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Abstract

This article is concerned with strong propagations of chaos properties in Moran’s
type particle interpretations of continuous time Feynman-Kac formulae. These particle
schemes can also be seen as approximating models of simple generalized spatially ho-
mogeneous Boltzmann equations. We provide a simple, and original semigroup analysis
based on empirical tensor measures combinatorics properties, martingales techniques,
and coupling arguments. We also design a general and abstract framework, without any
topological assumption on the state space. This yields a natural way to analyze the
propagations of chaos properties for interacting particle models on path space. Applica-
tions to genealogical type particle algorithms for the nonlinear filtering and smoothing
problem are also discussed.

1 Introduction

Let X = (Xt)t≥0 be a progressive and time inhomogeneous Markov process on some mea-
surable state space (E, E), equipped with a σ-algebra E . We denote by Bb(E), and P(E) the
set of all bounded measurable functions (equipped with the supremum norm ‖ · ‖), and the
set of all probabilities on E. We also consider a measurable, and locally bounded mapping
U : R+ × E 3 (t, x) 7→ Ut(x) ∈ R+, in the sense that for any T ≥ 0, we have

uT
def.= sup

0≤t≤T
‖Ut‖ < +∞

We associate with these objects the Feynman-Kac distributions flows (γt, ηt)t≥0 defined for
any t ≥ 0, and any bounded measurable function ϕ : E → R by the following formulae

ηt(ϕ) def.= γt(ϕ)/γt(1I) with γt(ϕ) def.= E
[
ϕ(Xt) exp

(∫ t

0
Us(Xs) ds

)]
(1)

A simple calculation (cf. for instance [6]) shows that the normalizing constants γt(1) can be
expressed in terms of the normalized distribution flow (ηs)s≤t with the formulae

Eη0

[
exp

(∫ t

0
Us(Xs) ds

)]
= exp

(∫ t

0
ηs(Us) ds

)
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This readily yields that

γt(ϕ) = exp
(∫ t

0
ηs(Us) ds

)
× ηt(ϕ) (2)

These Feynman-Kac models are at the corner of diverse scientific disciplines. In en-
gineering science, and more particularly in signal processing, they provide a functional
representation of the conditional distribution of a partially observed signal, with respect to
noisy observation paths. In physics, they represent the distributions of a particle evolving
in an absorbing medium with obstacles related to some potential functions. In quantum
chemistry, these probabilistic models are rather thought as weak solutions of Schrödinger
type equations. In biology, these Feyman-Kac models also occur in a variety of topics, such
as chemical polymerizations, and genetic and genealogical population models. Of course, a
full description of all these applications model aeras would be too much disgression. The
interested reader is referred to the review article [5], and the research monograph of the first
author [3].

Even if they look innocent, these Feynman-Kac measures are very complex mathematical
objects, and they can rarely be solved explicitly. In [5], we introduced an original Moran’s
type interacting particle interpretation, based on genetic interacting jumps particle models.
The idea is to associate to the Feynman-Kac model (1) a sequence of EN -valued and in-
teracting Markov processes ξ(N) = (ξ(N)

t )t≥0 = ((ξ(N,1)
t , ξ

(N,2)
t , · · · , ξ(N,N)

t ))t≥0 such that the
N -empirical measures of the configurations

η
(N)
t

def.=
1
N

∑
1≤i≤N

δ
ξ
(N,i)
t

(3)

converge, as N tends to infinity, to the desired distribution ηt. Mimicking formulae (2), we
also construct an unbiased estimate for the unnormalized distribution flow

γN
t (ϕ) def.= exp

(∫ t

0
ηN

s (Us) ds
)
× ηN

t (ϕ)
N↑∞−→ γt(ϕ) = exp

(∫ t

0
ηs(Us) ds

)
× ηt(ϕ)

The parameter N represents both the precision parameter of the approximation scheme,
and the size of the particle population model. The precise mathematical description of
the particle model is given in section 2.4. Loosely speaking, the motion of the N -particle
Moran’s type model is decomposed into two separate mechanisms. Between the interacting
jumps, each particle ξ(N,i)

t evolves randomly according to the same random motion as the
reference Markov process Xt. At rate η(N)

t (Ut), a randomly chosen particle ξ(N,i)
t jumps to a

new location ξ(N,j)
t , randomly chosen with a probability proportional to its fitness Ut(ξ

(N,j)
t ).

In this sense, this particle interpretation model can be seen as a natural interacting selection-
rejection population Monte Carlo sampling methodology. This interacting stochastic process
can also be alternatively interpreted as a Moran or a Nanbu particle model. For a general
description of these two kinds of genetic type algorithms, we refer the reader to the pair of
articles [2, 9].

A natural and traditional problem on mean field particle models is the analysis of the
strong propagation of chaos properties. Namely, we are wondering if the law of a fixed
particle, say (ξ(N,1)

t )t≥0, converges in total variation sense toward the law of some natural
time inhomogeneous Markovian process X̄ = (X̄t)t≥0, with Law(X̄t) = ηt, for any t ≥ 0.
The latter process is often referred as the nonlinear, or the target process associated with
the limiting deterministic flow (ηt)t≥0. Roughly speaking, it evolves as a single interacting
particle evolving in an infinite population model. In other word, between the jumps, X̄t

evolves randomly according to the same random motion as the reference Markov process Xt.
At rate ηt(Ut), it jumps to a new location X̄t, randomly chosen with the Boltzmann-Gibbs
distribution Ut(x) ηt(dx)/ηt(Ut).

2



Our aim is to show that the first n particles, with n �
√
N , behave asymptotically as

independent copies of the target process. To describe with some precision our main result,
we let T , be a fixed time horizon. We also fix a particle block size 1 ≤ n ≤ N , and we let
P̄η0,[0,T ] be the distribution of target process (X̄t)0≤t≤T , and P(N,{1,...,n})

η0,[0,T ] be the distribution

of the first n particles (ξ(N,i)
t )1≤i≤n, 0≤t≤T . We are now in position to state our result.

Theorem 1.1 For any time horizon T , we have

lim sup
n2/N→0

N

n2

∥∥∥P(N,{1,...,n})
η0,[0,T ] − P̄⊗n

η0,[0,T ]

∥∥∥
tv

≤ CT

with the constant CT = 4(exp(uTT )− 1) + (14 + 28uTT [1 + exp(uTT )])uTT (uTT + 1).

One important motivation for introducing a general and abstract set-up is that it applies
without further work to particle models on path spaces, and genealogical tree based filtering
models. These practical issues are discussed in the last short section. Taking into account
the simple mechanism of selection in our models, we have a nice explicit expression (1)
for the deterministic limiting objects, making them appear as ratios of linear terms with
respect to η0, which is hidden in E as the initial distribution. This semigroup structure
is more tractable than the information one would get by merely looking at the nonlinear
equation of evolution satisfied by the family (ηt)t≥0. Using this natural semigroup technique,
we also obtain without much difficulty the weak propagation of chaos for empirical tensor
measures stated in the following theorem.

Theorem 1.2 For any time horizon T > 0, any particle block size n ∈ N∗, any sequence of
times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T , and any function ϕ ∈ Bb(En), with ‖ϕ‖, we have that∣∣∣E[(η(N)

t1
⊗ · · · ⊗ η

(N)
tn )(ϕ)]− (ηt1 ⊗ · · · ⊗ ηtn)(ϕ)

∣∣∣ ≤ εT

(
n2

N

)
∣∣∣E[(γ(N)

t1
⊗ · · · ⊗ γ

(N)
tn )(ϕ)]− (γt1 ⊗ · · · ⊗ γtn)(ϕ)

∣∣∣ ≤ ε̂T

(
n(n− 1)

N

)
(γt1 ⊗ · · · ⊗ γtn)(1I)

with the pair of mappings (εT , ε̂T ) from R+ into itself given by

ε̂T (a) = a+ 4(1− exp[−auTT ]) + 2 (exp([exp(uTT )− 1]auTT )− 1)
εT (a) = 2[(ε̂T (a) + ε̂T (4a) + 2ε̂T (a)) ∧ 1]

Notice that

lim
a→0+

ε̂T (a)
a

= 1 + 2uTT (1 + exp(uTT )) and lim
a→0+

εT (a)
a

= 14 + 28uTT [1 + exp(uTT )]

The proof of these two theorems are respectively housed in section 3, and in section 4,
following the spirit prevailing in [5] and [6], for the elementary particle density profiles η(N)

t .
The propagations of chaos properties presented in theorem 1.1, will be deduced from the
estimates stated in theorem 1.2, combined with two elementary coupling arguments. These
pair of coupling techniques are presented in sections 4.1, and section 4.2.

We end by noting that our main task will be to find out nice martingales. This will
hopefully prepare the way for central limit theorems, exponential estimates or other similar
developments. Finally, we think that the study of the tensorized empirical measures could
be developed further. At least it illustrates the flexibility of the semigroup approach and
makes clear some links with the general theory of measure valued processes (cf. [2]).
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2 Description of the model

As promised, we try in this paper to work under very minimal assumptions, in order to fix
a robust framework and to see which unnecessary structures (mainly the topological ones)
can be removed from our previous works. To fulfill this side goal, our approach will have to
differ in some aspects from the one presented in [6], but it will be adapted to the proof of
the strong propagation of chaos, which in the end will (almost) always be satisfied. Doing
so, we will show that even the weak condition considered in [6] was in fact useless to get
the weak propagation of chaos. The principal difference is that the Markovian process X
will be very general, and in particular we will make no explicit reference to the “carrés du
champ”. At the present stage, we are still wondering if this set-up is sufficient to obtain the
central limit theorem shown in [6], but this question will not be investigated here.

2.1 General conditions

We begin with presenting the rigorous definition of the objects entering into the composition
of the r.h.s. of (1). The measurable process X appearing in (1) will be defined as a canonical
coordinate process, under an appropriate “inhomogeneous” family of probabilities, ensuring
that it satisfies the Markov property. So, the first problem to be tackled is the definition
of the space of “canonical trajectories”: A priori, one would just consider M(R+, E) the
set of all measurable paths from R+ to E, but as we will try to explain it later, this space
is too large to be handled efficiently. Nevertheless X = (Xt)t≥0 will denote the related
process of canonical coordinates or its restriction to any of the subset of M(R+, E). We
make the assumption that we are given a nonempty set M(R+, E) ⊂ M(R+, E) satisfying
the condition (H1) which consists in the next two properties.

• If we are given a sequence (ωi)i≥0 of elements of M(R+, E) and an increasing sequence
(ti)i≥0 of nonnegative real numbers, satisfying t0 = 0 and limi→∞ ti = +∞, then the
element ω ∈ M(R+, E) defined by

∀ i ≥ 0, ∀ ti ≤ s < ti+1, Xs(ω) = Xs(ωi)

belongs to M(R+, E).

• Let M(R+, E) be the σ-field generated by the coordinates (Xt)t≥0 on M(R+, E). Then
the mapping

R+ ×M(R+, E) 3 (t, ω) 7→ Xt(ω) ∈ E

is R+ ⊗M(R+, E)-measurable, where R+ denotes the usual Borelian σ-field on R+

(quite similarly, for any Borelian set I ⊂ R+, RI will stand for the trace of R+ on
I).

We discuss condition (H1) at the end of this section, but in the whole subsequent devel-
opment, we assume that a particular element � ∈ M(R+, E) has been chosen (it often plays
the role of a cemetery point). For t ≥ 0, let M([t,+∞[, E) ⊂ M([t,+∞[, E) be the image of
M(R+, E) under the mapping (Xs)s≥t; it is the set of all “admissible” paths after time t. We
endow it naturally with the σ-field M([t,+∞[, E) generated by the variables {Xs : s ≥ t}.
As usually, we also need to consider on M([t,+∞[, E) the filtration (M([t, s], E))s≥t, for
any interval I of R+, M(I, E) will designate σ(Xu ; u ∈ I) Note that for 0 ≤ t ≤ s, the
mapping

[t, s]×M([t,+∞[, E) 3 (u, ω) 7→ Xu(ω) ∈ E

is R[t,s]⊗M([t, s], E)-measurable. Our main object is a given family (Pt,x)t≥0, x∈E of proba-
bilities respectively defined on
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(M([t,+∞[, E),M([t,+∞[, E)) and satisfying an initial condition parametrization prop-
erty: for all t ≥ 0 and x ∈ E, we have Xt ◦ Pt,x = δx, the Dirac mass at x. We also use a
regularity property: for all t ≥ 0 and A ∈M([t,+∞[, E), the mapping

E 3 x 7→ Pt,x[A]

is E-measurable.Finally, it useful to have the following Markovian compatibility property:
for all 0 ≤ t ≤ s, all x ∈ E and all A ∈ M(]s,+∞[, E), we have Pt,x-a.s. the following
equality for the conditional expectation:

Pt,x[A|M([t, s], E)] = Ps,Xs [A]

Taking into account the initial condition parametrization, it appears that this equality is in
fact true for all A ∈M([s,+∞[, E), but reciprocally, note that this “extended” assumption
does not imply the initial condition parametrization property. From now on, such a family
will be called Markovian.

Thus for all fixed (t, x) ∈ R+ × E, the process (Xs)s≥t is Markovian under Pt,x. More
generally, using the measurability assumption above, for any distribution η0 ∈ P(E), we
can define a probability Pη0 on (M([0,+∞[, E),M([0,+∞[, E)), by stating that

∀ A ∈M([0,+∞[, E), Pη0 [A] =
∫

E
P0,x[A] η0(dx)

(Eη0 will stand for the expectation relative to Pη0 , the probability η0 ∈ P(E) being fixed,
and in (1) we should now replace E by Eη0). Then X = (Xs)s≥0 is also easily seen to be
Markovian under Pη0 , and the distribution of X0 is η0. As t ≥ 0 varies, the probabilities
Pt,x, for x ∈ E, are defined on different measurable spaces, and this fact can be annoying
for the formulation of some properties. So for any fixed t ≥ 0, we introduce the injection

It : M([t,+∞[, E) → M(R+, E)

defined by

∀ s ≥ 0, ∀ ω ∈ M([t,+∞[, E), Xs(It(ω)) =
{
Xs(�) , for s < t
Xs(ω) , for s ≥ t

This mapping is clearly measurable, so it enables us to see Pt,x as a probability on (M(R+, E),
M(R+, E)), for all x ∈ E, and we will keep abusing of the same notation (i.e. “Pt,x =
It ◦ Pt,x”).

Our second and principal hypothesis just says that the Markovian family has some “time
regularity”:

(H2) For all A ∈M(R+, E), the mapping

R+ × E 3 (t, x) 7→ Pt,x[A]

is R+ ⊗ E-measurable.

As a consequence of monotonous class theorem, it appears that for all bounded measur-
able functions f : R+ × E ×M(R+, E), the mapping

R+ × E 3 (t, x) 7→
∫
f(t, x, ω) Pt,x(dω)

is measurable. Let us now introduce some functions which will be very interesting in the
subsequent development. For all fixed T ≥ 0, V ∈ Bb([0, T ]×E) and ϕ ∈ Bb(E), we define
the mapping

FT,V,ϕ : [0, T ]× E 3 (t, x) 7→ Et,x

[
exp

(∫ T

t
Vs(Xs) ds

)
ϕ(XT )

]
(4)
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The consideration of the assumptions (H1) and (H2) and the measurability part of
Fubini theorem enable us to see that FT,V,ϕ is indeed R[0,T ] ⊗ E-measurable. But this
mapping has some more interesting properties. We associate to the family (Pt,x)t≥0, x∈E

the following general time-space martingale problems: for every fixed T ≥ 0, we denote by
AT the vector space of functions f ∈ Bb([0, T ]×E) for which there exists another function
LT (f) ∈ Bb([0, T ]×E) such that for every fixed (t, x) ∈ [0, T ]×E, the process (Mt,s(f))t≤s≤T

defined by

∀ t ≤ s ≤ T, Mt,s(f) = f(s,Xs)− f(t,Xt)−
∫ s

t
LT (f)(u,Xu) du (5)

( = M0,s(f)−M0,t(f) )

is a (M([t, s], E))t≤s≤T -martingale under Pt,x.
In this article the martingales will not be implicitly supposed to be càdlàg (a.s.), because

this is not relevant to our setting. More accurately, noncàdlàg martingales appear naturally
in our calculations, even if we had made more restrictive assumptions (cf. [6]), and in fact
these occurrences contributed to our choice of an extended set-up. But when we will need
elementary stochastic calculus, we will have to consider a càdlàg version of the martingales
at hand, and each time we have carefully verified that one can carry out the classical
modification via an extension of the filtration (e.g. see [7], note also that all our martingales
will be bounded). An example of the kind of the manipulations we have to resort to will be
developed in the proof of lemma 2.1 below. Notice that LT (f) may not be uniquely defined
by f ∈ AT (but again we will keep abusing of these notations), nevertheless this is not
really important, since for martingale problems, one can consider multivalued operators, cf
[8]. Here is the only preliminary result we will need, and which is somewhat well known in
the theory of Feynman-Kac formulae:

Lemma 2.1 For all fixed T > 0, V ∈ Bb([0, T ] × E) and ϕ ∈ Bb(E), the mapping FT,V,ϕ

belongs to AT , and we can (and will) take

∀ 0 ≤ t ≤ T, ∀ x ∈ E, LT (FT,V,ϕ)(t, x) = −Vt(x)FT,V,ϕ(t, x)

Proof: We have already seen above that FT,V,ϕ ∈ Bb([0, T ] × E). Now let us denote for
any fixed T > 0, V ∈ Bb([0, T ]× E) and ϕ ∈ Bb(E),

∀ 0 ≤ t ≤ T, Nt = FT,V,ϕ(t,Xt)

we will show that (Nt − N0 +
∫ t
0 Vs(Xs)Ns ds)0≤t≤T is a (a priori not necessarily càdlàg)

martingale under Pη0 , for any given η0 ∈ P(E). The more general requirement (for all initial
conditions (t, x) ∈ [0, T ] × E . . . ) is proved in the same way, and the announced results
follow. The Markov property of X implies that the process (Mt)0≤t≤T defined by

∀ 0 ≤ t ≤ T, Mt = exp
(∫ t

0
Vs(Xs) ds

)
Nt

= Eη0

[
exp

(∫ T

0
Vs(Xs) ds

)
ϕ(XT )

∣∣∣∣M([0, t], E)
]

is a martingale. As we have no information about its time regularity (except the measurabil-
ity), we will go into all the details of the calculations, which otherwise would be immediate
(just remove the subscripts + from (6)). Let N be the set of all Pη0-negligeable subsets, we
denote for t ≥ 0, M+

t = N ∨
⋂

s>tM([0, s], E) and M+
t = lim sups∈Q∩]t,+∞[, s→tMs. It

is well known (see for instance [7]) that (M+
t )t≥0 is a (M+

t )t≥0 càdlàg martingale such that
for all t ≥ 0, a.s.,

Mt = Eη0 [M
+
t |M([0, t], E)]
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With some obvious notations, we have

N+
t = exp

(
−
∫ t

0
Vs(Xs) ds

)
M+

t

= N0 +
∫ t

0
exp

(
−
∫ s

0
Vu(Xu) du

)
dM+

s −
∫ t

0
Vs(Xs)N+

s ds (6)

So let s ≥ 0 and A ∈M([0, s], E) be given, from the previous equality we get that

E
[(
N+

t −N+
s +

∫ t

s
Vu(Xu)N+

u du

)
1IA

]
= 0

nevertheless what we do want to show is

E
[(
Nt −Ns +

∫ t

s
Vu(Xu)Nu du

)
1IA

]
= 0

Now, it is quite clear that

E[N+
t 1IA] = E[Nt1IA] and E[N+

s 1IA] = E[Ns1IA]

Using the fact that the mapping

[s, t]×M(R+, E) 3 (u, ω) 7→ Vu(Xu(ω))Nu(ω)

is measurable and Fubini’s theorem, we obtain that

E
[(∫ t

s
Vu(Xu)N+

u du

)
1IA

]
=

∫ t

s
E
[
Vu(Xu)N+

u 1IA
]
du

=
∫ t

s
E [Vu(Xu)Nu1IA] du = E

[(∫ t

s
Vu(Xu)Nu du

)
1IA

]
from which our above assertion follows.

Remarks 2.2:
a) As here we will mainly work with a finite horizon T ≥ 0, i.e. we will only consider the

restriction of the Markovian family to the path space M([0, T ], E), we could have replaced
the first point of (H1) by the simplest following one:

• If ω0 and ω1 are elements of M(R+, E) and t > 0 is given, then the element ω ∈
M(R+, E) defined by

∀ s ≥ 0, Xs(ω) =
{
Xs(ω0), if s < t
Xs(ω1), if s ≥ t

belongs to M(R+, E).
Then by induction, the first point of (H1) is true, but for finite sequences of times, and

that is the only thing we need on a bounded interval [0, T ].
b) The hypothesis (H1) can be seen as an ersatz for the lack of regularity of the trajec-

tories, and from this point of view, its important condition is the second point, which corre-
sponds to the traditional notion of progressive process. In fact, as soon as E is not a trivial
σ-algebra, M(R+, E) does not satisfy (H1): just note that for any given A ∈ σ(Xt ; t ≥ 0),
there exist a sequence (ti)i≥0 of nonnegative real numbers and a measurable set A′ ∈ E⊗N

such that

A = {ω ∈ M(R+, E) : (Xti(ω))i≥0 ∈ A′}
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But let ϕ ∈ Bb(E) taking at least the two values 0 and 1. Then the previous character-
isation shows that the set

{ω ∈ M(R+, E) :
∫ 1

0
ϕ(Xu(ω)) du > 0}

cannot belong to σ(Xt ; t ≥ 0), whereas it should if M(R+, E) was to verify (H1).
c) To the Markovian family (Pt,x)t≥0, x∈E , we can associate the semigroup (Ps,t)0≤s≤t,

whose elements act on Bb(E) via the formulae:

∀ 0 ≤ s ≤ t, ∀ ϕ ∈ Bb(E), ∀ x ∈ E, Ps,t(ϕ)(x) = Ft,0,ϕ(s, x)

Due to our definition of the σ-algebras M([t,+∞[, E), for t ≥ 0, it is classical to see
that the semigroup determines the Markovian family (Pt,x)t≥0, x∈E .

For all T ≥ 0, we will denote the vector space

BT
def.= {FT,0,ϕ ; ϕ ∈ Bb(E)} ⊂ AT

Now let (P̃t,x)t≥0, x∈E be another Markovian family whose time-space generators are the
(ÃT , L̃T ), for T ≥ 0. As a consequence of the above discussion, if we assume that for all
T ≥ 0, (ÃT , L̃T ) is an extension of (BT , LT ), i.e. BT ⊂ ÃT and L̃T |BT

= LT |BT
, then we

have (P̃t,x)t≥0, x∈E = (Pt,x)t≥0, x∈E .
In particular, the family (AT , LT )T≥0 is characteristic of (Pt,x)t≥0, x∈E , i.e. the abstract

martingale problems uniquely determine the Markovian family.
d) The definition of a Markovian family and the condition (H2) could also be considered

with respect to other σ-fields verifying the second point of (H1) on our sets of paths (in which
cases one has in addition to assume the measurability of the mapping appearing in remark
(a) above). But taking into account our particular choice of M(R+, E) and monotonous
class arguments, they can be simplified and expressed through the associated semigroup:
for instance the condition (H2) is equivalent to

(H′2) For all T ≥ 0 and all A ∈ E, the mapping

[0, T ]× E 3 (t, x) 7→ Pt,T (1IA)(x)

is R[0,T ] ⊗ E-measurable.

Thus in this situation it appears that the role of the particular path � entering in the
definition of the injections It, for t ≥ 0, is not very important: for instance (H2) would not
have been affected if we had chosen to let � depend in a measurable way on Xt(ω) (e.g. we
could have rather considered for any t ≥ 0 the injection defined by Xs ◦ It = Xs∨t for every
s ≥ 0, except that it is not so natural to assume that M(R+, E) contains all constant paths,
as we will see it in section 5).

e) The role of T > 0 in the definition of the generator (AT , LT ) is not innocent: in the
same way, we could have considered (A, L) the generator acting on measurable and locally
bounded functions defined on R+ × E for which the martingale problems are satisfied, but
it can be shown (for instance in the case of the real Brownian motion) that (AT , LT ) can
be a strict extension of the natural restriction of (A, L) on Bb([0, T ] × E). Also note that
there are some links between (A, L) and the full generators defined in [8], but they are not
strictly the same, in particular due to the inhomogeneity in time.

f) A traditional object in related set-ups is the family (θt)t≥0 of the time shifts acting
on M(R+, E), which are defined by

∀ t, s ≥ 0, ∀ ω ∈ M(R+, E), Xs(θt(ω)) = Xt+s(ω)

8



and more precisely, for t ≥ 0 given, θt is a measurable map from (M([t,+∞[, E), σ(Xs ; s ≥
t)) to (M(R+, E), σ(Xs ; s ≥ 0)). But with our definition of the M([t,+∞[, E), for t ≥ 0, it
is not clear that the image of M([t,+∞[, E) under θt is included into M(R+, E) (e.g. if the
random variables Xt naturally take values in different subsets of E as t ≥ 0 varies, see for
instance the end of this remark).

Nevertheless, if we assume in addition that for all t ≥ 0, θt(M([t,+∞[, E)) ⊂ M(R+, E),
then (H2) is easily seen to be equivalent to

(H′′2) For all A ∈M(R+, E) the mapping

R+ × E 3 (t, x) 7→ Pt,x[θ−1
t (A)]

is R+ ⊗ E-measurable.
Note that this hypothesis is just asking for the time-homogeneous Markov process

(t,Xt)t≥0 “with sufficiently regular trajectories” to admit a measurable kernel of transi-

tion probabilities from R+×E to M(R+,R+×E) def.= D(R+,R+)×M(R+, E). So under the
condition (H′′2), there is no lost of generality to restrict ourself to the time-homogeneous
case, for which (H2) is automatically fulfilled. This may seem as a very mild assumption,
but one has sometimes to be careful about conditioning in just measurable settings, because
of the lack of “regular” version (in fact our hypothesis on the Markov family consists in
assuming the existence of regular conditional expectations, as we cannot deduce it from
properties of the state space, and we will be able to construct every other conditional distri-
butions we will need in terms of these ones). In the same spirit, recall that every stochastic
process can be seen as an homogeneous Markov process, if the state space is sufficiently
enlarged, so one can extend our setting to more general situations if one is able to check the
existence of a measurable version of conditional probabilities (but in general this regularity
property requires more structure on the new state space which is now a set of paths), see
the example of development presented in section 5.

g) Finally let us note that the corresponding discrete time problem can be imbedded in
our setting: there everything starts with a time-inhomogeneous family of transition proba-
bilities (Pn)n≥0 on a measurable space (E, E) and a family (gn)n≥0 of functions belonging
to Bb(E) and satisfying gn ≥ 1 for all n ≥ 0. Then one is interested in estimating the
probability defined for any n ≥ 0 by

ηn(ϕ) def.=
Eη0

[
ϕ(Xn)

∏
0≤m≤n−1 gm(Xm)

]
Eη0

[∏
0≤m≤n−1 gm(Xm)

]
where (Xm)m≥0 is a Markov chain whose transition are given by the family (Pm)m≥0 and
whose initial law is a chosen probability η0 on (E, E), and where ϕ ∈ Bb(E) is just a test
function. Let the set M(R+, E) consists of trajectories ω ∈ M(R+, E) for which there exist
an increasing sequence (ti)i≥0 of elements of R̄+, satisfying t0 = 0 and limi→∞ ti = +∞,
and a sequence (xi)i≥0 of elements of E, such that

∀ i ≥ 0, ∀ ti ≤ s < ti+1, Xs(ω) = xi

There is no problem in constructing a Markovian family (Pt,x)t≥0, x∈E on M(R+, E) associ-
ated to the previous discrete time model, through the operation

(Xn)n≥0 ∈ EN 7→ (Xbtc)t≥0 ∈ M(R+, E)

where b·c denote the integer part. Let us also introduce the function U(t, x) = ln(gbtc(x)),
then it appears that for n ∈ N, the measure ηn is also given by (1), so we can just use the
following considerations to device an efficient algorithm and to derive estimates on it. But
in [4] we have presented a related direct discrete time approach.
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2.2 Bounded perturbations of generators

In the last subsection, we have presented a way to associate to any Markovian family
(Pt,x)t≥0, x∈E an abstract generator (AT , LT ), for all given T ≥ 0. Here we will show how
one can add some bounded operators to this generator, and we will study the perturbations
induced by this kind of manipulations. If it was not for the generality of our setting, these
would be standard results (cf. for instance [1] or [8]), but in our situation we have to be a
little more careful. There are two main motivations for these considerations:

- They give another family of simple and useful examples of functions belonging to AT .
- They will enable us to construct the approximating interacting particle systems in

subsection 2.4 and to deduce some of their interesting features.
So again we consider a Markovian family (Pt,x)t≥0, x∈E and for T ≥ 0, let (AT , LT ) be

its associated generator on [0, T ]×E. Let R̂ be a locally bounded nonnegative kernel from
R+ × E to E, which is a mapping (R+ × E) × E → R+ such that for any (t, x) ∈ R+ × E,
the mapping E 3 A 7→ R̂((t, x), A) is a nonnegative measure, for any A ∈ E , the function
R+ × E 3 (t, x) 7→ R̂((t, x), A) is measurable, and finally for all T ≥ 0, we have

sup
(t,x)∈[0,T ]×E

r(t, x) < +∞

where for every (t, x) ∈ [0, T ] × E, we took r(t, x) = R̂((t, x), E) = maxA∈E R̂((t, x), A).
Sometimes, we will write R̂(t, x) for the measure E 3 A 7→ R̂(t, x, A) ∈ R+. To such a kernel
we can associate the operator R on Bb(R+×E) (which should be seen as a locally bounded
time-inhomogeneous family of generators on Bb(E), under the interpretation of R̂(t, x, A)
as the intensity of the occurrence of a jump from x ∈ E to A ∈ E at time t ≥ 0, at least if
x 6∈ A) defined for any f ∈ Bb(R+ × E), and (t, x) ∈ (R+ × E), by

R(f)(t, x) =
∫
f(t, y) R̂((t, x), dy)− r(t, x)f(t, x)

For T ≥ 0, we also denote by RT the natural restriction of R on Bb([0, T ]× E).
Our first objective is to construct a Markovian family (P̂t,x)t≥0, x∈E such that for all

T ≥ 0, its generator (ÂT , L̂T ) is an extension of (AT , LT + RT ) To this end, we begin by
considering homogeneous Markov chains on R̄+ × M(R+, E), endowed with its natural σ-
algebra, whose transition probability kernel P̌ is defined for any (t, ω) ∈ (R+ ×M(R+, E)),
I ∈ R+, and A ∈M(R+, E) by

P̌ ((t, ω), I ×A) =∫
R+×E

1II(t+ s) exp
(
−
∫ s

0
r(t+ u,Xt+u(ω)) du

)
R̂((t+ s,Xt+s(ω)), dy)Pt+s,y[A] ds

The missing mass of P̌ ((t, ω),R+ ×M(R+, E)) is reported to (+∞, �), by setting

P̌ ((+∞, �), · ) = δ(+∞,�)( · )

Due to our hypotheses, especially the second point of (H1) and (H2), there is no real
problem in verifying the measurability properties traditionally assumed for a probability
kernel. Then according to theorem of Ionescu Tulcea (cf. for instance [12]), for all (t, ω) ∈
R+×M(R+, E) there exists a unique probability P̌t,ω on (R̄+×M(R+, E))N (endowed with
its natural product σ-field) under which the canonical coordinate chain is Markovian with P̌
as transition probability kernel and starts from the initial distribution δ(t,ω). Furthermore,
for all measurable subset A ⊂ (R̄+ ×M(R+, E))N, the next mapping is measurable

R+ ×M(R+, E) 3 (t, ω) 7→ P̌t,ω[A]
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Let Ě be the set of elements x = (ti, yi)i≥0 ∈ (R̄+ ×M(R+, E))N such that there exists an
index 0 < i∞ ≤ ∞ satisfying

∀ i ≥ 0, i < i∞ ⇒ ti < ti+1 and i ≥ i∞ ⇒ (ti, yi) = (+∞, �)

We equip this set with the σ-algebra Ě inherited from (R[0,+∞] ⊗M(R+, E))⊗N. Notice
that each P̌t,ω, for t ∈ R+ and ω ∈ M(R+, E), is in fact a probability on (Ě, Ě), and from
this point of view, the family (P̌t,ω)t≥0, ω∈M(R+,E) obviously retains the same measurability
regularity. On the other hand, we can define on this domain the mapping Φ : Ě → M(R+, E)
given by

∀ x ∈ Ě, ∀ i ≥ −1, ∀ ti ≤ s < ti+1, Xs(Φ(x)) = Xs(yi)

where we have used the same notations as before for elements of Ě, and with the convention
that t−1 = 0 and x−1 is the a priori fixed path �. Due to the first point of hypothesis (H1),
Φ(x) really lives in M(R+, E). This mapping Φ is also clearly measurable. Now let us define
for all (t, x) ∈ R+ × E, P̂t,x = Φ(P̌t,x), with the probability P̌t,x on Ě given by

∀ A ∈ Ě , P̌t,x(A) =
∫

P̌t,ω(A) Pt,x(dω)

Notice that for t ≥ 0 and in the sense of the injection It, P̂t,x can be seen as a probability
on M([t,+∞[, E). It is time to check that the family obtained by putting together these
probabilities will do the desired job.

Proposition 2.3 The family (P̂t,x)t≥0, x∈E is Markov, and it satisfies (H2). Furthermore,
for any fixed T ≥ 0, we have AT ⊂ ÂT and for all f ∈ AT , L̂T (f) = LT (f) +RT (f).

Proof: The measurability requirements (in particular (H2)) follow from the above
considerations. In contrast with the approach followed by Ethier and Kurtz in [8], here it
is not sufficient to consider the underlying martingale problems (i.e. to merely prove the
second part of the proposition) to insure the validity of Markov property in the general way
we have defined it; we are only allowed to play with the very basic objects we have just
introduced. That is why the subsequent proof is quite too long and should be admitted at
a first reading. Thus, we are wondering if for all 0 ≤ t < s, all x ∈ E, all A ∈ M([t, s], E)
and all B ∈M(]s,+∞[, E), we have

P̂t,x[A ∩B] = Êt,x[1IAP̂s,Xs [B]]

Let us denote Ǎ = Φ−1(A) and B̌ = Φ−1(B). Clearly, it is equivalent to show that

P̌t,x[Ǎ ∩ B̌] = Ět,x[1IǍ P̂s,Xs◦Φ[B]] (7)

To show these equalities are true, we consider for fixed s ≥ 0, the function

Hs : R̄+ ×M(R+, E) → [0, s]×M([0, s], E)× [s,+∞]×M([s,+∞[, E)
(u, ω) 7→ (s ∧ u, (Xt(ω))0≤t≤s, s ∨ u, (Xt(ω))s≤t)

We denote by (Žn)n≥0 the canonical coordinates on Ě and next we naturally write for n ≥ 0,

(Tn, Zn, T
′
n, Z

′
n) def.= Hs(Žn)

Let us also define the integer variable

N = inf{n ≥ 0 : Tn = s}
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which is P̌t, x-a.s. finite under our local boundedness condition on U . Then, at least on
{N ≥ 1}, we notice (e.g. by applying monotonous class theorem) that

Ǎ ∈ σ(Žn∧(N−1) ; n ≥ 0)

B̌ ∈ σ(Žn+N−1 ; n ≥ 0)

More precisely, there exist Ă ∈ (R[0,s] ⊗ M([0, s], E))⊗N and B̆ ∈ (R[s,+∞[⊗
M(]s,+∞[, E))⊗N such that

Ǎ = {(Tn∧(N−1), Zn∧(N−1))n≥0 ∈ Ă}
B̌ = {(T ′n+N−1, Z

′
n+N−1)n≥0 ∈ B̆}

Unfortunately, the fact that N −1 is not a stopping time prevents us from applying directly
strong Markov property for (Žn)n≥0 under P̌t,x.

But the interest of the previous objects is that the chain (Z ′
n−1, T

′
n, Zn, Tn+1)n≥0 is also

Markovian under P̌t,x, with the convention that Z ′
−1 = � (also identified with its restriction

to the interval [s,+∞[). More precisely, for fixed 0 ≤ t < s, its initial distribution is
δ� ⊗ δs ⊗mt,x, where mt,x is the probability defined on M([0, s], E)× [0, s] by

∀ C ∈M([0, s], E), ∀ I ∈ R[0,s],

mt,x(C × I) = Pt,x

[
1IC((Xv)0≤v≤s)

{∫ s

t
1II(w)r(w,Xw) exp

(
−
∫ w

t
r(w′, Xw′) dw′

)
dw

+1II(s) exp
(
−
∫ s

t
r(w,Xw) dw

)}]
We check that its probability transition kernel P̆ satisfies

P̆ ((z′, u′, z, u), C ′ × I ′ × C × I) =

1I{u<s}

[
Ps,Xs(z)[C

′]1II′(s)
∫

E
R̃(u,Xu(z), dy)Eu,y

[
1IC((Xv)0≤v≤s)

{
1II(s) exp

(
−
∫ s

u
r(w,Xw) dw

)
+
∫

[u,s[
1II(w)r(w,Xw) exp

(
−
∫ w

u
r(w′, Xw′) dw′

)
dw
}]]

+1I{u=s=u′}

[
Es,Xs(z)

[
1IC′((Xv′)v′≥s)

∫
]s,+∞[∩I′

r(v,Xv) exp
(
−
∫ v

s
r(w,Xw) dw

)
dv
]
1IC(�)1II(s)

]
+1I{u=s,u′>s}

[ ∫
E
R̃(u′, Xu′(z′), dy)Eu′,y

[
1IC′((Xv′)v′≥s)

∫
]u′,+∞[∩I′

r(v,Xv)

exp
(
−
∫ v

u′
r(w,Xw) dw

)
dv
]
1IC(�)1II(s)

]
for any (z′, u′, z, u) ∈ M([s,+∞[, E)× [s,+∞[×M([0, s], E)× [0, s], and any (C ′, I ′, C, I) ∈
M([s,+∞[, E)×R[s,+∞[ ×M([0, s], E)×R[0,s]. In the above displayed formulae, the new
probability kernel R̃ from R+ × E to E is given by the renormalization

∀ u ≥ 0, ∀ x ∈ E, R̃(u, x) =
{
R̂(u, x)/r(u, x) , if r(u, x) > 0
δ� , otherwise

Notice that P̌t,x-a.s. and for any n ≥ 0, either Tn+1 = +∞ or r(Zn, Tn+1) > 0, and where
as usual the possible missing mass is put on (�,+∞, �, s), which is also assumed to be a
cemetery point.

Let us denote P̆z′,u′,z,u the law of a Markov chain (Z̆ ′
n, T̆

′
n, Z̆n, T̆n)n≥0 starting from

(z′, u′, z, u), with kernel P̆ . Then we are in position to apply strong Markov property to
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the stopping time N − 1 with respect to the chain (Z ′
n−1, T

′
n, Zn, Tn+1)n≥0, and we get for

x ∈ E and 0 ≤ t < s (which also insures that P̌t,x-a.s. N ≥ 1),

P̌t,x[Ǎ ∩ B̌] = Ět,x[1IĂ((Tn∧(N−1), Zn∧(N−1))n≥0)1IB̆((T ′n+N−1, Z
′
n+N−1)n≥0)]

= Ět,x[1IĂ((Tn∧(N−1), Zn∧(N−1))n≥0)P̆Z′N−2,s,ZN−1,s[1IB̆((T̆ ′n, Z̆
′
n+1)n≥0)]]

We observe that for any (z, z′) ∈ M([0, s], E)×M([s,+∞[, E), the law of (T̆ ′n, Z̆
′
n+1)n≥0

under P̆z′,s,z,s is P̌s,Xs(z). Thus, (7) follows from the fact that P̌s,Xs(z)[B̆] = P̂s,Xs(z)[B],
and from the P̌t,x-a.s. equality Xs ◦ Φ = Xs(ZN−1). We have shown that (P̂t,x)t≥0,x∈E is a
Markovian family, it thus remains to verify the affirmation about the generators. Firstly,
we notice that that it suffices to check that for any 0 ≤ t ≤ s ≤ T , x ∈ E, and any f ∈ AT ,

Êt,x

[
f(s,Xs)− f(t,Xt)−

∫ s

t
L̂T (f)(u,Xu) du

]
= 0 (8)

If in addition we knew that the mapping r : R+×E → R+ is constant, we could transpose
the usual arguments given by Ethier and Kurtz in the proof of proposition 10.2 p. 256 of [8]
to verify this equality (their processes are assumed to be càdlàg so they are allowed to use
the notation Xu−, and in our setting this has to be interpreted in the following sense: let
us come back to notations introduced before proposition 2.3 and consider x ∈ Ě, if there
exists 1 ≤ i < i∞ such that u = ti, then we denote Xu−(Φ(x)) = Xu(yi−1), otherwise we
take Xu−(Φ(x)) = Xu(Φ(x)) = Xu(yi) . . . ). Nevertheless, it is well-known that the general
situation can be reduced to the previous case via an acceptation/rejection procedure: at
each of more frequently selected times, there is more probability that the process stay at
the present position, so these instants are only proposed jump times. We begin by noting
that the law of (Xu)t≤u≤s under P̂t,x and the values of L̂T (f)(u, y), for t ≤ u ≤ s and y ∈ E,
only depend on the restriction of R̂ on [t, s]× E × E , so to prove (8), we can assume that

r
def.= sup

(u,y)∈R+×E
r(u, y) < +∞

Under this extra assumption, we construct a new bounded kernel R̂′ from R+ ×E to E via
the formula

∀ (u, y) ∈ R+ × E, R̂′(u, y) = R̂(u, y) + (r − r(u, y))δy

This kernel admits the required regularity conditions, and r′(u, y) = r, but R′
T = RT . Argu-

ing as above, we construct from R̂′ and (Pu,y)(u,y)∈R+×E the Markovian family
(P̂′u,y)(u,y)∈R+×E . According to the previous case, we have for any f ∈ A′

T

AT ⊂ Â′
T and L̂′T (f) = LT (f) +RT (f)

Therefore, to prove (8) it suffices to check that P̂′t,x = P̂t,x. This is a classical computation
based on one hand on the fact that for the construction of the P̂u,y, for t ≤ u ≤ s and
y ∈ E, the difference of the proposed jump times are mutually independent, independent
of the trajectories between these proposed times and distributed as exponential variables of
parameter r, and on the other hand on the following elementary observation.

Lemma 2.4 Let (τn)n≥1 be a sequence of independent exponential random variables of pa-
rameter r and let (Vn)n≥1 be a sequence of independent uniform random variables on [0,1],
both families are furthermore assumed to be independent of each other. Let g : R+ → [0, 1]
be a given measurable mapping. If we set

N = inf{n ≥ 1 : Vn ≤ g(τ1 + · · ·+ τn)} ≤ +∞ and T =
∑

1≤n<N+1

τn ≤ +∞
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then the distribution of T is defined by

∀ u ≥ 0, P[T > u] = exp
(
−r
∫ u

0
g(v) dv

)
This result is applied, for any fixed t ≤ u ≤ s and any trajectory ω ∈ M([u,+∞[, E), with
g : R+ 3 v 7→ r(u+ v,Xu+v(ω))/r, but the easy proofs are left to the reader (one has just
to take into account the fact that at the proposed jump times “corresponding” to the mass
r − r(u, y), the process remains at the same place, so one is able to use Markov property
at these times for the family (Pu,y)u≥0, y∈E). We have seen that (ÂT , L̂T ) is an extension of
(AT , LT +RT ), for T ≥ 0. We can go even further, because the converse is also true.

Proposition 2.5 For ny T ≥ 0, we have (ÂT , L̂T ) = (AT , LT +RT ).

Proof: Let T > 0 be fixed, and f ∈ ÂT be given. We have to show that for all fixed
0 ≤ t ≤ s ≤ T and all fixed x ∈ E,

Et,x

[
f(s,Xs)− f(t,Xt)−

∫ s

t
(L̂T −RT )(f)(u,Xu) du

]
= 0 (9)

since it will then follow that f ∈ AT and that LT (f) = L̂T (f) − RT (f). This is a “local”
result, so once again, we can assume that the mapping r(·, ·) is constant.

We will work under the probability P̌t,x, the random variable T1 stands for the first
proposed jump time appearing (T1 − t follows an exponential law of parameter r), XT1− is
defined as it was at the end of the proof of proposition 2.3, and Pt,x is seen as the law of

X
def.= (Xu)u≥t. With these notations, we can write

(f(s,Xs)− f(t,Xt))1IT1≤s = (f(s,Xs)− f(T1, XT1))1IT1≤s + (f(T1, XT1)− f(T1, XT1−))1IT1≤s

+(f(T1, XT1−)− f(t,Xt))1IT1≤s

But we notice that by construction, X admits a strong Markov property with respect to the
time T1, so using the fact that f ∈ AT , we get

Ět,x[(f(s,Xs)− f(T1, XT1))1IT1≤s] = Ět,x[1IT1≤sĚT1,X1 [f(s,Xs)− f(T1, XT1)]]

= Ět,x

[
1IT1≤sĚT1,X1

[∫ s

T1

L̂T (f)(u,Xu) du
]]

= Ět,x

[∫ s

s∧T1

L̂T (f)(u,Xu) du
]

On the other hand, it is quite clear that by the properties of T1,

Ět,x[(f(T1, XT1)− f(T1, XT1−))1IT1≤s] = Ět,x[RT (f)(T1, XT1−)1IT1≤s]/r

=
∫ s

t
Et,x[RT (f)(u,Xu)] exp(−r(u− t)) du

and

Ět,x[(f(T1, XT1−)− f(t,Xt))1IT1≤s] = r

∫ s

t
Et,x[f(u,Xu)− f(t,Xt)] exp(−r(u− t)) du

Let us denote for t ≤ s ≤ T , g(s) def.= Et,x[f(s,Xs)− f(t,Xt)], we have

g(s) =
Ět,x[(f(s,Xs)− f(t,Xt))1IT1>s]

P̌t,x[T1 > s]

= exp(r(s− t))(Ět,x[f(s,Xs)− f(t,Xt)]− Ět,x[(f(s,Xs)− f(t,Xt))1IT1≤s])
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= exp(r(s− t))
(
Ět,x

[∫ s

t
L̂T (f)(u,Xu) du

]
− Ět,x

[∫ s

s∧T1

L̂T (f)(u,Xu) du
]

−
∫ s

t
Et,x[RT (f)(u,Xu)] exp(−r(u− t)) du− r

∫ s

t
g(u) exp(−r(u− t)) du

)
= exp(r(s− t))

(
Ět,x

[∫ s

t
L̂T (f)(u,Xu)1Iu≤T1 du

]
−
∫ s

t
Et,x[RT (f)(u,Xu)] exp(−r(u− t)) du− r

∫ s

t
g(u) exp(−r(u− t)) du

)
= exp(r(s− t))

(∫ s

t
Et,x

[
L̂T (f)(u,Xu)

]
exp(−r(u− t)) du

−
∫ s

t
Et,x[RT (f)(u,Xu)] exp(−r(u− t)) du− r

∫ s

t
g(u) exp(−r(u− t)) du

)
= exp(r(s− t))

(∫ s

t
Et,x

[
(L̂T −RT )(f)(u,Xu)

]
exp(−r(u− t)) du

−r
∫ s

t
g(u) exp(−r(u− t)) du

)
This differential equation satisfied by

∫ s
t g(u) exp(−r(u− t)) du, for t ≤ s ≤ T , has a unique

continuous solution, which is∫ s

t
g(u) exp(−r(u− t)) du

=
∫ s

t
exp(r(u− s))

∫ u

t
Et,x

[
(L̂T −RT )(f)(v,Xv)

]
exp(−r(v − t)) dv du

Let us give a first consequence of this identity, mentioned at the beginning of this sub-
section and which will be a powerful tool in the subsequent development (because it is the
one which will enable us to remove all regularity assumptions). More precisely, as we will
mainly work with martingales (and not directly with their increasing processes), we need
to know a lot of them, and the following result is a good way to construct some interesting
ones, via the description of new elements of AT . The proof of the next result readily follows
from an elementary combination of lemma 2.1 and proposition 2.5.

Corollary 2.6 Let T > 0 be fixed, and let V ∈ Bb([0, T ]×E) and ϕ ∈ Bb(E) be given. We
consider the function defined for any 0 ≤ t ≤ T , and x ∈ E by

G
T,V,ϕ, bR(t, x) = Êt,x

[
exp

(∫ T

t
Vs(Xs) ds

)
ϕ(XT )

]
The mapping G

T,V,ϕ, bR belongs to AT , and we have

LT (G
T,V,ϕ, bR)(t, x) = −Vt(x)GT,V,ϕ, bR(t, x)−R(G

T,V,ϕ, bR)(t, x)

2.3 Coupling techniques

As we shall see in the subsequent development, it is sometimes useful to compare the initial
Markovian family (Pt,x)t≥0, x∈E with its just constructed modification (P̂t,x)t≥0, x∈E ; at least
in the cases where the perturbation R̂ is small, and one seemingly nice way to do it would be
to couple them. But once again our general and abstract setting does not enable us to work it
out in the traditional way. For instance, even if R̂ ≡ 0 there may not exist the usual Markov
coupling of (Pt,x)t≥0, x∈E with himself (which would satisfy that when the two coordinates
coincide they stay together and so evolve identically, and when they are different they evolve
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independently, up to the (contingently) time when they would be equal). The main difficulty
is that in general it is not clear that the diagonal set 4(E) = {(x, x) ∈ E2 : x ∈ E} belongs
to E ⊗E . Recall that we have even not assumed that (E, E) is separated, but to consider its
natural diagonal

4̄(E) = {(x, y) ∈ E2 : δx = δy}

would not have improved the situation. In order to overcome this difficulty, we will only cou-
ple probabilities (i.e. we look for probabilities on a product space with specified marginals,
e.g. P0,x and P̂0,x, for a fixed x ∈ E) and not Markovian families; in fact our couplings
will not be Markovian processes. This will not be important, because our purpose is to try
to make processes issued from a same position to stay together the longest possible time,
and not (as it is more customary) to attempt to make them come back together if they
are separated. We also have resort to another trick, as we will really be interested in the
diagonal of E×E for general measurable space (E, E). If m is a nonnegative finite measure
on (E2, E⊗2), we will make the convention that

m(4(E)) def.= supm1(E)

where the supremum (which is in fact a maximum) is taken over all nonnegative measures
m1 defined on (E, E) such that m ≥ m2, where m2 is the image of m1 under the mapping
E 3 x 7→ (x, x) ∈ E2. This notion is quite natural, because the classical proof shows that if
µ1 and µ2 are probabilities on (E, E), then there exists a coupling m of them on (E2, E⊗2)
verifying

m(E2)−m(4(E)) =
1
2
‖µ1 − µ2‖tv (10)

As we already mentioned it, we will consider here couplings of probabilities on path spaces,
so we have to be a little more precise about path spaces associated to product state space:
for N ≥ 2, we will always take M(R+, E

N ) = M(R+, E)N . This definition implies that
M(R+, E

N ) = M(R+, E)⊗N , so (H1) is clearly satisfied. A typical example of the kind of
results we are looking for is the following one, where the Markovian family (P̂t,x)t≥0,x∈E is
constructed as in the previous section, starting from (Pt,x)t≥0, x∈E and R̂.

Proposition 2.7 Let T ≥ 0 and x ∈ E be given. Then there exists a coupling P†0,(x,x) of

P0,x and P̂0,x such that

P†0,(x,x)[(Xt)0≤t≤T 6= (X̂t)0≤t≤T ] ≤ 1− exp

(
−T sup

0≤t≤T, x∈E
R̂(t, x, E)

)

(where (Xt, X̂t)t≥0 stands for the canonical coordinate process on M(R+, E
2), and by con-

vention, we have taken P†0,(x,x)[(Xt)0≤t≤T 6= (X̂t)0≤t≤T ] = 1− P0,(x,x)[4(M([0, T ], E))]).

Proof: The horizon T ≥ 0 being fixed, it is sufficient to construct a coupling P†0,(x,x),[0,T ]

on M([0, T ], E2) of the restrictions to M([0, T ], E) of P0,x and P̂0,x, satisfying the required
condition, because it is then immediate to extend it to a coupling over the whole M(R+, E

2),
by letting, after time T , the coordinates evolve independently and respectively according to
(Pt,x)t≥T,x∈E and (P̂t,x)t≥T,x∈E . This remark make it clear that there is no lost of generality
to come down to the situation where the quantity R(t, x, E) does not depend on t ≥ 0 and
x ∈ E, and where its common value is r = sup0≤t≤T, x∈E R(t, x, E), in terms of the initial
kernel. Thus, under this hypothesis we consider a “generalized” Markov family on E2 ×
{0, 1}, (P‡t,x)t≥0, x∈E2×{0,1}, in the sense that it will not verify the first assumption of initial
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parametrization property: For (x, y) ∈ E2, the probability P‡t,(x,y,0) is (P‡t,(x,x) ⊗ δ0[t,+∞[
),

The first factor is the image of the probability Pt,x by the mapping

M([t,+∞[, E) 3 ω 7→ (ω, ω) ∈ M([t,+∞[, E2)

Furthermore, for any t ≥ 0, and any a, a[t,+∞[ stands for the constant path defined over
the time interval [t,+∞[ and always taking the value a. For (x, y) ∈ E2, the probability
P‡t,(x,y,1) is just the tensor product (Pt,x ⊗ P̂t,y ⊗ δ1[t,+∞[

).

To obtain a new generalized Markovian family (P̂‡t,x)t≥0, x∈E2×{0,1}, we construct a per-
turbation of this family by the nonnegative kernel R̂‡ from R+×E2×{0, 1} to E2×{0, 1},
defined for any t ≥ 0, and (x, y, z) ∈ (E2 × {0, 1}), by

R̂‡(t, (x, y, z)) = δx ⊗ R̂(t, y)⊗ δ1

Then let P†0,(x,x) be the image of P‡0,(x,x,0) under the natural projection of M(R+, E
2×{0, 1})

on M(R+, E
2). It is not difficult to convince oneself that it is indeed a coupling of P0,x with

P̂0,x. Furthermore, we have, denoting by (Zt)t≥0 the canonical coordinates on {0, 1},

P†0,(x,x)[(Xt)0≤t≤T 6= (X̂t)0≤t≤T ] ≤ P‡0,(x,x,0)[ZT = 1] = 1− exp(−rT )

because under P‡0,(x,x,0), ZT is distributed as 1I[0,T ](S), where S is an exponential random
variable of parameter r.

The latter coupling is rather crude. Roughly speaking, up to any given time we are
considering only two possibilities: either the trajectories of the two processes coincide, either
they are different. But we will need to be a little more precise, by quantifying the distance
between the positions of the two processes, more specifically in the case of a system of
particles, we would like to know how many particles are different. As there is no a priori
metric on the state space in our setting, this is the only natural comparison we can consider.

So, let us give a general definition of a particle system with interactions changing one par-
ticle at each time. First we still assume that we are given a Markov family (Pt,x)t≥0, x∈E on
E. Then let N ∈ N∗ be a number of particles. As underlying “unperturbed” Markovian fam-
ily on EN , we consider the one, again written (Pt,x)t≥0,x∈EN , which corresponds to a Markov
process on EN whose coordinates evolve independently and according to (Pt,x)t≥0,x∈E , and
which is rigorously defined by

∀ t ≥ 0, ∀ x = (x1, . . . , xN ) ∈ EN , Pt,x =
⊗

1≤i≤N

Pt,xi

clearly it also satisfies (H2). For each 1 ≤ i ≤ N , we consider a locally bounded nonnegative
kernel R̂i from R+×EN to E. In order to simplify the presentation, we will work under the
hypothesis that the quantity r

def.= NR̂i(t, x, E) does not depend on 1 ≤ i ≤ N , t ≥ 0 and
x ∈ E. From these kernels, we define a new one R̂ from R+ × EN to EN , via the formulae

∀ t ≥ 0, ∀ x = (xi)1≤i≤N ∈ EN ,

R̂(t, x) =
∑

1≤i≤N

δx1 ⊗ · · · ⊗ δxi−1 ⊗Ri(t, x)⊗ δxi+1 ⊗ · · · ⊗ δxN

Let us denote by (P̂t,x)t≥0,x∈EN the perturbation of (Pt,x)t≥0,x∈EN by this kernel R̂.
The mechanism of its interactions at any selected time t ≥ 0 can be interpreted in the
following way: one choose uniformly an index 1 ≤ i ≤ N , and then the coordinate xi of
a position x ∈ EN is replaced by the value obtained from a sampling according to the
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law R̂i(t, x, ·)/R̂i(t, x, E), the other coordinates remain unchanged. Between the random
interacting times, the particles evolve independently. We also denote by ν(r) the law of the
usual Poisson process of parameter r on the set of “càdlàg” paths M(R+,N) from R+ into
N. We get the following result which in this situation is more precise than proposition 2.7:

Proposition 2.8 For any x ∈ EN , there exists a coupling P†0,(x,x) of P0,x ⊗ ν(r) with P̂0,x,

such that if we denote by ((X(i)
t )1≤i≤N ,Kt, (X̂

(i)
t )1≤i≤N )t≥0 the canonical coordinates on

M(R+, E
N × N× EN ), then for any T ≥ 0 we have

P†0,(x,x)

 ∑
1≤i≤N

1I
(X

(i)
t )0≤t≤T 6=( bX(i)

t )0≤t≤T
≥ KT

 = 0

In particular, for any k ≥ 0 we get that

P†0,(x,x)

 ∑
1≤i≤N

1I
(X

(i)
t )0≤t≤T 6=( bX(i)

t )0≤t≤T
≥ k

 ≤
∑
l≥k

(rT )l

l!
exp(−rT )

Here again, the above results have to be interpreted in a special way: let (F,F) be a mea-
surable space, we endow FN × FN with its canonical coordinates ((Xi)1≤i≤N , (X̂i)1≤i≤N ).
Let m be a nonnegative finite measure on (FN × FN ,F⊗N ⊗F⊗N ), for any 0 ≤ k ≤ N , we
define

m

 ∑
1≤i≤N

1I
Xi 6= bXi

≥ k

 = supm1(FN × FN )

where the supremum is taken over all nonnegative measure m1 ≤ m on (FN × FN ,F⊗N ⊗
F⊗N ) which can be decomposed into

m1 =
∑

A⊂{1,...,N}, card(A)=k

m1,A

where m1,A satisfies that its image m̃1,A by the natural projection from FN×FN to FA×FA

verifies m̃1,A(4(FA)) = m1,A(FA×FA) (in this case also the supremum is a maximum, but
except for k = N , the optimal above decomposition is not unique in general). For the first
equality, it means that when, for k ≥ 0 given, we look at the restriction of P†0,(x,x) to the set

{KT = k} and consider its projection P†,k0,(x,x) to M([0, T ], EN × EN ), then it satisfies

P†,k0,(x,x)

 ∑
1≤i≤N

1I
(X

(i)
t )0≤t≤T 6=( bX(i)

t )0≤t≤T
≥ k

 = 0

We could go further and give a meaning to the affirmation that

P†0,(x,x)

∃ T ≥ 0 :
∑

1≤i≤N

1I
(X

(i)
t )0≤t≤T 6=( bX(i)

t )0≤t≤T
≥ KT

 = 0

but we will not need it (be careful,
∑

1≤i≤N 1I
(X

(i)
t )0≤t≤T 6=( bX(i)

t )0≤t≤T
is not a random variable,

so one cannot use its monotonicity with respect to t ≥ 0, rather one has to use a measurable
conditioning by (Kt)t≥0, which can be well-defined here, if one consider only the increasing
trajectories of M(R+,N) with jumps of height 1). Proof: It is quite similar to the proof
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of proposition 2.7, we begin by considering a generalized Markov family on E2N ×PN ×N,
where PN is the set of the subsets of {1, . . . , N}, defined by

∀ t ≥ 0, ∀ (x, y, z, k) ∈ E2N × PN × N,

P‡t,(x,y,z,k) =

⊗
i6∈z

P‡t,xi,xi

⊗
i∈z

(Pt,xi ⊗ Pt,yi)

⊗ δz[t,+∞[
⊗ δk[t,+∞[

We introduce a new nonnegative kernel R̂‡ from R+ ×E2N ×PN ×N to E2N ×PN ×N, by
taking, for all t ≥ 0 and all (x, y, z, k) ∈ E2N × PN × N,

R̂‡(t, (x, y, z, k)) =
∑

1≤i≤N

δx ⊗ R̂(t, y)⊗ δz∪{i} ⊗ δk+1

and we make a perturbation of the family (P‡t,(x,y,z,k))t≥0,(x,y,z,k)∈E2N×PN×N by this kernel

to get a new family (P̂‡t,(x,y,z,k))t≥0,(x,y,z,k)∈E2N×PN×N. For x ∈ EN , let P†0,(x,x) be the image

of P̂‡0,(x,x,∅,0) under the projection

M(R+, E
2N × PN × N) 3 (ω1, ω2, ω3, ω4) 7→ (ω1, ω4, ω2) ∈ M(R+, E

N × N× EN )

The proposition now follows quite easily from this construction. For instance, under P̂‡0,(x,x,∅,0),
Kt (≥ card(Zt)) counts the number of interaction jump(s) proposed during the time interval
[0, t], so (Kt)t≥0 is distributed as a Poisson process of parameter r.

2.4 The interacting particle system

For any given number of particles N ∈ N∗, the Markov process ξ(N) presented in the
introduction is constructed directly from the family (Pt,x)t≥0, x∈E , and not merely defined
by a martingale problem, as it was the case in [6]. There are three reasons for this choice:
first we believe that it emphasizes the close links between the object under study, (ηt)t≥0,
and the approximating scheme (ξ(N))N≥1, which are both deduced directly from the same
basic family (Pt,x)t≥0, x∈E , and it gives a way to sample the interacting particle processes
in practice, at least under the assumption that one knows how to do it w.r.t. Pt,x, for any
t ≥ 0 and x ∈ E. Secondly, the direct construction is nicely adapted to coupling arguments.
The last reason is even more technical: if one wants to start from the martingale problems,
one will have to consider a priori a set of functions on [0, T ] × EN , for T ≥ 0 given, which
in some sense is a (space) tensorization of AT (cf. [6]). But in general this domain is too
small for our purposes, because it is strictly included in the domain of functions giving rise
to natural martingales relatively to ξ(N), and one would have to extend it via some closures.
As we will see, it is more convenient to first tensorize the family (Pt,x)t≥0, x∈E , to perturb it
in a bounded way, and then to consider the general associated martingale problem.

Quite obviously, we will use the above sections to construct the interactions between the
coordinates of ξ(N). The underlying “unperturbed” Markovian family is the one previously
defined, (Pt,x)t≥0,x∈EN , corresponding to independent evolutions of coordinates according

to (Pt,x)t≥0,x∈E . For any given horizon T ≥ 0, let us denote by (AT,N , L̃(N)
T ) the generator

associated as before (recall that it is contingently multi-valued) to this Markovian family.
The third point alluded to in the above introductory paragraph just amounts to the obser-
vation that in general, AT,N is strictly larger than the set of functions f : [0, T ]×EN → R
which can be written as

f(t, x) =
∏

1≤i≤N

fi(t, xi)
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with f1, · · · , fN ∈ AT , and any t ∈ [0, T ], and x = (x1, · · · , xN ) ∈ EN . In order to define the
interaction we want to add to the L̃(N)

T , for T ≥ 0, let us introduce the following notation:
for all 1 ≤ i, j ≤ N and all x = (x1, · · · , xN ) ∈ EN , xi,j is the element of EN given by

∀ 1 ≤ k ≤ N, xi,j
k =

{
xk , if k 6= i
xj , if k = i

Then we consider the locally bounded nonnegative kernel R̂ from R+ × EN to EN defined
for any t ≥ 0, and x = (x1, · · · , xN ) ∈ EN by

R̂(t, x) =
1
N

∑
1≤i,j≤N

Ut(xj)δxi,j

The corresponding generator on [0, T ] × EN is defined for any f ∈ Bb([0, T ] × EN ), and
(t, x) ∈ [0, T ]× EN by the following formula

L̂(N)
T (f)(t, x) =

1
N

∑
1≤i,j≤N

Ut(xj)(f(t, xi,j)− f(t, x))

Using the results of section 2.2, we are in position to construct the Markov family (P̂t,x)t≥0,x∈EN

with the generators (AT,N ,L(N)
T ) given by

L(N)
T = L̃(N)

T + L̂(N)
T

It appears that at time 0 ≤ t ≤ T , the generator L̂(N)
T (t, · ) tends to select coordinates

xj with large potential value Ut(xj), and to replace another coordinate by this one. This is
the typical Moran selection step with cost function Ut. The operator (AT,N ,L(N)

T ) can be
seen as a genetic type generator based on the mutation (or a priori) generator L̃(N)

T which
makes the coordinates explore independently the space E.

If η0 is the initial law which has been seen in the introduction, we are particularly
interested in the interacting particle system (ξ(N,i)

t )t≥0,1≤i≤N , whose law is the probability,
denoted by P for simplicity, defined on M(R+, E

N ) by

∀ A ∈M(R+, E
N ), P(A) =

∫
EN

η⊗N
0 (dx)P̂0,x(A)

i.e. we will assume that initially the coordinates of ξ(N)
0 are independent and identically

distributed according to η0, but a careful study of the following proofs would indicate how
much this assumption can be weakened.

3 Evolution of empirical tensor measures

The purpose of this section is to revisit some weak convergence results given in [6] in order
to improve and extend them. In the classical approach (cf. for instance [13] or [9]), one
deduces the weak propagation from the strong one, but we will proceed in the other way
round, getting the strong property in section 4 from a generalization of the weak form
presented here. More precisely, our main goal is to prove theorem 1.2. The case n = 1 could
easily be deduced from the estimations proved in [6], nevertheless, in order to deal with the
general situation, we have to develop a new approach, which will also enable us to recover
this case n = 1, but under the less restrictive hypotheses considered here.

The basic idea is to adopt a “dynamical point of view”, in some sense interpreting a
quantity closely related to η(N)

t1
⊗ · · · ⊗ η(N)

tn (ϕ) as a terminal value, so that we can find nice
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martingales to calculate its expectation. Unfortunately its cautious development is as long
as its principle is simple. For T > 0, N,n ∈ N∗ and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T fixed, let us
denote by η̃(N)

t1,···,tn the “integrated” law on En defined for any ϕ ∈ Bb(En) by

η̃
(N)
t1,···,tn(ϕ) = E[η(N)

t1
⊗ · · · ⊗ η

(N)
tn (ϕ)]

The theorem 1.2 stated in the introduction just says that in the total variation sense,
we have ∥∥∥η̃(N)

t1,···,tn − ηt1 ⊗ · · · ⊗ ηtn

∥∥∥
tv

≤ εT

(
n2

N

)
As we will explain it latter on, the dependence of the upper bound in n2/N , with

T > 0 fixed, implies (through the second coupling presented in section 4.2) the same type
of convergence as that obtained by Graham and Méléard [9] for the strong propagation of
chaos. But if we were less exacting on this point, it could be possible to give a little more
straightforward proof of a weaker upper bound with respect to n.

3.1 Actions of the generators

As we are interested in getting results on empirical measures, we will attempt to understand
more particularly the action of the generators L̃(N)

T and L̂(N)
T , for T ≥ 0 and n ∈ N∗, on

functions of AT,N whose dependence on the space parameter goes more or less naturally
through the mapping

m(N) : EN → P(E)

x = (xi)1≤i≤N 7→ m(N)(x) =
1
N

∑
1≤i≤N

δxi

This is what we have already done in [6] for the case n = 1. Here we will have to consider
probabilities on En, and one could think that the natural object replacing m(N)(x), for
x ∈ EN , is (m(N)(x))⊗n, but it seems that (for 1 ≤ n ≤ N) it is preferable to first look at

m�(N,n)(x) def.=
1
Nn

∑
(i1,i2,···,in)∈I(N,n)

δ(xi1
,xi2

,···,xin ) ∈ P(En)

where I(N,n) is the set of (i1, i2, · · · , in) ∈ {1, · · · , N}n such that all il and ik are different
for 1 ≤ l 6= k ≤ n. More precisely, we will concentrate our study on mappings of the
following form

Ff : [0, T ]× EN → R
(t, x) 7→ m�(N,n)(x)[f(t, · )]

where T ≥ 0 and f ∈ AT,n are fixed. The time dependence appearing above will be
important in what follows. We observe that the definition of m�(N,n) (and the assumed
regularity of f) implies that Ff ∈ AT,N . Notice that this would not have been so if we had
considered (m(N))⊗n instead of m�(N,n). Indeed, for (i1, i2, · · · , in) ∈ I(N,n) and f ∈ AT,n,
let us designate by f (i1,i2,···,in) the function belonging to AT,N and defined by

∀ 0 ≤ t ≤ T, ∀ x = (x1, · · · , xN ) ∈ EN , f (i1,i2,···,in)(t, x) = f(t, xi1 , xi2 , · · · , xin)

(if (i1, i2, · · · , in) ∈ {1, · · · , N}n \ I(N,n), it is not clear that the above mapping belongs to
AT,N ), then we have

Ff =
1
Nn

∑
(i1,i2,···,in)∈I(N,n)

f (i1,i2,···,in) ∈ AT,N
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Taking into account the obvious observation from the martingale problems that

L̃(N)
T (f (i1,i2,···,in)) = (L̃(n)

T (f))(i1,i2,···,in)

we get the following result:

Lemma 3.1 Assume that 1 ≤ n ≤ N and let f ∈ AT,n. Then the next commutation
relation holds

L̃(N)
T (Ff ) = F eL(n)

T (f)

In fact this lemma is true for all n ≥ 1, since for n > N , the usual conventions give
m�n(x) ≡ 0 In order to describe the action of L̂(N)

T on functions of type Ff , we take
into consideration a renormalisation of the Moran kernel from R+ × En to En, and more
accurately we will need the restriction to Bb([0, T ]×En) of its associated generator, which
is just given by lT,N,n

def.= n
N L̂

(n)
T . Its interest comes from the following formula.

Lemma 3.2 For 1 ≤ n ≤ N and T ≥ 0 fixed, we consider any function f ∈ Bb([0, T ×En).
Then we get that

L̂(N)
T (Ff ) = FŪ(n)f+lT,N,n(f) − FŪ(n)Ff

where Ū (n) stands for the restriction on [0, T ]× En of mapping defined by

∀ t ≥ 0, ∀ y = (yi)1≤i≤n ∈ En, Ū(n)(t, y) =
∑

1≤i≤n

U(t, yi)

Proof: The formula results from elementary combinatorial computations. For any 0 ≤ t ≤
T and any x = (xi)1≤i≤N ∈ EN , we have

L̂(N)
T (Ff )(t, x)

=
1
N

∑
1≤i,j≤N

(m�(N,n)(xi,j)[ft]−m�(N,n)(x)[ft])Ut(xj)

=
1

Nn+1

∑
1≤i,j≤N

∑
(i1,...,in)∈I(N,n)

(ft(x
i,j
i1
, . . . , xi,j

in
)− ft(xi1 , . . . , xin))Ut(xj)

=
1

Nn+1

∑
(i1,...,in)∈I(N,n)

∑
1≤k≤n

∑
1≤j≤N

(ft(x
ik,j
i1
, . . . , xik,j

in
)− ft(xi1 , . . . , xin))Ut(xj)

=
1

Nn+1

∑
(i1,...,in)∈I(N,n)

∑
1≤k≤n

∑
1≤j≤N

ft(xi1 , . . . , xik−1
, xj , xik+1

, . . . , xin)Ut(xj)

−nm(N)(x)[Ut]m�(N,n)(x)[ft]

This yields that

L̂(N)
T (Ff )(t, x) =

N − n+ 1
Nn+1

∑
1≤k≤n

∑
l∈{1,...,n}\{k}∑

(i1,...,ik−1,ik+1,...,in)∈I(N,n−1)

ft(xi1 , . . . , xik−1
, xil , xik+1

, . . . , xin)Ut(xj)

+
N − n+ 1
Nn+1

∑
(i1,...,in)∈I(N,n)

ft(xi1 , . . . , xin)
∑

1≤k≤n

Ut(xik)

−nm(N)(x)[Ut]m�(N,n)(x)[ft]
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Notice that the intermediate term in the last expression is given N−n+1
N m�(N,n)(ftŪ

(n)
t ).

Thus, it just remains to treat the first term which we decompose into the two quantities:

1
Nn+1

∑
1≤k≤n

∑
l 6=k

∑
(i1,...,in)∈I(N,n−1)

(ft(xi1 , . . . , xik−1
, xil , xik+1

, . . . , xin)− ft(xi1 , . . . , xin))Ut(xil)

+ 1
Nn+1

∑
1≤k≤n

∑
l 6=k

∑
(i1,...,in)∈I(N,n−1)

ft(xi1 , . . . , xin)Ut(xil)

= 1
Nn

∑
(i1,...,in)∈I(N,n)

lT,N,n(f)(t, xi1 , . . . , xin)

+ n−1
Nn+1

∑
(i1,...,in)∈I(N,n)

f(t, xi1 , . . . , xin)Ū (n)
t (xi1 , . . . , xin)

= m�(N,n)(x)[lT,N,n(f)(t, ·)] + n−1
N m�(N,n)(x)(ftŪ

(n)
t )

This implies that for any 0 ≤ t ≤ T , and any x ∈ EN , we have

L̂(N)
T (Ff )(t, x) = m�(N,n)(x)[Ū (n)

t ft + lT,N,n(f)(t, ·)]− nm(N)(x)[Ut]m�(N,n)(x)[ft]

= m�(N,n)(x)[Ū (n)
t ft + lT,N,n(f)(t, ·)]−m�(N,n)(x)[Ū (n)

t ]m�(N,n)(x)[ft]

We let (P�(N,n)
t,x )t≥0,x∈En be the Markov family on En constructed as in section 2.4, by

perturbing with the bounded operators lT,N,n, for T ≥ 0, the generators of the n-product
of independent coordinates evolving according to (Pt,x)t≥0,x∈E . We will also denote by
Y = (Yt)t≥0 the canonical coordinate process on M(R+, E

n). Besides, the horizon T ≥ 0
and a function ϕ ∈ Bb(En) being fixed, we introduce the mapping defined on [0, T ]×En by

G
�(N,n)
T,ϕ (t, y) = E�(N,n)

t,y

[
exp

(∫ T

t
Ū (n)(s, Ys) ds

)
ϕ(YT )

]
It is also convenient to consider the process ΓT,ϕ = (ΓT,ϕ(t))0≤t≤T given for any t ≤ T by

ΓT,ϕ(t) = exp
(∫ t

0
nη(N)

s (Us) ds
)
× η

�(N,n)
t (G�(N,n)

T,ϕ (t, ·))

with η�(N,n)
t = m�(N,n)(ξ(N)

t ). Then we have

Proposition 3.3 The process ΓT,ϕ is a martingale.

Proof: Firstly, we examine the process given for any t ≤ T by Rt
def.= η

�(N,n)
t (G�(N,n)

T,ϕ (t, ·)).
To show how it can give rise to a martingale, we need to check thatHT,ϕ belongs to AT,N and
to compute L(N)

T (HT,ϕ); with the mapping HT,ϕ defined on [0, T ]×EN by HT,ϕ = F
G
�(N,n)
T,ϕ

.

According to corollary 2.6, we know that G�(N,n)
T,ϕ ∈ AT,n, and

L̃(n)
T (G�(N,n)

T,ϕ )(t, y) = −Ū (n)
t (y)G�(N,n)

T,ϕ (t, y)− lT,N,n(G�(N,n)
T,ϕ )(t, y)

Taking into account lemma 3.1, and lemma 3.2, it appears that

∀ 0 ≤ t ≤ T, ∀ x ∈ EN , L(N)
T (HT,ϕ)(t, x) = −nm(N)(x)[Ut]HT,ϕ(t, x)

Thus,
(
Rt + n

∫ t
0 η

(N)
s [Us]Rs ds

)
0≤t≤T

is a martingale. Now, the proposition can be deduced

without difficulty, via standard manipulations, under the precautions already presented in
the proof of lemma 2.1.

23



More generally, the same arguments show that for all 0 ≤ t ≤ T and for all x ∈ EN , the
process (

exp
(∫ s

t
nη(N)

u (Uu) du
)
η�(N,n)

s (G�(N,n)
T,ϕ (s, ·))

)
t≤s≤T

is a martingale under P̂t,x, with respect to the usual filtration. The previous constructions
enable us to approximate the quantity

E[γ(N)
t1

⊗ γ
(N)
t2

⊗ · · · ⊗ γ
(N)
tn (ϕ)]

where n ∈ N∗, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T and ϕ ∈ Bb(En). But once again, we have
to introduce a new object, looking like a generalization/composition of the G�(N,n)

T,ϕ . It is

a family of operators, the K�(N,n)
t0,t1,...,tn , indexed by n ∈ N∗ and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, and

acting respectively on the Bb(En). They are defined by induction on n ∈ N∗. For n = 1, we
are only considering the Feynman-Kac semigroup associated with our initial Markov family
(Pt,x)t≥0,x∈E . These models are defined for any 0 ≤ t0 ≤ t1, ϕ ∈ Bb(E),and y ∈ E by the
following formulae

K
�(N,1)
t0,t1

(ϕ)(y) = Et0,y

[
exp

(∫ t1

t0

Us(Xs) ds
)
ϕ(Xt1)

]
Assuming that all the operators K�(N,n)

t0,t1,...,tn have been constructed, for a given n ≥ 1, we

define K�(N,n+1)
t0,t1,...,tn+1

(ϕ)(y), by setting for any t0 ≤ · · · ≤ tn+1, ϕ ∈ Bb(En+1), and y ∈ En+1

K
�(N,n+1)
t0,t1,...,tn+1

(ϕ)(y) = G
�(N,n+1)
t1,Ψt1,t2,...,tn+1

(t0, y)

In the above displayed formulae Ψt1,t2,...,tn is the mapping given for any z = (z1, . . . , zn+1) ∈
En+1 by

Ψt1,t2,...,tn+1(z) = K
�(N,n)
t1,t2,...,tn+1

(ϕz1)(z2, . . . , zn)

When some variables appear in the subscript of a function, it means that we are considering
the function where these variables are fixed, e.g. ϕz1 is ϕ(z1, ·), for any given z1 ∈ E. We
give an interpretation of the above operators in next section, nevertheless to justify their
study, we begin by presenting why they are natural in our context.

Proposition 3.4 For all n ∈ N∗, all 0 ≤ t1 ≤ · · · ≤ tn and all ϕ ∈ Bb(En), we have the
estimation∣∣∣E[γ(N)

t1
⊗ · · · ⊗ γ

(N)
tn (ϕ)]− η⊗n

0 [K�(N,n)
0,t1,...,tn

(ϕ)]
∣∣∣ ≤ i(N,n)

1 + i(N,n)
‖ϕ‖ η⊗n

0 [K�(N,n)
0,t1,...,tn

(1I)]

where

i(N,n) = 1−
∏

1≤i≤n−1

(
1− i

N

)
=

Nn − card(I(N,n))
Nn

≤ (n− 1)2

N
(11)

Proof: We will look at the l.h.s. as a telescopic sum. The basic computation comes directly
from the note after proposition 3.3, via an application of Markov property at time tp, and
says that for any 1 ≤ p ≤ n− 1, we have

E
[∫

En−p
tp,tp+1

η
�(N,n−p)
tp+1

[K�(N,n−p−1)
tp+1,...,tn (ϕz1,...,zp,·)(·)] En−p

0,tp
γ

(N)
t1

(dz1) · · · γ(N)
tp (dzp)

]
= E

[∫
η
�(N,n−p)
tp [G�(N,n−p)

tp+1,K
�(N,n−p−1)
tp+1,...,tn

(ϕz1,...,zp,·)(·)
(tp, ·)] En−p

0,tp
γ

(N)
t1

(dz1) · · · γ(N)
tp (dzp)

]

= E
[∫

η
�(N,n−p)
tp [K�(N,n−p)

tp,...,tn (ϕz1,...,zp−1)] E
n−p
0,tp

γ
(N)
t1

(dz1) · · · γ(N)
tp (dzp)

]
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We have used the convention that K�(N,0)
tn is the identity operator, for any tn ≥ 0, and

∀ 0 ≤ s ≤ t, Es,t = exp
(∫ t

s
η(N)

u (Uu) du
)

Let us remark that we can write

η
(N)
tp ⊗ η

�(N,n−p)
tp − η

�(N,n−p+1)
tp =

1
Nn−p+1

∑
(ip,...,in)∈I(N,n−p)

∑
i∈{ip,...,in}

δ
(ξ

(N,i)
tp

,ξ
(N,ip)
tp

,...,ξ
(N,in)
tp

)

so at any fixed (z1, . . . , zp−1) ∈ Ep−1, we get∣∣∣E [∫ η
�(N,n−p)
tp [K�(N,n−p)

tp,...,tn (ϕz1,...,zp−1)] E
n−p
0,tp

γ
(N)
t1

(dz1) · · · γ(N)
tp (dzp)

]
−E

[∫
En−p+1

tp−1,tp η
�(N,n−p+1)
tp [K�(N,n−p)

tp,...,tn (ϕz1,...,zp−1,·)(·)] En−p+1
0,tp−1

γ
(N)
t1

(dz1) · · · γ(N)
tp−1

(dzp−1)
] ∣∣∣

=
1
N

∣∣∣∣∣∣E
 ∑

p≤k≤n

∫
η
�(N,n−p)
tp [K�(N,n−p)

tp,...,tn (ϕ
z1,...,zp−1,ξ

(N,ik)
tp

)] En−p+1
0,tp

γ
(N)
t1

(dz1) · · · γ(N)
tp (dzp−1)

∣∣∣∣∣∣
≤ ‖ϕ‖ 1

N
E

 ∑
p≤k≤n

∫
η
�(N,n−p)
tp [K�(N,n−p)

tp,...,tn (1I
z1,...,zp−1,ξ

(N,ik)
tp

)] En−p+1
0,tp

γ
(N)
t1

(dz1) · · · γ(N)
tp (dzp−1)


Now summing these estimations for 1 ≤ p ≤ n − 1, and taking into account that for

p = 0 we also have

E
[
En

0,t1η
�(N,n)
t1

[K�(N,n−1)
t1,...,tn (ϕ·)(·)]

]
= E

[
η
�(N,n)
0 [K�(N,n)

t0,...,tn (ϕ)]
]

we obtain that∣∣∣E[γ(N)
t1

⊗ · · · ⊗ γ
(N)
tn (ϕ)]− E[η�(N,n)

0 [K�(N,n)
0,t1,...,tn

(ϕ)]
∣∣∣

≤
∑

1≤p≤n−1

∣∣∣E [∫ En−p
tp,tp+1

η
�(N,n−p)
tp+1

[K�(N,n−p−1)
tp+1,...,tn (ϕz1,...,zp,·)(·)] En−p

0,tp
γ

(N)
t1

(dz1) · · · γ(N)
tp (dzp)

]

−E
[∫

En−p+1
tp−1,tp η

�(N,n−p+1)
tp [K�(N,n−p)

tp,...,tn (ϕz1,...,zp−1,·)(·)] En−p+1
0,tp−1

γ
(N)
t1

(dz1) · · · γ(N)
tp−1

(dzp−1)
] ∣∣∣

≤ ‖ϕ‖
N

∑
1≤p≤n−1

E

 ∑
p≤k≤n

∫
η
�(N,n−p)
tp [K�(N,n−p)

tp,...,tn (1I
z1,...,zp−1,ξ

(N,ik)
tp

)] En−p+1
0,tp

γ
(N)
t1

(dz1) · · · γ(N)
tp (dzp−1)


= ‖ϕ‖

∣∣∣E[γ(N)
t1

⊗ · · · ⊗ γ
(N)
tn (1I)]− E[η�(N,n)

0 [K�(N,n)
0,t1,...,tn

(1I)]
∣∣∣

Let us come back to the above intermediate step in the case ϕ = 1I. Using the fact that the
quantity K

�(N,n−p)
tp,...,tn (1I

z1,...,zp−1,ξ
(N,i)
tp

) does not depend on the choice of 1 ≤ i ≤ N , we find

that
η

(N)
tp ⊗ η

�(N,n−p)
tp [K�(N,n−p)

tp,...,tn (1Iz1,...,zp−1,·)(·)]

=
(
1− n−p

N

)
η
�(N,n−p+1)
tp [K�(N,n−p)

tp,...,tn (ϕz1,...,zp−1,·)(·)]

Considering all the previous steps, we get the equality

E[γ(N)
t1

⊗ · · · ⊗ γ
(N)
tn (1I)] =

∏
1≤i≤n−1

(
1− i

N

)
E[η�(N,n)

0 [K�(N,n)
0,t1,...,tn

(1I)]
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from which we deduce that∣∣∣E[γ(N)
t1

⊗ · · · ⊗ γ
(N)
tn (1I)]− E[η�(N,n)

0 [K�(N,n)
0,t1,...,tn

(1I)]
∣∣∣ ≤ i(N,n)E[η�(N,n)

0 [K�(N,n)
0,t1,...,tn

(1I)]

We also notice, due to the initial independence of the particles, that for any ϕ ∈ Bb(En),

E[η�(N,n)
0 [ϕ]] =

∏
1≤i≤n

(
1− i

N

)
η⊗n
0 [ϕ]

3.2 Estimates on Moran semigroups

The aim of this section is to analyze the operators K�(N,n)
0,t1,...,tn

. We will use here a preliminary

coupling argument to give an upper bound on the difference betweenK�(N,n)
0,t1,...,tn

andK⊗(N,n)
0,t1,...,tn

,
for n ∈ N∗ and 0 ≤ t1 ≤ · · · ≤ tn ≤ T , where the last operator is constructed in the same
way as the former, but assuming that the coordinates evolves independently. More precisely,
for fixed 1 ≤ n ≤ N , and ϕ ∈ Bb(En), and any 0 ≤ t0 ≤ t1, ∀ y ∈ En, we define

G
⊗(N,n)
t1,ϕ (t0, y)

def.= Et,y

[
exp

(∫ T

t
Ū (n)(Ys) ds

)
ϕ(YT )

]
We define the operators K⊗(N,n)

t0,t1,...,tn , also indexed by n ∈ N∗ and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn,
and acting respectively on the Bb(En), by induction on the parameter n ∈ N∗. For n = 1,
t0 ≤ t1 and we set K⊗(N,1)

t0,t1
= K

�(N,1)
t0,t1

. Assuming that all the operators K⊗(N,n)
t0,t1,...,tn have

been constructed, for a given n ≥ 1, for any 0 ≤ t0 ≤ · · · ≤ tn+1, and ϕ ∈ Bb(En+1), and
y ∈ En+1, we define

K
⊗(N,n+1)
t0,t1,...,tn+1

(ϕ)(y) = G
⊗(N,n+1)

t1,K
⊗(N,n)
t1,t2...,tn

(ϕ·(·))
(t0, y)

In order to take advantage of the considerations of section 2.3, we need to interpret the above
operators as something looking as the semigroups associated to some Markov processes, one
being seen as a bounded perturbation of the other. We start with the “tensorized” operators,
which will play the role of the “unperturbed” ones. We assume that n ∈ N∗ and 0 ≤ t1 ≤
· · · ≤ tn−1 are fixed. We will construct a locally bounded function V : R+ ×En → R+ and
for any given y ∈ En, a probability P̌⊗(N,n)

0,y on (M(R+, E
n),M(R+, E

n)) such that for all
tn ≥ tn−1, all y ∈ En and all ϕ ∈ Bb(En),

K
⊗(N,n)
0,t1,...,tn

(ϕ)(y) = Ě⊗(N,n)
0,y

[
exp

(∫ tn

0
V (s, Ys) ds

)
ϕ(Ytn)

]
(12)

As usual, Y stands for the canonical process. The latter probability will in fact be a product
probability, each coordinate evolving independently (but not according to the same law): if
y = (yi)1≤i≤n,

P̌⊗(N,n)
0,y =

⊗
1≤i≤n−1

P(ti)
0,yi

⊗
P0,yn

where for t ∈ R+ and z ∈ E, P(t)
0,z is just the image of P0,z under the mapping Jt :

M(R+, E) → M(R+, E) defined for any ω ∈ M(R+, E), and s ≥ 0 by

Xs(Jt(ω)) = Xs∧t(ω)
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Clearly, these probabilities can be embedded into a Markov family (P̌⊗(N,n)
t,y )t≥0,y∈En , by

taking for any t ≥ 0, and y = (yi)1≤i≤n ∈ En

P̌⊗(N,n)
t,y =

⊗
1≤i≤n−1

Jt∨ti(Pt,yi)
⊗

Pt,yn

where the Js, for s ≥ t, are rather seen as acting on M([t,+∞[, E), and note that Jt(Pt,z) is
the Dirac mass at the trajectory of a nonmoving particle starting from z ∈ E at time t ≥ 0.
The definition of V is also very simple. For any t ≥ 0, and y = (yi)1≤i≤n ∈ En, we set

V (t, y) =
{ ∑

i≤j≤n U(t, yj) , if there exists 1 ≤ i ≤ n− 1 such that ti−1 ≤ t < ti
U(t, yn) , if t ≥ tn−1

Immediate computations shows that (12) is fulfilled. With the parameters n ∈ N∗ and
0 ≤ t1 ≤ · · · ≤ tn−1 still fixed, we want to construct for any given y ∈ En, a probability
P̌�(N,n)

0,y on (M(R+, E
n),M(R+, E

n)) such that for any tn ≥ tn−1, y ∈ En, and any ϕ ∈
Bb(En) we have that

K
�(N,n)
0,t1,...,tn

(ϕ)(y) = Ě�(N,n)
0,y

[
exp

(∫ tn

0
V (s, Ys) ds

)
ϕ(Ytn)

]
(13)

and it is possible to do it via the perturbation techniques of section 2.2. So we just have to
describe the corresponding nonnegative kernel R̂ from R+ × En into En given by

R(t, x, ·) =
{ 1

N

∑
i≤j 6=k≤n U(t, yk)δyj,k , if there exists 0 ≤ i ≤ n− 1 s.t. t ∈ [ti−1, ti[

0 , if t ≥ tn−1

Again, direct and not very stimulating computations show that (13) is satisfied, where the
Markovian family (P̌�(N,n)

t,y )t≥0,y∈En is the perturbation of (P̌⊗(N,n)
t,y )t≥0,y∈En by R̂. Now, we

are in position to use the results of section 2.3.

Proposition 3.5 For all T ≥ 0, all n ∈ N∗, all 0 ≤ t1 ≤ · · · ≤ tn ≤ T , all y ∈ En and all
ϕ ∈ Bb(En), we are assured of the bound∣∣∣K�(N,n)

0,t1,...,tn
[ϕ](y)−K

⊗(N,n)
0,t1,...,tn

[ϕ](y)
∣∣∣ ≤ ε̃T

(
(n− 1)n

N

)
‖ϕ‖K⊗(N,n)

0,t1,...,tn
[1I](y)

where for any a ≥ 0,

ε̃T (a) = 2(1− exp[−auTT ]) + exp([exp(uTT )− 1]auTT )− 1

which is equivalent to uTT (1 + exp(uTT ))a, for small a > 0.

Proof: As usual, we start by fixing the horizon T ≥ 0 and we work on the interval [0, T ].
Let P be a coupling of Ě⊗(N,n)

0,y ⊗ν(r) and Ě�(N,n)
0,y satisfying property of proposition 2.8, with

r = (n−1)n
N uT . Then we can write, with notations introduced there (but replacing X by Y ):∣∣∣K⊗(N,n)

0,t1,...,tn
[ϕ](y)−K

�(N,n)
0,t1,...,tn

[ϕ](y)
∣∣∣

=
∣∣∣∣E [exp

(∫ tn

0
V (s, Ys) ds

)
ϕ(Ytn)− exp

(∫ tn

0
V (s, Ŷs) ds

)
ϕ(Ŷtn)

]∣∣∣∣
=

∣∣∣∣∣∣
∑
k≥1

E
[(

exp
(∫ tn

0
V (s, Ys) ds

)
ϕ(Ytn)− exp

(∫ tn

0
V (s, Ŷs) ds

)
ϕ(Ŷtn)

)
1I{KT =k}

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
k≥1

E
[
exp

(∫ tn

0
V (s, Ys) ds

)(
ϕ(Ytn)− ϕ(Ŷtn)

)
1I{KT =k}

]∣∣∣∣∣∣
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+

∣∣∣∣∣∣
∑
k≥1

E
[(

exp
(∫ tn

0
V (s, Ys) ds

)
− exp

(∫ tn

0
V (s, Ŷs) ds

))
ϕ(Ŷtn)1I{KT =k}

]∣∣∣∣∣∣
≤ 2 ‖ϕ‖E

[
exp

(∫ tn

0
V (s, Ys) ds

)
1I{KT≥1}

]
+ ‖ϕ‖

∑
k≥1

E
[∣∣∣∣exp

(∫ tn

0
V (s, Ys) ds

)
− exp

(∫ tn

0
V (s, Ŷs) ds

)∣∣∣∣ 1I{KT =k}

]
This implies that for any ϕ, with ‖ϕ‖ ≤ 1∣∣∣K⊗(N,n)

0,t1,...,tn
[ϕ](y)−K

�(N,n)
0,t1,...,tn

[ϕ](y)
∣∣∣ ≤ 2E

[
exp

(∫ tn

0
V (s, Ys) ds

)]
P[KT ≥ 1]

+
∑
k≥1

E
[
exp

(∫ tn

0
V (s, Ys) ds

)
(exp(kTuT )− 1)1I{KT =k}

]
≤ 2K⊗(N,n)

0,t1,...,tn
[1I](y)(1− exp(−rT ))

+K⊗(N,n)
0,t1,...,tn

[1I](y)
∑
k≥1

(exp(kTuT )− 1)
(rT )k

k!
exp(−rT )

≤ εT

(
(n− 1)n

N

)
K
⊗(N,n)
0,t1,...,tn

[1I](y)

In the sense described in section 2.3, we have used the fact that on the set {KT = k}, we
have

∫ tn
0

∣∣∣V (s, Ys)− V (s, Ŷs)
∣∣∣ ds ≤ TkuT .

3.3 Proof of theorem 1.2

The deterministic measure-valued flow (γt)t≥0 is obtained from η0 by the application of the
semigroup K⊗(N,1):

∀ t ≥ 0, γt = η0K
⊗(N,1)
0,t (14)

It was these simple acknowledgments which lead us to believe that the γt should be easy to
compare with the γ(N)

t , for t ≥ 0, and in fact the latter are estimations without bias of the
formers (cf. [6], or proposition 3.4 with n = 1). For the higher tensor products (n ≥ 2) this
property is lost but the above considerations enable to bound the error.

Proposition 3.6 For all n ∈ N∗, all 0 ≤ t1 ≤ · · · ≤ tn and all ϕ ∈ Bb(En), we have the
following bound on the bias:∣∣∣E[γ(N)

t1
⊗ · · · ⊗ γ

(N)
tn (ϕ)]− γt1 ⊗ · · · ⊗ γtn(ϕ)

∣∣∣ ≤ ε̂T

(
n(n− 1)

N

)
‖ϕ‖ γt1 ⊗ · · · ⊗ γtn(1I)

where ε̂T (a) = 2ε̃T (a) + a, for any a ≥ 0.

Proof: Combining proposition 3.4, proposition 3.5, and the upper bound (11), we obtain∣∣∣E[γ(N)
t1

⊗ · · · ⊗ γ
(N)
tn (ϕ)]− η⊗n

0 [K⊗(N,n)
0,t1,...,tn

(ϕ)]
∣∣∣

≤
∣∣∣η⊗n

0 [K⊗(N,n)
0,t1,...,tn

(ϕ)−K
�(N,n)
0,t1,...,tn

(ϕ)]
∣∣∣+ i(N,n) ‖ϕ‖ η⊗n

0 [K�(N,n)
0,t1,...,tn

(1I)]

≤ (1 + i(N,n))ε̃T

(
(n− 1)n

N

)
‖ϕ‖ η⊗n

0 [K⊗(N,n)
0,t1,...,tn

(1I)] + i(N,n) ‖ϕ‖ η⊗n
0 [K⊗(N,n)

0,t1,...,tn
(1I)]

≤ ε̂T

(
n(n− 1)

N

)
‖ϕ‖ η⊗n

0 [K⊗(N,n)
0,t1,...,tn

(1I)]
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Thus, the result now follows from the equality η⊗n
0 [K⊗(N,n)

0,t1,...,tn
(ϕ)] = (γt1 ⊗ · · · ⊗ γtn)(ϕ),

which in turn comes from (14) and the product structure.

The above approximation has the interesting property to be “self-improving”:

Proposition 3.7 For all n ∈ N∗, all 0 ≤ t1 ≤ · · · ≤ tn and all ϕ ∈ Bb(En), we have the
following bound on the square mean error:∣∣∣E[(γ(N)

t1
⊗ · · · ⊗ γ

(N)
tn (ϕ)− γt1 ⊗ · · · ⊗ γtn(ϕ))2]

∣∣∣ ≤ ε̄T

(
n2

N

)
‖ϕ‖2 (γt1 ⊗ · · · ⊗ γtn(1I))2

where ε̄T (a) = ε̂T (4a) + 2ε̂T (a), for any a ≥ 0.

Proof: To simplify the notation, we write γ(N)⊗
t1,...,tn = γ

(N)
t1

⊗ · · · ⊗ γ
(N)
tn , and γ⊗t1,...,tn =

γt1 ⊗ · · · ⊗ γtn . We consider the expansion, for ϕ ∈ Bb(En),

E[(γ(N)⊗
t1,...,tn(ϕ)− γ⊗t1,...,tn(ϕ))2]

= E[(γ(N)⊗
t1,...,tn(ϕ))2]− (γ⊗t1,...,tn(ϕ))2 − 2γ⊗t1,...,tn(ϕ)(E[γ(N)⊗

t1,...,tn(ϕ)]− γ⊗t1,...,tn(ϕ))

≤
∣∣∣E[γ(N)⊗

t1,t1,t2,...,tn(ϕ⊗ ϕ)]− γ⊗t1,t1,t2,...,tn(ϕ⊗ ϕ)
∣∣∣

+2 ‖ϕ‖ γ⊗t1,...,tn(1I)
∣∣∣E[γ(N)⊗

t1,...,tn(ϕ)]− γ⊗t1,...,tn(ϕ)
∣∣∣

≤ ε̂T

(
4n2

N

)
‖ϕ⊗ ϕ‖ γ⊗t1,t1,t2,...,tn(1I) + 2 ‖ϕ‖ γ⊗t1,...,tn(1I)ε̂T

(
n2

N

)
‖ϕ‖ γ⊗t1,...,tn(1I)

= ε̄T

(
n2

N

)
‖ϕ‖2 (γ⊗t1,...,tn(1I))2

More generally, one can found in the same way explicit bounds of any given moment
of an integer order p ≥ 1 (which will always be asymptotically equivalent to a factor times
n2/N , when this quantity is small, as p ≥ 1 and T > 0 are fixed). The above proposition also
emphasizes the basic principle underlying this article: usually in order to study martingales
associated to Markov processes, one looks at their increasing processes, which are given by
the integration along the trajectories of the famous carrés du champs. But that approach
leads to difficulties relative to domains of pregenerators which should be algebras (cf. for
instance [6]). Here in order to avoid these kinds of embarrassing problems, in some sense we
have straightly worked with the squares of the martingales: they are related to the squares
of the functionals we are interested in and since the latter are empirical probabilities acting
on some mappings, their squares can be seen as 2-tensorized empirical measures applied on
2-tensorized functions, which we study directly (or at least their closely related �-product).

Now the proof of theorem 1.2 is quite a standard task: first we write that

η
(N)
t1

⊗ · · · ⊗ η
(N)
tn (ϕ)− ηt1 ⊗ · · · ⊗ ηtn(ϕ) (15)

=
1

γ⊗t1,...,tn(1I)

[
γ

(N)⊗
t1,...,tn(ϕ)− γ⊗t1,...,tn(ϕ) + η

(N)
t1

⊗ · · · ⊗ η
(N)
tn (ϕ)(γ⊗t1,...,tn(1I)− γ

(N)⊗
t1,...,tn(1I))

]
This enables us to get a preliminary bound on the second moment

E[(η(N)
t1

⊗ · · · ⊗ η
(N)
tn (ϕ)− ηt1 ⊗ · · · ⊗ ηtn(ϕ))2]

≤ 2
1

(γ⊗t1,...,tn(1I))2

(
E[(γ(N)⊗

t1,...,tn(ϕ)− γ⊗t1,...,tn(ϕ))2] + ‖ϕ‖2 E[(γ⊗t1,...,tn(1I)− γ
(N)⊗
t1,...,tn(1I))2]

)
≤ 3ε̄T

(
n2

N

)
‖ϕ‖2
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To conclude, we again integrate (15)

E[η(N)
t1

⊗ · · · ⊗ η
(N)
tn (ϕ)− ηt1 ⊗ · · · ⊗ ηtn(ϕ)]

=
1

γ⊗t1,...,tn(1I)

[
E[γ(N)⊗

t1,...,tn(ϕ)− γ⊗t1,...,tn(ϕ)] + ηt1 ⊗ · · · ⊗ ηtn(ϕ)E[γ⊗t1,...,tn(1I)− γ
(N)⊗
t1,...,tn(1I)]

+E[(η(N)
t1

⊗ · · · ⊗ η
(N)
tn (ϕ)− ηt1 ⊗ · · · ⊗ ηtn(ϕ))(γ⊗t1,...,tn(1I)− γ

(N)⊗
t1,...,tn(1I))]

]
≤ 1

γ⊗t1,...,tn(1I)

[
E[γ(N)⊗

t1,...,tn(ϕ)− γ⊗t1,...,tn(ϕ)] + ‖ϕ‖
∣∣∣E[γ⊗t1,...,tn(1I)− γ

(N)⊗
t1,...,tn(1I)]

∣∣∣
+
√

E[(η(N)
t1

⊗ · · · ⊗ η
(N)
tn (ϕ)− ηt1 ⊗ · · · ⊗ ηtn(ϕ))2]

√
E[(γ⊗t1,...,tn(1I)− γ

(N)⊗
t1,...,tn(1I))2]

≤ εT

(
n2

N

)
‖ϕ‖

with εT (a) = 2[(ε̂T (a) + ε̄T (a)) ∧ 1].

4 Strong propagation of chaos estimates

The propagation of chaos in our interacting particle approximation model explains the
behavior of the nth first coordinates of the interacting particle system ξ(N) as n2/N is small.
In particular it shows that they are asymptotically independent. Tthis property accounts for
the name “propagation of chaos” due to Kac [10], see for instance [13] in a different context:
if initially the coordinates are independent, then in the limit of a large number of particles,
any fixed finite number of them end up to be still independent over bounded time interval,
despite the interactions. Let the horizon T ≥ 0, and the numbers of particles 1 ≤ n ≤ N be
fixed parameters. The object under study is P(N,{1,...,n})

η0,[0,T ] the law of (ξ(N,i)
t )1≤i≤n, 0≤t≤T under

P. In order to describe its limit, we need more notations. Recall that η0 being supposed
given, we have at our disposal a flow (ηt)t≥0 of probabilities defined by (1). Starting from
them, we introduce the non-negative kernel R̄ from R+×E to E given for any t ≥ 0, x ∈ E,
and A ∈ E by

R̄(t, x, A) =
∫

A
Ut(y) ηt(dy)

We consider the time-inhomogeneous Markov family (P̄t,x)t≥0, x∈E , which is the perturbation

of (Pt,x)t≥0, x∈E by R̄. Let X̄ def.= (X̄t)t≥0 be the canonical coordinate process on M(R+,E)

under the law P̄η0

def.=
∫
η0(dx)P0,x. For T ≥ 0, we will also write P̄η0,[0,T ] for the law

of (X̄t)0≤t≤T on M([0, T ], E). The initial law η0 being always the same one considered
everywhere.

Proposition 4.1 For any T ≥ 0, the law of X̄T under P̄η0 is ηT .

Proof: We need to check that for any fixed horizon T ≥ 0 and function ϕ ∈ Bb(E), we
have that

E[ϕ(X̄T )] = ηT (ϕ) def.= E
[
ϕ(XT ) exp

(∫ T

0
Us(Xs)− ηs(Us) ds

)]
We consider the mapping defined by

F : [0, T ]× E → R

(t, x) 7→ Et,x

[
ϕ(XT ) exp

(∫ T

t
Us(Xs)− ηs(Us) ds

)]

30



According to corollary 2.6, the time-space generator of (X̄t)0≤t≤T is such that

LT (F )(t, x) = LT (F )(t, x) +
∫

(F (t, y)− F (t, x))U(t, y) ηt(dy)

= −U(t, x)F (t, x) +
∫
F (t, y)U(t, y) ηt(dy)

from where we get that

E[F (T, X̄T )] = E[F (0, X̄0)]−
∫ T

0
E[U(t, X̄t)F (t, X̄t)]− ηt(UtFt) dt

which can be expressed as

mT (ϕ) = ηT (ϕ)−
∫ T

0
mt(UtFt)− ηt(UtFt) dt (16)

where mt is the law of X̄t, for any t ≥ 0. This easily implies that

‖mT − ηT ‖tv ≤ uTT exp(uTT ) sup
0≤t≤T

‖mt − ηt‖tv

and more generally in the same way we obtain

∀ 0 ≤ t ≤ T, ‖mt − ηt‖tv ≤ uT t exp(uT t) sup
0≤s≤t

‖ms − ηs‖tv

Therefore, if t0 > 0 is such that uT t0 exp(uT t0) = 1/2, it appears that mt = ηt for all
0 ≤ t ≤ t0. Now, rather considering (X̄t−t0)t≥t0 , and replacing η0 by ηt0 , we obtain that for
all t0 ≤ t ≤ 2t0, mt = ηt. Thus in a finite number of steps, we can conclude that ηT = mT .

Notice that we cannot deduce from (16) that

‖mT − ηT ‖tv ≤
∫ T

0
‖mt − ηt‖tv dt

just because we have no measurability results for [0, T ] 3 t 7→ ‖mt − ηt‖tv. We are now
in position to prove the theorem 1.1. The proof is based on the next two direct coupling
arguments, the crucial ingredient being theorem 1.2. Nevertheless, let us mentioned that
the dependence of the constant CT in T ≥ 0 is very bad, except for the small ones, and
we are wondering if it would not be possible to improve it by using this behavior for small
T > 0.

4.1 A first coupling

We will present in this section another very simple interacting system on EN , whose nth first
coordinates have a special behavior (they take information from the other particles but do
not have influence on them, so globally the system will no longer be exchangeable) but are
close enough to the nth first particles of our previous algorithm (at least for n2/N small).

So we begin by describing this auxiliary interacting particle system which is also of
the general type considered in section 2.3: more precisely, with usual notations, we make
a perturbation of the Markovian family (Pt,x)t≥0,x∈EN by the kernel Ř(N) defined for any
t ≥ 0, and x = (xi)1≤i≤N ∈ EN by

Ř(N)(t, x) =
1
N

N∑
i=1

N∑
j=n+1

U(t, xj)δxi,j
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where 1 ≤ n ≤ N are fixed, to get a new Markovian family (P̆t,x)t≥0, x∈EN . Its associated
generator can be written (AT,N , L̆T ), where

L̆(N)
T = L̃(N)

T + Ľ(N)
T

with the selection generator given for any φ ∈ Bb([0, T ]× EN ) by

Ľ(N)
T (φ)(t, x) =

1
N

N∑
i=1

N∑
j=n+1

(φ(t, xi,j)− φ(t, x)) Ut(xj)

In order to avoid confusion with the canonical process on M(R+, E
N ), we will denote by

(ξ(N,i)
t )1≤i≤n, t≥0 and (ξ̆(N,i)

t )1≤i≤n, t≥0 the processes appearing in the “explicit” construction
of the families (Pt,x)t≥0, x∈EN and (P̆t,x)t≥0, x∈EN . The generator Ľ(N)

T is quite similar to the

selection operator L̂(N)
T , except that the particles ξ̆(N,i)

t , for n ≤ i ≤ N and 0 ≤ t ≤ T , are
not permitted to inherit by a selection step the values of ξ̆(N,j)

t , for 1 ≤ j ≤ n. Furthermore,
the restriction of Ľ(N)

T on functions depending only on the coordinates whose indices belong
to {n + 1, . . . , N} is equal to L̂(N−n)

T , up to a factor (N − n)/N and to the reindexing of
these indices obtained by adding n.

Observe that if we make a perturbation of (P̆t,x)t≥0, x∈EN by the kernel given at time
t ≥ 0 and point x = (xi)1≤i≤N ∈ EN by

1
N

N∑
i=1

n∑
j=1

U(t, xj)δxi,j

then we end up with the Markovian family of the algorithm we considered before (due to
the uniqueness of the associated generators). We will use this important feature to show
our main result here:

Proposition 4.2 Let P̆(N,{1,...,n})
η0,[0,T ] be the law of (ξ̆(N,i)

t )1≤i≤n, 0≤t≤T “under” the reference

measure
∫
η⊗N
0 (dx) P̆0,x. Then we have that∥∥∥P(N,{1,...,n})

η0,[0,T ] − P̆(N,{1,...,n})
η0,[0,T ]

∥∥∥
tv

≤ 4
n2

N
(exp(uTT )− 1)

Proof: As we will use a coupling argument, let us come back to the construction of
(ξ(N)

t )0≤t≤T (the horizon T ≥ 0 is assumed to be fixed) which follows from the considerations
of section 2.2 and 2.4: we denote by (Sp)p≥1 the proposed selection times (such that the dif-
ferences (Sp−Sp−1)p≥1 are independent and identically distributed according to exponential
laws of parameter NuT , with the convention that S0 = 0) and by (Zt)t≥0 the corresponding
Poisson process. Let us also consider the following independent objects: (Ip, Jp)p≥1 a family
of independent uniformly distributed random variables in {1, · · · , N}2 and (Vp)p≥1 a family
of independent uniformly distributed random variables in [0, 1]. We can assume that for
any p ≥ 1, the sampling of ξ(N)

Sp
knowing “ξ(N)

Sp−” is done according to the next mechanism:

we replace the Ip-th coordinate of ξ(N)
Sp− by its Jp-th coordinate, if Vp ≤ USp(ξ

(N,Jp)
Sp

)/uT ,

otherwise we take ξ(N)
Sp

= ξ
(N)
Tp− (classical acceptation/rejection procedure).

Meanwhile, from the sequence (Ip, Jp)p≥1 we can define a family (Ap)p≥1 of random
variables taking values in the subsets of {1, . . . , N}: we start with A0 = {1, . . . , n} and if
Ap has been defined, we put

Ap+1 =
{
Ap ∪ {Ip+1} , if Jp+1 ∈ Ap

Ap , otherwise
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To see its interest, let us remark that using the same intuitive ideas and technical pre-
cautions as those presented in section 2.3, we can construct a process (ξ̆(N)

t )0≤t≤T whose law
will be the restriction to M([0, T ], EN ) of

∫
η⊗N
0 (dx)P̆0,x and which is coupled to (ξ(N)

t )0≤t≤T

in the sense that the next property is satisfied:

∀ p ≥ 1, ∀ T ∧ Sp ≤ t < T ∧ Sp+1, ∀ n+ 1 ≤ i ≤ N, ξ̆
(N,i)
t 6= ξ

(N,i)
t =⇒ i ∈ Ap

(in particular we are starting with ξ̆
(N)
0 = ξ

(N)
0 ). Heuristically, for p ≥ 0, Ap \ {1, . . . , n} is

the set of subscripts n+ 1 ≤ i ≤ N such that ξ̆(N,i)
Sp

has a good chance to be different from

ξ
(N,i)
Sp

. Then, it appears that on the set

{ZT = 0} t
⊔
p≥1

{ZT = p, ∀ 1 ≤ q ≤ p, Iq 6∈ {1, . . . , n} or Jq 6∈ Ap}

we are assured that (ξ̆(N,i)
t )1≤i≤n, 0≤t≤T = (ξ(N,i)

t )1≤i≤n, 0≤t≤T . With the usual conventions
enforced, we get that

P[(ξ̆(N)
t )0≤t≤T 6= (ξ(N)

t )0≤t≤T ] ≤
∑
p≥1

P[ZT = p, ∃ 1 ≤ q ≤ p, Iq ∈ {1, . . . , n} and Jq ∈ Aq]

=
∑
p≥1

exp(NuTT )
(NuTT )p

p!
n

N2

p∑
q=1

E[card(Aq)]

Here P denotes the underlying probability and not the law of the interacting particle system.
This leads us to consider the sequence (Bp)p≥0

def.= (card(Ap))p≥0. It is quite clear that it is
an increasing inhomogeneous Markov chain taking values in {n, . . . , N}, whose probabilities
of transition are given by

∀ p ≥ 0,∀ n ≤ k, l ≤ N, P[Bp+1 = l|Bp = k] =


(N−k)k

N2 , if l = k + 1
1− (N−k)k

N2 , if l = k
0 , otherwise

This yields that for p ≥ 0,

E[Bp+1] = E[E[Bp+1|Bp]]

= E
[
Bp +

(N −Bp)Bp

N2

]
≤

(
1 +

1
N

)
E[Bp] ≤

(
1 +

1
N

)p+1

E[B0] =
(

1 +
1
N

)p+1

n

and we deduce from this inequality that

P[(ξ̆(N)
t )0≤t≤T 6= (ξ(N)

t )0≤t≤T ] ≤
∑
p≥1

exp(−NuTT )
(NuTT )p

p!
n

N2

p∑
q=1

(
1 +

1
N

)q

n

=
(

1 +
1
N

)∑
p≥1

exp(−NuTT )
(NuTT )p

p!
n2

N

((
1 +

1
N

)p

− 1
)

≤ 2
n2

N

∑
p≥0

exp(−NuTT )
(uTT (N + 1))p

p!
− 1


= 2

n2

N
(exp(uTT )− 1)
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which implies the upper bound of the proposition.

If we want to analyze the asymptotic behavior of P(N,{1,...,n})
η0,[0,T ] , as n2/N tends to zero, we

need to understand the one of P̆(N,{1,...,n})
η0,[0,T ] . For that purpose, we note that under this proba-

bility, (ξ̆(N,i)
t )n+1≤i≤N, 0≤t≤T is a Markov process with same law as (ξ(N−n,i)

t )1≤i≤N−n, 0≤t≤T ,
if we replace U by N−n

N U in the working-out of the latter. We will use this property to
construct our second coupling in next section, via the estimation of theorem 1.2.

4.2 A second coupling

The aim of this section is to find a judicious way to couple P̆(N,{1,...,n})
η0,[0,T ] with P̄⊗n

η0,[0,T ]. We
begin with analyzing more precisely the structure of the former probability. As we noticed
before, we can first construct (ξ̆(N,i)

t )n+1≤i≤N, 0≤t≤T because this process is Markovian by
himself. Then, let us define for 0 ≤ t ≤ T , the random probability

η̆
(N,{n+1,...,N})
t =

1
N − n

∑
n+1≤i≤N

δ
ξ̆
(N,i)
t

It is quite standard to design a probability space (Ω,F ,P) on which are defined random
variables Z, (Ti)i≥1 and (Yi)i≥1 satisfying the following properties: Z is distributed according
to a Poisson law of parameter nuTT , knowing that Z = k ∈ N, T1 < T2 < · · · < Tk are the
ordering of k independent and uniformly distributed random variables on ]0, T [ and Tp = T
for p > k, finally knowing that Z = k and that (Ti)i≥1 = (ti)i≥1, (Yi)1≤i≤k is distributed on
Ek according to the “integrated” law given by

E[η̆(N,{n+1,...,N})
t1

⊗ η̆
(N,{n+1,...,N})
t2

⊗ · · · ⊗ η̆
(N,{n+1,...,N})
tk

]

while we put Yp = � 6∈ E, for p > k.
Next assuming that Z = k, (Ti)i≥1 = (ti)i≥1 and (Yi)i≥1 = (yi)i≥1 have been sampled

according to the previous distribution, we construct a path of M([0, T ], En) in the way
described below; we start by considering in addition the two following independent objects:
a sequence (Vi)i≥1 of independent random variables uniformly distributed on [0, 1] and
(ξ̆(N,i)

0 )1≤i≤n whose law on En is η⊗n
0 . Knowing (ξ̆(N,i)

0 )1≤i≤n, we sample (ξ̌(n,i)
t )1≤i≤n, 0≤t≤t1

according to ⊗1≤i≤nP
0,ξ̆

(N,i)
0

(at least its restriction to M([0, t1], En)). Then we choose
1 ≤ i1 ≤ n uniformly and take for 0 ≤ t ≤ t1 and 1 ≤ i ≤ n,

ξ̆
(n,i)
t =

{
Y1 , if i = i1, t = t1 and V1 ≤ N−n

N U(t1, Y1)
ξ̌
(n,i)
t , otherwise

Now we let (ξ̌(n)
t )t≥t1 be distributed according to ⊗1≤i≤nP

t1,ξ̆
(n,i)
t1

, then at time t2 we contin-

gently proceed at the replacement of ξ̌(n,i2)
t2

by Y2, where again 1 ≤ i2 ≤ n is independently
and uniformly chosen, and so on. In a formalized way (using the hypothesis (H2)), this
construction leads to a kernel Q from N× [0, T ]N × (E t {�})N to M([0, T ], En) such that

P̆(N,{1,...,n})
η0,[0,T ] (·) = E(Ω,F)[Q(Z, (Ti)i≥1, (Yi)i≥1, ·)]

The interest of this representation is that if above we replace (Yi)i≥1 by a family of ran-
dom variables (Ȳi)i≥1 which satisfies that knowing that Z = k and that (Ti)i≥1 = (ti)i≥1,
(Ȳi)1≤i≤k is distributed on Ek according to ηt1 ⊗ · · · ⊗ ηtk , while Ȳp = � for p > k, then

P̄⊗n
η0,[0,T ] = E(Ω,F)[Q(Z, (Ti)i≥1, (Ȳi)i≥1, ·)]

Thus, theorem 1.1 will be implied by the next result:
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Proposition 4.3 There exists a construction of the random variables (Z, (Ti)i≥1, (Yi)i≥1, (Ȳi)i≥1)
with the above prescribed distribution such that

P[(Yi)i≥1 6= (Ȳi)i≥1] ≤ 1
2
ε̃(N,n)

where the l.h.s. is understood in the sense of section 2.3 and where the r.h.s. satisfies the
condition

lim sup
n2/N→0

N

n2
ε̃(N,n) ≤ (14 + 28uTT [1 + exp(uTT )])uTT (uTT + 1)

Proof: We begin by constructing (Ȳi)i≥1 independently from (Yi)i≥1, knowing Z and
(Ti)i≥1. According to formula (10), there exists a smarter coupling if we can show that for
any mapping f : N× [0, T ]N × (E t {�})N → [−1, 1] which is measurable, we have

E[f(Z, (Ti)i≥1, (Yi)i≥1)]− E[f(Z, (Ti)i≥1, (Ȳi)i≥1)] ≤ ε̃(N,n)

Let us define for all k ≥ 1 and 0 < t1 < · · · < tk < T , a function fk,t1,...,tk on Ek by

fk,t1,...,tk(y1, . . . , yk) = f(k, (t1, . . . , tk, T, T, . . .), (y1, . . . , yk, �, �, . . .))

The l.h.s. can also be written as

exp(−nuTT )
∑
k≥1

(nuTT )k

k !

∫
]0,T [k

1It1<t2<···<tk

(
E[η̆(N)

t1
⊗ · · · ⊗ η̆

(N)
tk

(fk,t1,...,tk)]

−ηt1 ⊗ · · · ⊗ ηtk(fk,t1,...,tk)
)
dt1 · · · dtk

≤ exp(−nuTT )
∑
k≥1

(nuTT )k

k !
ε

(
k2

N

)

where ε
(

k2

N

)
is the quantity appearing in theorem 1.2 (note that this constant is increasing

in uT so it was harmless to replace the latter by N−n
N uT ). So we can define ε̃(N,n) as the

above r.h.s. and let us verify that it satisfies the condition mentioned in the proposition.
We divide the sum in two parts:

ε̃(N,n) = ε1(N,n) + ε2(N,n)

def.= exp(−nuTT )
∑

1≤k≤k0(N,n)

(nuTT )k

k !
ε

(
k2

N

)

+exp(−nuTT )
∑

k≥k0(N,n)+1

(nuTT )k

k !
ε

(
k2

N

)

where k0(N,n) = min
{
k ≥ 2nuTT : exp(−nuTT ) (nuT T )k

k! ≤ n4

N2

}
. This number admits

the following interesting property, which comes from the very fast decreasing of (nuT T )k

k! to
zero for large k.

Lemma 4.4 The quantity k2
0(N,n)/N goes to zero with n2/N .

Proof: In order to get this result, it is sufficient to see that for all α > 0, all N∗-valued
sequences (Np)p≥1 and (np)p≥1 satisfying limp→∞Np = ∞ and limp→∞ n2

p/Np = 0, if we
take kp = α

√
Np for p ≥ 1 (so kp ≥ 2npuTT for p large enough), then

lim
p→∞

exp(−npuTT )
N2

p (npuTT )kp

n4
p(kp!)

= 0
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because this easily leads to a contradiction. Using a Sterling’s expansion, this convergence
follows at once.

Thus, we deduce the next estimate for ε2(N,n): noting that for k ≥ 2uTTn,

(nuTT )k+1

(k + 1)!
≤ 1

2
(nuTT )k

k!

we get the bound

ε2(N,n) ≤ exp(−nuTT )
(nuTT )k0(N,n)

k0(N,n)!

∑
p≥0

1
2p

= 2 exp(−nuTT )
(nuTT )k0(N,n)

k0(N,n)!

This implies that

ε2(N,n) ≤
√

2
(
n2

N

)
and lim

n2/N→0

N

n2
ε2(N,n) = 0

We now consider ε1(N,n): let α > 0 be given, according to theorem 1.2 and lemma 4.4, we
can find β > 0 such that for all n and N verifying n2/N ≤ β, the quantity k2

0(N,n)/N is
small enough to ensure that for all 1 ≤ k ≤ k0(N,n),

ε

(
k2

N

)
≤ (1 + α)(14 + 28uTT [1 + exp(uTT )])

k2

N

Then it appears that for such n and N ,

ε1(N,n) ≤ (1 + α)(14 + 28uTT [1 + exp(uTT )]) exp(−nuTT )
∑

1≤k≤k0(N,n)

(nuTT )k

k !
k2

N

≤ (1 + α)(14 + 28uTT [1 + exp(uTT )]) exp(−nuTT )
∑
k≥1

(nuTT )k

k !
1
N

(k(k − 1) + k)

≤ (1 + α)(14 + 28uTT [1 + exp(uTT )])
uTTn(uTTn+ 1)

N

≤ (1 + α)(14 + 28uTT [1 + exp(uTT )])uTT (uTT + 1)
n2

N

and the expected behavior of ε(N,n) follows.

5 Path spaces

The main purpose of this part is to motivate the abstract considerations of subsection 2.1
by presenting an interesting consequence for the so-called genealogical/historical processes
associated to the particle systems. As we will indicate it, this application is strongly related
to the practical smoothing problem in nonlinear filtering. The point is that we will now take
advantage of our general setting in order to consider path sets for state spaces. This situation
would have been especially uneasy to deal with in the usual setting of pregenerators defined
on algebras (cf. for instance [6]), even if one could keep a Polish state space assumption, via
the standard (but not trivial in contrast with what follows) use of the Skorokhod topology.

We begin by looking at the “new” object we want to numerically approximate: by
analogy with formula (1) of the introduction, we define for any T ≥ 0 a probability η[0,T ] on
M([0, T ], E) by the formulae

η[0,T ](ϕ) def.=
Eη0

[
ϕ((Xt)0≤t≤T ) exp

(∫ T
0 Us(Xs) ds

)]
Eη0

[
exp

(∫ T
0 Us(Xs) ds

)] (17)
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valid for all bounded and measurable test functions ϕ : M([0, T ], E) → R.
One of the interest of these measures is that they are the theoretical solutions to some

basic problems in nonlinear filtering. Without entering into the details, let us give a few
heuristics about this subject: assume that a signal (St)t≥0 taking values in E is only seen
through an observation process (Yt)t≥0 (in a nonlinear and noisy way). Then under some
hypotheses on the evolution of the Markovian couple (St, Yt)t≥0 and via some changes of
probabilities, one can obtain for any given time t ≥ 0, a representation of the law of St

knowing (Ys)0≤s≤t in the form of (1), where at any instant s ≥ 0, the generator of X and
the function Us depend in fact on Ys (see for instance [6], a more abstract characterization
of the general nonlinear problems whose solutions can be written as quotients of Feynman-
Kac integrals should be the object of a forthcoming article). This is the classical nonlinear
filtering question. Now if we are interested in law of the whole (St)0≤t≤T knowing (Yt)0≤t≤T ,
it can be expressed as (17). Then one can deduce for instance the law of X0 knowing
(Yt)0≤t≤T and this is a particularly important example of smoothing problem: after some
observations, to estimate from where the signal has started (i.e. its conditional distribution).

Nevertheless, one can think of other justifications for (17), as it is also possible to treat
cases where Us(Xs) is replaced by Us((Xu)0≤u≤s) under some measurability assumptions.

Indeed the basic principle is to consider ((Xs)0≤s≤t)t≥0 as a Markov process whose state
space consists of paths. This idea is very old in the theory of stochastic processes, but
we are now able to use it in order to device natural “particle” algorithms approximating
(17) for which we get the relatively explicit and general bounds presented in the previous
sections. More precisely, for t ≥ 0, the measure η[0,t] will again be approximated by empirical
distributions

η
(N)
[0,t]

def.=
1
N

∑
1≤i≤N

δ
(ξ̆

(N,i)
t (s))0≤s≤t

where for 1 ≤ i ≤ N , the path (ξ̆(N,i)
t (s))0≤s≤t belongs to M([0, t], E). The whole evolution

R+ 3 t 7→ (ξ̆(N,i)
t )1≤i≤N is called the genealogical process associated to our previous particle

system. Heuristically it is constructed in the following way: between selection times, the
paths are prolonged according to the underlying Markov process and at a selection time,
say when in our algorithm above the ith particle was replaced by the jth one, now all the
trajectory associated to the ith particle is replaced by that of the jth one.

But in order to be more precise in this direction, we have to verify that our setting is
in some sense “stable” when we go from points to trajectories. Thus let us develop the
corresponding preliminaries.

As before, we start from a measurable space (E, E) and a given set of paths M(R+, E)
satisfying the condition (H1). As new state space, we consider Ē = E×M(R+, E) endowed
with its natural coordinates (Y, (Xt)t≥0) and the σ-field they generate.

If 0 ≤ s ≤ t and ω,w ∈ M(R+, E) are given, we define a new path Is,t(ω,w) belonging
to M(R+, E) by

∀ u ≥ 0, Xu(Is,t(ω,w)) =
{
Xu(ω) , if 0 ≤ u < s or u ≥ t
Xu(w) , otherwise

We also introduce the following related object: for t ≥ 0, ω ∈ M(R+, E) and w ∈
M([t,+∞[, E), Wt(ω,w) is the path of M([t,+∞[, Ē) such that

∀ s ≥ t, X̄s(Wt(ω,w)) = (Xs(w), It,s(ω,w))

where (X̄s)s≥0 will denote the canonical coordinate process on M(R+, Ē).
This kind of trajectories will in some sense be generating: M(R+, Ē) will stand for the

subset of M(R+, Ē) obtained by stabilization of the set of trajectories {I0(ω,w) : ω,w ∈
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M(R+, E)} with respect to the operation described in the first point of (H1), i.e. it consists
of the paths W ∈ M(R+, Ē) for which there exist an increasing sequence (ti)i≥1 of positive
reals satisfying limi→∞ ti = +∞, and a sequence (ωi, wi)i≥0 of elements of (M(R+, E))2 such
that

∀ i ≥ 0, ∀ ti ≤ s < ti+1, X̄s(W ) = X̄s(W0(ωi, wi))

(where the traditional convention t0 = 0 is enforced).
Remark that the assumption that M(R+, E) should contains all constant paths is not

very natural, because under our construction it would not have been preserved at the Ē-level.

Lemma 5.1 The set of paths M(R+, Ē) satisfies the required condition (H1).

Proof: The first point of this hypothesis is quite immediate, so it is sufficient to look
at the second one. Let Y be the mapping defined by

M(R+, Ē) 3W 7→ (Y (X̄t(W )))t≥0

it appears that in fact it takes values in M(R+, E) and is M(R+, E)/M(R+, Ē)-measurable.
Thus we obtain that

R+ ×M(R+, Ē) 3 (t,W ) 7→ Y (X̄t(W )) ∈ E

is R+ ⊗M(R+, Ē)-measurable, because it can be decomposed into

R+ ×M(R+, Ē) 3 (t,W ) 7→ (t,Y(W )) 7→ Xt(Y(W ))

Besides, for s ≥ 0 and W ∈ M(R+, Ē) fixed, we have that the mapping

R+ 3 t 7→ Xs(X̄t(W )) ∈ E

is piecewise constant and the corresponding intervals are closed at the left end and open at
the right end (i.e. this path is càdlàg if one puts on E the total topology generated by the
singletons). So it makes it clear that for s ≥ 0 fixed, the mapping

R+ ×M(R+, Ē) 3 (t,W ) 7→ Xs(X̄t(W )) ∈ E

is R+ ⊗M(R+, Ē)-measurable and by definition of M(R+, E), it follows that the same is
true for

R+ ×M(R+, Ē) 3 (t,W ) 7→ (Xs(X̄t(W )))s≥0 ∈ M(R+, E)

Now it is time to lift a given Markovian family (Pt,x)t≥0, x∈E to the Ē-level: so let t ≥ 0
and x̄ = (x, ω) ∈ Ē be given, we define the probability P̄t,x̄ on M([t,+∞[, Ē) as the image
of Pt,x under the mapping

M([t,+∞[, E) 3 w 7→ Wt(ω,w)

Via extensive use of monotonous class theorem, there is no difficulty in verifying that
(P̄t,x̄)t≥0, x̄∈Ē is indeed a Markovian family satisfying (H2). The simplicity of this proce-
dure underlines once again the advantage one has to work directly with laws and not with
pregenerators (at least theoretically).

Thus we can apply all the results of the previous sections with the function U defined
by

∀ (t, x̄) ∈ R+ × Ē, U(t, x̄) = U(t, Y (x̄))
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In particular, let us describe the evolution of the associated N -particles system in this
case: we denote by P0 the image of P0,η0 under the mapping M(R+, E) 3 ω 7→ (X0(ω), ω) ∈
Ē. Then we sample (X(N,1)

0 , ω
(N,1)
0 ), . . . , (X(N,N)

0 , ω
(N,N)
0 ) independently according to P0.

To simplify the presentation, we fix a horizon T > 0, and we only consider the time
interval [0, T ]. So let (Ti)i≥1 be a sequence of R∗

+ valued random variables such that the Ti−
Ti−1, for i ≥ 1 and with T0 = 0, are independent and distributed according to exponential
laws of parameter NuT . At any instant 0 ≤ t < T ∧ T1, the particle system is given by

∀ 1 ≤ i ≤ N, ξ̄
(N,i)
t = (Xt(ω

(N,i)
0 ), ω(N,i)

0 )

.
At time T1, we choose two indices 1 ≤ I1, J1 ≤ N , in a equidistributed way for I1 and

according to the probability

1
NuT

∑
1≤j≤N

U(T1, XT1(ω
(N,j)
0 )δj

for J1. Let also V1 be uniformly distributed on [0, 1]. Then if T1 ≤ T , the particle system
at this time T1 is

∀ 1 ≤ i ≤ N, ξ̄
(N,i)
T1

=

{
(XT1(ω

(N,J1)
0 ), ω(N,J1)

0 ) , if i = I1 and V1 ≤ U(T1, XT1(ω
(N,j)
0 ))/uT

(XT1(ω
(N,i)
0 ), ω(N,i)

0 ) , otherwise

The next step consists in sampling (ω(N,1)
1 , . . . , ω

(N,N)
1 ) according to

P
T1,Y (ξ̄

(N,1)
T1

)
⊗ · · · ⊗ P

T1,Y (ξ̄
(N,N)
T1

)

and then at any instant T ∧ T1 ≤ t < T ∧ T2 and for any index 1 ≤ i ≤ N , we put the ith

particle at the “position”

ξ̄
(N)
t

def.= (Xt(ω
(N,i)
1 ), IT1,t((Xs(ξ̄

(N,i)
T1

))s≥0, ω
(N,i)
1 )) ∈ Ē

and so on, in a Poissonian random number of steps we end up with (ξ̄(N)
t )0≤t≤T .

In order to recover a more usual object, let us denote for t ≥ 0, ξ̆(N)
t the path of

M([0, t], EN ) defined by

∀ 1 ≤ i ≤ N, ∀ 0 ≤ s ≤ t, ξ̆
(N,i)
t (s) =

{
(Xs(ξ̄

(N,i)
t ))1≤i≤N , if s < t

(Y (ξ̄(N,i)
t ))1≤i≤N , if s = t

It appears that (ξ̆(N)
t (t))t≥0 has the same law as our previous algorithm ξ(N) (or equiv-

alently, the N -product version of the mapping Y defined in the proof of lemma 5.1 could
enable us to recover ξ(N) from ξ̄(N), and consequently the results on E from their Ē-
counterparts), but furthermore (ξ̆(N)

t )t≥0 gives its genealogy, in the sense that for 0 ≤ s ≤ t

and 1 ≤ i ≤ N , ξ̆(N,i)
t (s) is the “ancestor” of ξ̆(N,i)

t (t) at time s, that is why ξ̆(N) is sometimes
called the historical process associated to the particle system ξ(N). We have not been able
to use it directly in our definitions above, because rigorously its state space is varying with
time, peculiarity which is not allowed in our setting (one can try to develop such a theory,
but this leads to more far-fetched considerations than the a priori strange introduction of Ē,
one of the main difficulties comes from the initial parametrization property in our definition
of Markovian families which has an innocent touch at first glance but is especially important
in the proof of proposition 3.4).
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Thus we are lead to consider for T ≥ 0,

η
(N)
[0,T ]

def.=
1
N

∑
1≤i≤N

δ
ξ̆
(N,i)
T

∈ P(M([0, T ], E))

since it is a good estimator of η[0,T ] : there exists a constant CT ≥ 0 such that for any
ϕ ∈ Bb(M([0, T ], E)), we are assured of∣∣∣E[η(N)

[0,T ](ϕ)]− η[0,T ](ϕ)
∣∣∣ ≤ CT

‖ϕ‖
N

(18)

or alternatively

E
[∣∣∣η(N)

[0,T ](ϕ)− η[0,T ](ϕ)
∣∣∣] ≤ CT

‖ϕ‖√
N

(19)

Up to our knowledge, these estimations are the first ones in that direction.
In particular, if we are only interested in the smoothing problem mentioned before (i.e.

we are only considering mapping ϕ of the form ϕ = ψ ◦X0, with ψ ∈ Bb(E)) it appears that
we should rather look at the approximating empirical probabilities

η
(N)
0,T

def.=
1
N

∑
1≤i≤N

δ
ξ̆
(N,i)
T (0)

∈ P(E)

only putting mass on the initial particles ξ̆(N,i)
0 (0), for 1 ≤ i ≤ N , which can be identified

with the ξ(N,i)
0 .

More precisely, let us notice that the process ((ξ̆(N,i)
t (0), ξ̆(N,i)

t (t))1≤i≤N )t≥0 taking values
in (E×E)N is indeed Markovian and can be constructed in a way similar to the one above,
so it is not necessary to keep track of the whole process (ξ̆(N)

t )t≥0, which would ask for too
much memory if we wanted to implement the previous algorithm as practical code on a
computer.

We also recall that our estimates are good asymptotically as the number N of particles
is very large, but we are not saying anything about the behavior for long time T ≥ 0. In
fact, if N ≥ 1 is fixed and if the cost function is bounded away from zero (ie there exists
α > 0 such that for all t ≥ 0 and x ∈ E, U(t, x) ≥ α), then for large T , the probability η(N)

0,T

is a.s. converging to a Dirac measure (this corresponds to the fact that asymptotically in
time there is an unique initial ancestor, because of too much selection procedures), i.e. we
are choosing only one of the initial particles as an estimator of the distribution η0,T defined
by

E 3 A 7→
Eη0

[
1IA(X0) exp

(∫ t
0 Us(Xs) ds

)]
Eη0

[
exp

(∫ t
0 Us(Xs) ds

)]
which may not be a smart choice: for instance consider the case where E = {−1, 1}, X is
the nonmoving Markov process, η0 = (δ−1 + δ1)/2, U ≡ 1 and ϕ = id, then we have

sup
T≥0

E
[∣∣∣η(N)

0 (ϕ)− η0,T (ϕ)
∣∣∣] ≤ 1√

N
whereas lim

T→+∞
E
[∣∣∣η(N)

0,T (ϕ)− η0,T (ϕ)
∣∣∣] = 1

This is also the occasion for us to mention that while representation (1) does not uniquely
determine U (for instance one can add to it a locally bounded, measurable and nonnegative
function depending only on time without changing the flow (ηt)t≥0), it is always in our
interest to work with the smaller one possible, either for the theoretical bounds or for the
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number of selection procedures needed algorithmically. In the trivial example above, this
corresponds to the choice of U ≡ 0, for which η(N)

0,T = η
(N)
0 for any T ≥ 0.

Remark 5.2: Bounds (18) and (19) merely express quantitative weak propagation of
chaos in L1 and L2. For them it is not necessary to go through our whole development,
because the only ingredient needed is the estimate of theorem 1.2 with n = 2 and t1 = t2 = T ,
result which can be obtained quite directly through proposition 3.3 (let us recall that the
main difficulty of section 3 was the n2/N -dependence).
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on Probability Theory. Ecole d’Eté de Probabilités de Saint-Flour XXI-1991, Lecture
Notes in Mathematics 1541. Springer-Verlag, 1993.

[3] P. Del Moral, Feynman-Kac formulae. Genealogical and interacting particle systems,
with applications, Springer Verlag New York, Series: Probability and its Applications
(2004).

[4] P. Del Moral, M.A. Kouritzin, and L. Miclo. On a class of discrete generation interacting
particle systems. Preprint, publications du Laboratoire de Statistique et Probabilités,
no 2000-07, 2000.

[5] P. Del Moral and L. Miclo. A Moran particle system approximation of Feynman-Kac
formulae. Preprint to be publish in Stochastic Processes and their Applications (2000),
1998.

[6] P. Del Moral and L. Miclo. Branching and interacting particle systems approximations
of Feynman-Kac formulae with applications to non linear filtering. Preprint to be
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