we can find a constant

A := A(p, ε) such that

∀x, y � 0, xpy � εxp+1 + Ayp+1.

Thus, we obtain that∫
E[(n + 1)p|S�

n [f ] − Π[f ]|p|Sn+1[h] − S�
n+1[h]|]γf,Π(dh)

� ε

∫
E[(n + 1)p|S�

n [f ] − Π[f ]|p+1]γf,Π(dh)

+ A

∫
E[(n + 1)p|Sn+1[h] − S�

n+1[h]|p+1]γf,Π(dh)

� εΛI(p+1)
n [f ]/(n + 1) + AΛCp(n + 1)(p−1)/2,

where we have once more used proposition 3.3.
Finally, we have shown that, for all n ∈ N,

I
(p+1)
n+1 �

(
1 +

(p + 1)(1 + ε)Λ
n + 1

)
I(p+1)
n + Rn,

where (Rn)n∈N is a sequence whose rate is at most

β := (1 − r)(p − 1) ∨ ((1 − r)p − 1) ∨ 1
2(p − 1).

From the bound r � 1/2, we deduce that β + 1 � (1 − r)(p + 1), so lemma A 2 of
Appendix A enables us to see that (I(p+1)

n )n∈N is at most of rate

{(1 + ε)Λ ∨ (1 − r)}(p + 1).
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But, as is customary, ε can be arbitrary small. Thus, we end up with the expected
result, since 1 − r = Λ ∨ (1

2).
Only the initialization of the recurrence is lacking, for example, with p = 2. Nev-

ertheless, on re-examining the above computations, there is no difficulty in being
convinced that (I(2)

n )n∈N is at most of rate 2(1 − r) (just note that, for p = 1, we
have β = 0, since the sequence (4.2) is trivially at most of rate zero and clearly this
is also true for (2Λ(p + 1)I(1)

n /(n + 1))n∈N).

5. An example of extension

The example we present here is rather academic in nature, as its ‘real world’ aspect is
maybe not very convincing! Nevertheless, some of its features give a good illustration
of the role which can be played by the choice of convergence dictated by the class F
and the advantage of hypothesis 4.1 over its counterpart, hypothesis 2.1.

First we need to remark that our previous proofs can be extended to the following
situation, where a family of semi-norms is considered instead of a unique norm. We
assume that we have at our disposal a family (Fj)j∈J of subsets of

B := {f ∈ B(E) : ‖f‖∞ � 1}.

For each j in the arbitrary index set J , we denote by ‖ · ‖j the semi-norm associated
to Fj on M(E):

∀m ∈ M(E), ‖m‖j = sup
f∈Fj

|m[f ]|.

The hypothesis of completion made on ‖ · ‖F in § 1 is now replaced by the weaker
condition that if (pn)n∈N is a sequence of probabilities such that, for any f ∈ F :=⋃

j∈J Fj , pn[f ] is converging for large n ∈ N, then there is a unique probability
p ∈ P(E) verifying that the corresponding limits can be written as p[f ] (in particular,
F separates P(E)). This hypothesis will enable us to relax the uniform exponential
convergence to invariant probabilities we have encountered in the above sections.

Remark 5.1. The resort to even more general systems of semi-norms could also
be useful in situations where we are not assured of the uniqueness of the fixed point
Π, as it is usual in traditional reinforced random walk context (see, for example,
Benäım 1997; Pemantle & Volkov 1999; Tarrès 2004).

Naturally, we replace hypotheses 3.1, 3.2 and 4.1, respectively, by the following.

Hypothesis 5.2. For all j ∈ J , there exist L0(j) � 0, n0(j) ∈ N
∗ and

0 � λ(j) < 1 such that for all p, m1, m2 ∈ P(E) we are assured of

‖m1Kp − m2Kp‖j � L0(j)‖m1 − m2‖j ,

‖m1K
n0(j)
p − m2K

n0(j)
p ‖j � λ(j)‖m1 − m2‖j .

There is then no difficulty in checking that, for any p ∈ P(E), there is a unique
invariant probability 	(p) for Kp.

Hypothesis 5.3. For all j ∈ J , there exist two constants L1(j), L2(j) � 0 such
that, for all m ∈ M0(E) and all p1, p2 ∈ P(E),

‖m(Kp1 − Kp2)‖j � L1(j)‖m‖j‖p1 − p2‖tv,

‖	(p1) − 	(p2)‖j � L2(j)‖p1 − p2‖tv.
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Hypothesis 5.4. For any j ∈ J and (f, m) ∈ Fj × P(E) there exists a non-
negative measure γf,m,j on the measurable space (F , E(F)) satisfying

Λ(j) := sup{γf,m,j(1) : f ∈ Fj , m ∈ P(E)} < 1

and such that for any (f, m) ∈ Fj ×P(E) we are assured of the following inequalities
for all p1, p2 ∈ P(E):

|	(p1)[f ] − 	(p2)[f ]| �
∫

|p1[h] − p2[h]|γf,p1,j(dh).

Then the previous proofs can be extended to prove the following theorem.

Theorem 5.5. Under hypotheses 5.2–5.4, there exists a unique solution Π ∈ P(E)
of the equation Π = ΠKΠ and we are assured, for any fixed f ∈ F , of the P-a.s.
convergence of Sn[f ] towards Π[f ] for large n.

Now, here is our example on E = [0, 1[2 endowed with E , its traditional Borelian
σ-algebra. We take J = Z

2 and, for any j = (j1, j2) ∈ Z
2, we consider Fj := {fj , gj}

with
fj(x) = cos(2π(j1x1 + j2x2)),

gj(x) = sin(2π(j1x1 + j2x2)),

}
∀ x = (x1, x2) ∈ E. (5.1)

Indeed, the set F is here weak-convergence determining and so the first above-
mentioned requirement is fulfilled.

Next we introduce our family of kernels K. Let r = (r1, r2) ∈ (R∗)2 be such that
r1/r2 is not a rational number, we consider D = Vect(r) ⊂ R

2 and Q the canonical
projection from R

2 to R
2/Z

2 identified with E. Note that due to the irrationality of
r1/r2, the restriction of Q to D is an injection whose image is dense in E.

Let us also be given σ : P(E) → [σ1, σ2] ⊂ ]0, +∞[ , a mapping which is Lipschitz
for total variation norm; there exists a constant M � 0 such that

∀ p1, p2 ∈ P(E), |σ(p1) − σ(p2)| � M‖p1 − p2‖tv.

For any fixed x ∈ E and p ∈ P(E), the probability Kp(x, ·) can be described in the
following way. Let kp(x, ·) be the measure on x + D (x seen here as an element of
R

2) given by

kp(x, {x + tr : t ∈ A}) =
∫

A

exp
(

−t2

{2σ(p)}

)
dt√

2πσ(p)

for any Borelian subset A of R. Then Kp(x, ·) is the image by Q of kp(x, ·).
Let us check the above hypotheses. For any j ∈ J , we can take, in hypothesis 5.2,

n0(j) = 1 and λ(j) = exp(−2π2〈j, r〉2σ1) < 1, since we compute that

∀ p ∈ P(E), Kp[exp(2πi〈j, ·〉)](·) = exp(−2π2〈j, r〉2σ(p)) exp(2πi〈j, ·〉).

For any p ∈ P(E), it appears that the unique invariant probability of Kp is the
(restriction to E) of the two-dimensional Lebesgue measure, which consequently we
can denote by Π.

To check hypothesis 5.3, we note that, for any a, s1, s2 > 0, we have

| exp(−as1) − exp(−as2)| � a|s1 − s2|,
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so we can take, for any j ∈ J , L′
1(j) := 2π2〈j, r〉2M in hypothesis B 2 in Appendix B,

corresponding to hypothesis 5.3.
The fact that the mapping 	 : P(E) → P(E) is constant also implies that hypoth-

esis 5.4 is trivially verified, thus finally we get that P-a.s., Sn converges weakly (in
the classical sense) to Π. Of course this result is not very interesting, since it is not
the simplest way to simulate according to the Lebesgue measure on E! But from
a theoretical point of view, this simple example puts forth the role played by the
test-functions sets (Fj)j∈J (in comparison with the ball B, note that Sn[f ] is not
converging to Π[f ] for any f ∈ B(E)) and the advantage of hypothesis 5.4 over
hypothesis 2.1 (or rather its obvious modification in the spirit of § 5), which is not
necessarily satisfied here, especially if M is large.

Furthermore, clearly in this situation there is not a unique solution to the Poisson
equation (3.2), since for instance F = 0 or F the indicator function of Q(D) are
solutions associated to the homogeneous equation. This suggests that maybe one
cannot expect more than uniqueness almost sure in remark 3.5, at least it is the case
under the above generalized framework.

Appendix A. Usual difference inequalities

We present here discrete versions of classical differential inequalities which have been
frequently used in this paper.

Lemma A 1. Let (yn)n∈N be a sequence of non-negative numbers satisfying, for
all n ∈ N large enough, the inequality

yn+1 �
(

1 +
α

n + 1

)
yn + k(n + 1)β ,

where α, β ∈ R and k > 0 are given. There then exists a constant c > 0 such that,
for all n ∈ N

∗ \ {1}, we are assured of the upper bounds

α − β < 1 ⇒ yn � cnβ+1,

α − β = 1 ⇒ yn � cnα ln(n),

α − β > 1 ⇒ yn � cnα.

Proof . By analogy with the continuous case, we just consider the sequence (zn)n∈N

defined by

∀ n ∈ N, zn =
yn

an

with an =
∏

0�i�n(1 + α/(1 + i)). Its interest is due to the fact that we have, for all
n ∈ N with n � n0 and n0 ∈ N fixed large enough,

zn+1 � zn + k
(n + 1)β

an+1

� zn0 + k
∑

n0�j�n

(j + 1)β

aj+1
.
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The announced estimates are now a straightforward consequence of the well-known
fact that there exist two constants 0 < c1 < c2 such that, for all n ∈ N

∗, we have

c1(n + 1)α � an � c2(n + 1)α.

�

The same arguments also show that if (yn)n∈N is a sequence of non-negative num-
bers satisfying, for all n ∈ N large enough, the inequality

yn+1 �
(

1 +
α

n + 1

)
yn + k(n + 1)β ,

where α, β ∈ R and k > 0 are given, then there exists a constant c > 0 such that,
for all n ∈ N

∗ \ {1}, we have

α − β < 1 ⇒ yn � cnβ+1,

α − β = 1 ⇒ yn � cnα ln(n),

α − β > 1 ⇒ yn � cnα.

This remark enables us to simplify the proof considered in Del Moral & Miclo (2002)
relative to the example mentioned after theorem 2.2. In fact, via Hölder’s inequalities,
this example can also be used to see that the rates derived in proposition 4.2 are
optimal in the presented setting, at least for p � 2. But let us show that they can
be of the right order even for p = 1. In this case, the example corresponds to the
situation where, for all p ∈ P(E), the kernel Kp is indeed the probability 	(p) given
by Λp+(1−Λ)Π, where 0 < Λ < 1 and Π ∈ P(E) are, respectively, a fixed parameter
and a given probability, coinciding with the notions designated similarly in the rest
of the paper. Let f ∈ B(E) be any function. Then one has, for any n ∈ N

∗,

(n + 1)E[|Sn[f ] − Π[f ]|] = E[E[|f(Xn) − Π[f ] + n(Sn−1[f ] − Π[f ])||Tn]]

� E[|E[f(Xn) − Π[f ] + n(Sn−1[f ] − Π[f ])|Tn]|]
= E[|E[KSn−1 [f ](Xn−1) − Π[f ] + n(Sn−1[f ] − Π[f ])]|]

=
(

1 +
Λ

n

)
nE[|Sn−1[f ] − Π[f ]|].

This lower bound implies immediately that the sequence (E[|Sn[f ]−Π[f ]|])n∈N is at
least of order Λ − 1. Thus, in the case where 1

2 � Λ < 1, proposition 4.2 leads to the
conclusion that

lim
n→∞

ln(E[|Sn[f ] − Π[f ]|])
ln(n)

= −(1 − Λ).

In other respects, one cannot dispense with the term 1
2 in proposition 4.2, as shown

by classical i.i.d. examples (with no interaction at all, namely, for all p ∈ P(E),
Kp = Π).

Another useful variant of lemma A 1 enables us to reinterpret its difference inequal-
ity as a transformer of rate.
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Lemma A 2. Let (yn)n∈N be a sequence of non-negative numbers satisfying, for
all n ∈ N large enough, the inequality

yn+1 �
(

1 +
α

n + 1

)
yn + an,

where (an)n∈N is a sequence of positive reals, the rate of which is at most β, with
α, β ∈ R. (yn)n∈N is then at most of rate α ∨ (β + 1).

Proof . By definition, for any fixed ε > 0, we can find a constant A > 0 such that,
for all n ∈ N large enough, an � A(n + 1)β+1 (in fact we can take, for instance,
A = 1). Applying lemma A 1 and letting ε go to zero then gives the announced
result. �

Appendix B. About the hypotheses

We will discuss here the different relations between our conditions.
As shown by the example considered in § 5, in some situations hypothesis 4.1 can be

easier to check than hypothesis 2.1! Nevertheless, when we have no a priori informa-
tion on 	 : P(E) → P(E), hypothesis 2.1 gives at least one access to hypothesis 4.1,
if we furthermore assume that, for any fixed m ∈ P(E) and F ∈ B(F), the mappings

F � f �→ µf,m[F ] ∈ R,

F � f �→ νf,m[F ] ∈ R

are E(F)-measurable.
To be convinced of the assertion that hypothesis 2.1 then implies hypothesis 4.1,

we come back to the computations of § 2 a, but, instead of just deriving consequences
of hypothesis 2.1 relative to contraction estimates for dF , we rather reconsider them
in the spirit of this hypothesis. We begin by introducing for all (f, m) ∈ F × P(E)
a sequence (µ(n)

f,m)n∈N of measures on (F , E(F)), defined through the iterations

∀ n ∈ N, µ
(n+1)
f,m (·) =

∫
µf,m(dh)µ(n)

h,m(·)

(taking into account the first above assumption of measurability), starting with
µ

(0)
f,m = δf (in particular, µ

(1)
f,m = µf,m).

It is relatively immediate to verify that, for all n ∈ N and all (f, m) ∈ F × P(E),

∀p1, p2 ∈ P(E), |p1K
n
m[f ] − p2K

n
m[f ]| �

∫
|p1(h) − p2(h)|µ(n)

f,m(dh)

and

µ
(n)
f,m(1) � λn

1 .

Now it is sufficient to consider, for all f ∈ F and all m ∈ P(E),

γf,m(·) :=
∑
n∈N

∫
µ

(n)
f,m(dh)νh,m(·),
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since the relation

∀f ∈ F , ∀p1, p2 ∈ P(E), 	(p1)[f ] − 	(p2)[f ] =
∑
n∈N

	(p2)(Kp1 − Kp2)K
n
p1

[f ]

enables us to conclude that hypothesis 4.1 is satisfied by the family

(γf,m)(f,m)∈F×P(E) and Λ = λ1/(1 − λ2).

Let us now check the assertion made on condition hypothesis 3.2 after its state-
ment.

As can be seen by reconsidering the second computation made in § 2 a to prove
(2.2), hypothesis 3.2 is a consequence of hypothesis 3.1 and the following hypothesis.

Hypothesis B 1. There exists a constant L′
1 � 0 such that, for all m ∈ M0(E)∪

P(E) and all p1, p2 ∈ P(E),

‖m(Kp1 − Kp2)‖F � L′
1‖m‖F‖p1 − p2‖tv.

(We can then take L1 = L′
1 and L2 = (Ln0

0 − 1)(L0 − 1)−1(1 − λ)−1L′
1 in hypoth-

esis 3.2.)
So the simplest way to deduce hypothesis 3.2 is to verify the following hypothesis

(and in practice, it seems difficult to check the first condition of hypothesis 3.2
without also deriving B 2!).

Hypothesis B 2. There exists a constant L′′
1 � 0 such that, for all m ∈ M(E)

and all p1, p2 ∈ P(E),

‖m(Kp1 − Kp2)‖F � L′′
1‖m‖F‖p1 − p2‖tv.

In some cases, hypotheses B 1 and B 2 are in fact equivalent, for instance if ‖·‖F =
‖·‖tv. This assertion comes from the observation that in this situation, for all m ∈ M,
the quantity ‖m‖tv is equal to

min{‖m0‖tv + ‖p‖tv : m = m0 + p, with m0 ∈ M0, p ∈ Vect(P(E))},

as can be shown from the Hahn–Jordan decomposition of measures.
But we are not sure this equivalence of hypotheses B 1 and B 2 is still true for

general test-functions collections F .
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