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Abstract: We analyze the concentration properties of an annealed Feynman-Kac model
in distribution space. We characterize the concentration regions in terms of a variational
problem involving a competition between the potential function and the mutation kernel.
When the temperature parameter is evanescent with time and under appropriate hypoth-
eses, the probability mass tends to concentrate on regions with minimal potential values.
We give a precise description of these areas using non-linear semi-group contractions
and large deviation techniques. We illustrate this annealed model with two physical in-
terpretations related respectively to Markov motions in absorbing media and interacting
measure valued processes.

1. Introduction

This study is concerned with the long time behavior of a Feynman-Kac model associated
to a potential function and a cooling schedule. This annealed distribution flow can be
interpreted as the evolution of the laws of a Markov particle in an absorbing medium
conditioned to non-extinction. In this context the cooling schedule represents in some
sense the temperature of the medium. The smaller it is, the more stringent become the
obstacles.

These Feynman-Kac models can alternatively be regarded as a dynamical system in
distribution space. In this context they can model the evolution of the marginal laws of
a non-linear and non-homogeneous Markov process. The non-linearity comes from the
fact that the elementary transitions depend on the distribution flow itself. In this connec-
tion the non-linear Markov model can be regarded as a Feynman-Kac type simulated
annealing algorithm with mutation/selection transitions. As in the traditional simulated
annealing model the temperature parameter is used to increase the selection pressure of
the algorithm. These non-linear measure valued processes have a natural genetic type
particle interpretation. They have some important applications in biology, advanced sig-
nal processing and numerical function analysis [4]. In contrast to previous studies on the
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convergence of genetic algorithms in global optimization problems (see for instance [2,
3] and the references given there) we underline that our study is not restricted to finite
state spaces and above all that our mutation kernel is homogeneous in time (and not
related to the cooling schedule), in particular it does not force the underlying (i.e. unper-
turbed by potentials) system to be motionless for large time. Our final counter-example
relative to convergence to the global minima enables to better apprehend this classical
assumption and we will see that it can be advantageously replaced by permitting the
mutation kernel to have loops on each point of the state space. This latter precaution is
very mild from the point of view of implementation of the procedure, whose speed of
convergence should benefit a lot from homogeneity in time of the mutations (and further-
more, endowed with this feature, our algorithm seems closer to true biological/genetic
mechanisms than the traditional ones).

The above physical interpretations result from two ways to turn a sub-Markov and
Boltzmann-Gibbs operator into a Markov kernel. One of the central questions in the
study of these annealed Feynman-Kac models is of course the investigation of the long
time behavior of these flows. Intuitively speaking when the temperature parameter tends
to zero the probability mass of regions with high potential values decreases and the
flow tends to concentrates to regions with minimal potential. The main objective of this
article is to make clear this statement. First we discuss the convergence to equilibrium of
the annealed models. We exhibit two different types of cooling schedules depending on
the mixing parameter of the mutation transitions. Then we characterize the asymptotic
regions where the flow concentrates in terms of a variational problem in distribution
space. We show that the concentration properties of the annealed model are the result of
a competition between the selection potential and the mutation transition. When the tem-
perature parameter tends to zero the variation problem is solved by taking the infimum of
the mean potentials over a suitably chosen collection of measures. We already mention
that for sufficiently regular mutations and for judicious choices of cooling schedules the
annealed model converges in probability to the global infimum of the potential function.

To our knowledge the asymptotic concentration properties of the annealed Feynman-
Kac flow presented in this study have not been covered by the literature. We propose an
original strategy based on non-linear semi-group contraction and large deviation tech-
niques. The question of the stability of non-linear Feynman-Kac semi-groups arises in
many research areas. To our knowledge the first studies in this field originate in non-
linear filtering literature. We again refer the reader to [4] for a precise discussion and
a precise list of referenced papers. To our knowledge most of these works are only
concerned with proving that the flow forgets its initial condition. The reason why these
studies do not apply are twofold. First the annealed Feynman-Kac flows presented here
are related to an increasing cooling schedule and the resulting functions e−β(n)V tend to
the indicator function of null potential regions. The analysis of this degenerate situation
is more involved and clearly differs from traditional filtering studies. On the other hand
our objective is not to check that the flow forgets its initializations but we want to identify
the regions on which the distributions concentrate. Our way to enter into this question
has been influenced by the article [5]. This study shed some new light on the connections
between the limiting distribution of the homogeneous model and the Lyapunov expo-
nent of Schrödinger-Feynman-Kac semi-groups. Here we develop the profound interplay
between the asymptotic behavior of these exponents and the concentration properties
of the limiting measures. We also present a set of sufficient conditions on the mutation
transitions under which these limiting regions coincide with the essential infimum of the
potential function with respect to the invariant measure of the mutation kernel. We end
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this article showing that annealed models with off-diagonal type mutations may lose the
essential infimum.

1.1. Description of the models and motivations. Let E be a separable complete metric
space endowed with its Borel σ -field E and let V : E → R+ = [0, ∞) be a non-
negative bounded continuous potential function on E whose oscillation will be denoted
by

osc(V ) = sup
{
V (x) − V (y) ; (x, y) ∈ E2}.

We consider a Markov kernel M(x, dy) on (E, E) and we denote by

(
� = EN, F = (Fn)n∈N, X = (Xn)n∈N, (Px)x∈E

)

the canonical Markov chain with elementary transition M . For a given distribution µ on
E we use the notation Eµ(.) for the expectation with respect to

Pµ(.) =
∫

E

µ(dx) Px(.).

We recall that a Markov kernel M generates two integral operators, one acting on the
Banach space B(E) of bounded measurable functions f and the other on the set P(E)

of probability measures µ on E by

M(f )(x) =
∫

E

M(x, dy) f (y) and (µM)(A) =
∫

E

µ(dx) M(x, A)

for any x ∈ E and A ∈ E . The space B(E) is endowed with the supremum norm

‖f ‖ = sup
x∈E

|f (x)|

and the set P(E) with the total variation distance

‖µ − η‖tv = sup
A∈E

|µ(A) − η(A)| = 1

2
sup

f ∈B(E) : ‖f ‖≤1
|µ(f ) − η(f )|.

Here are collected some standard notations and conventions. If Q is a bounded positive
operator on B(E) then we denote by Qn, n ∈ N, the semi-group defined by the inductive
formula

Qn = QQn−1 with Q0 = Id.

Unless otherwise mentioned, x, y, z denote generic points in E, f an arbitrary bounded
and measurable test-function on E and µ a given probability measure on E. We also
use the conventions inf∅ = ∞, sup∅ = −∞ and

∑
∅ = 0,

∏
∅ = 1 and �a� denotes the

integer part of a number a ∈ R+.
For a given inverse-freezing schedule β̃ : N → R+ we denote by µn ∈ P(E) the

annealed distribution flow defined by the Feynman-Kac formulae

µn(f ) = γn(f )

γn(1)
with γn(f ) = Eµ0

[
f (Xn) exp

{
−

n∑

p=1

β̃(p)V (Xp)

}]
. (1)
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In this notation we notice that γ0 = µ0 is the initial distribution law of the chain X. When
the cooling schedule parameter β̃(n) → ∞ as n → ∞, the distributions µn should in-
tuitively concentrate on some regions with minimal potential values. To illustrate this
observation and motivate this article we present next two different physical interpreta-
tions of the Feynman-Kac model. To clarify the presentation we restrict ourselves to the
homogeneous situation and we suppose β̃(n) = β ∈ R+.

Before proceeding further, we notice from the multiplicative nature of these formulae
that the finite measures γn satisfy a linear equation of the form

γn = γn−1Q, (2)

with Q(x, dz) =
∫

E

M(x, dy) G(y, dz) and G(x, dy) = e−βV (x)δx(dy).

The first way to turn the sub-Markovian kernel G into the Markov case consists in adding
a cemetery point c 	∈ E to the state space E and in extending the various quantities as
follows. The test functions f ∈ B(E) and respectively the Markov transition M are first
extended to E 
 {c} by setting f (c) = 0 (note that V (c) = 0) and

Mc(x, dy) = �E(x) M(x, dy) + �c(x) δc(dy).

Finally the Markov extension Gc of G on E 
 {c} is given by

Gc(x, dy) = e−βV (x) δx(dy) + (1 − e−βV (x)) δc(dy). (3)

The corresponding Markov chain (�, F, X, (Pc
x)x∈E
{c}) with elementary transitions

McGc can be regarded as a Markov particle evolving in an environment with absorbing
obstacles related to a potential function V . When the temperature of the medium de-
creases the obstacles become more and more stringent and the particle is more rapidly
absorbed. In this physical context the Feynman-Kac flow (µn)n∈N defined by (1) repre-
sents the conditional distributions of the particle motions given the fact it has not been
absorbed. With some obvious abusive notations we have

µn(f ) = E
c
µ0

(f (Xn) | T > n),

where T = inf {n ≥ 0 ; Xn = c} is the lifetime of X and where E
c
µ0

(.) is the expecta-
tion with respect to P

c
µ0

(.). Intuitively speaking, when the temperature of the medium
decreases a non-absorbed particle will evolve in regions with low potential obstacles.

In measure valued and interacting processes literature the Feynman-Kac flow is
alternatively seen as a solution of a non-linear evolution equation of the form

µn = µn−1Kβ
µn−1

(4)

with a collection of Markov kernels Kβ
µ on E. The choice of Kβ

µ is not unique. By direct
inspection we see from (2) that we can choose

Kβ
µ = MSβ

µM

with the Markov kernels Sβ
µ on E defined by

Sβ
µ(x, dy) = e−βV (x) δx(dy) + (1 − e−βV (x)) �β(µ)(dy).
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Here �β is the Gibbs-Boltzmann mapping from P(E) into itself defined by

�β(µ)(dy) = 1

µ(e−βV )
e−βV (y) µ(dy).

Note that the evolution equation (4) is decomposed in two separate Markov transitions

µn−1
M−→ ηn = µn−1M

Sβ
ηn−→ µn = ηnSβ

ηn
(5)

In connection with the first interpretation we have turned here the sub-Markovian kernel
G into the Markov case in a non-linear way by replacing the Dirac measure on the
cemetery point c by the Gibbs-Boltzmann distribution �β(ηn). In this context the prob-
abilistic interpretation consists in introducing a new reference probability measure P

β
µ0

on the canonical space under which µn is the distribution law of a non-homogeneous
and non-linear Markov chain (Zn)n∈N. This measure is called the McKean measure
associated to the collection of kernels Kβ

µ and it is defined by its n-time marginals P
β
µ0,n,

P
β
µ0,n

(d(x0, . . . , xn)) = µ0(dx0) Kβ
η0

(x0, dx1) · · · Kβ
ηn−1

(xn−1, dxn). (6)

In this notation we clearly have that

µn(f ) = E
β
µ0

(f (Zn)),

where E
β
µ0(·) is the expectation with respect to P

β
µ0(·). The non-linear model (4) has

a natural interacting particle interpretation. We will not enter into more details here.
This would be too much digression and we refer the interested reader to the survey
paper [4]. For completeness and for the convenience of the reader we give next an in-
tuitive feel for the particles’ motions. As dictated by (5) the evolution of the systems
is again decomposed into two mechanisms. During the first one the particles explore
the state space independently of each other according to the mutation kernel M . After
this mutation stage each particle in a site x decides with a probability e−βV (x) to stay
in its location and with a probability 1 − e−βV (x) it selects a new particle at site y pro-
portionally to its fitness e−βV (y). This interacting particle model can be regarded as a
genetic approximating model or as a Feynman-Kac version of the traditional simulated
annealing algorithm. We refer the reader to the book of Duflo [7] and references therein
for a precise description of these classical stochastic algorithms. In this “engineering
perspective” the objective is to find the right mutation kernel and a judicious cooling
schedule so that the particle will converge as the time tends to infinity to the global
minima of the potential function V .

1.2. Statement of some results. In this section we present a quick derivation of our main
results. For an homogeneous cooling schedule, namely for all n ∈ N, β̃(n) = β ∈ R+,
the distribution flow (4) is homogeneous with respect to the time parameter. More pre-
cisely it satisfies a non-linear equation in distribution space of the form

µn = �β(µn−1).

The mapping �β from P(E) into itself is defined by the formula

�β(µ)(f ) = µM
(
e−βV f

)
/µM

(
e−βV

)
.
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By �
β
n , n ∈ N, we denote the corresponding semi-group

�
β
n+1 = �β ◦ �β

n with �
β
0 = Id.

We will work with the following mixing type condition:

(H) There exists an integer m ≥ 1 and an ε ∈ (0, 1) such that for each x, y ∈ E,

Mm(x, .) ≥ ε Mm(y, .).

This condition clearly holds true for irreducible and aperiodic Markov kernels M on a
finite space but it is also satisfied for bi-Laplace transitions with bounded drift functions
as well as for some classes of Gaussian transitions (cf. [4]).

The reasons for the introduction of this mixing type condition are twofold.

– The main reason is that it guarantees the existence of an unique point

µβ = �β(µβ) ∈ P(E)

of each mapping �β , β ∈ R+. We will deduce this result from a contraction property
of the semi-group �

β
n . More precisely we will find a contraction parameter k ∈ (0, 1)

and a collection of integers n(β), β ∈ R+, such that for any µ, η ∈ P(E),

‖�β

n(β)(µ) − �
β

n(β)(η)‖tv < k ‖µ − η‖tv.

For judicious choices of cooling schedule β̃(n) one expects that the non-homoge-
neous Feynman-Kac flow behaves as the limiting distributions µβ̃(n), as it is usual
for simulated annealing (see for instance [9, 10]).

– On the other side, condition (H) allows to connect the concentration properties of µβ

with the asymptotic behavior of the logarithmic Lyapunov exponent


(−βV ) = lim
n→∞

1

n
ln sup

x∈E

Ex

(
e
−β

∑n
p=1 V (Xp)

)
(7)

of the semi-group Q(f ) = M(e−βf ) (on the Banach space B(E)).

To describe in some detail the interplay between the exponents (7) and the fixed point
measures µβ we recall that under condition (H) the occupation measures

Ln = 1

n

n∑

p=1

δXp

converge as n → ∞ to an unique invariant measure ν = νM . The exponential deviant
behavior of Ln is expressed by a large deviation principle. Namely, the distributions
sequence Ln satisfy as n → ∞ a large deviation principle with a convex rate function
I : µ ∈ P(E) → [0, ∞] defined by

I (µ) = inf

{∫

E

µ(dx) Ent(K(x, .)|M(x, .))

}
,

where the infimum is taken over all Markov kernels K with invariant measure µ. For a
proof of this statement we refer the reader to the book of Dupuis and Ellis [8]. Note that



Annealed Feynman-Kac Models 197

I (µ) < ∞ implies that we can find a Markov kernel K leaving µ invariant, µK = µ,
and verifying K(x, .) << M(x, .) for µ-a.s. all x ∈ E. Loosely speaking these proba-
bility measures can be interpreted as the limiting distributions of M-admissible Markov
chains.

The rate function I , the fixed points µβ and the logarithmic Lyapunov exponents

(−βV ), β ∈ R+, are connected by the following formula:

−
(−βV ) = ln µβ(eβV ) = inf
η∈P(E)

(β η(V ) + I (η)).

This formula expresses the concentration properties of the limiting measures µβ in terms
of a variational problem in P(E) with competition between the mean potential η(V )

and the I -entropy I (η). If we combine this expression with the exponential version of
the Markov inequality we can check that for any δ > 0,

lim
β→∞

1

β
ln µβ(V ≥ VI + δ) ≤ −δ

with
VI = inf {η(V ) ; η ∈ P(E) , I (η) < ∞},

Note that VI represents the minimal mean potential value we can asymptotically obtain
running all M-admissible Markov chains. This asymptotic result indicates that the fixed
points µβ concentrate as β tends to infinity to regions with potential less than VI . We
will see that VI is always greater than the ν-essential infimum of V defined by

Vν = sup {v ∈ R+ ; V ≥ v ν − a.e.}.
The interplay between VI and Vν depends on the nature of Markov kernel M . For regular
Markov kernels M we will see that VI = Vν . Nevertheless we will also exhibit situations
where VI > Vν and for some δ > 0, µβ(V ≤ Vν + δ) → 0 as the parameter β → ∞.

If (β(n))n∈N (respectively (t (n))n∈N) is an increasing sequence of non-negative real
numbers (resp. non-negative integers, with t (0) = 0), we will consider the cooling
schedule β̃ given by

∀ n ∈ N, ∀ t (n) ≤ p < t(n + 1), β̃(p) = β(n).

But by a slight language abuse, from now on the sequence β := (β(n))n∈N will be called
the cooling schedule and (t (n))n∈N the time mesh sequence.

Our result is basically stated as follows:

Theorem 1.1. When the mixing condition holds true for m = 1 we have VI = Vν . In
addition there exists an integer parameter � ≥ 1 such that for any choice of cooling
schedule of the type

β(n) = β(0) (n + 1)a, with a ∈ (0, 1) and β(0) < ∞
we have for the time mesh t (n) = n�,

‖µt(n) − µβ(n)‖tv ≤ C0

(n + 1)1−a

for a certain constant C0 > 0. When condition (H) is only satisfied for some m > 1,
then for a logarithmic cooling schedule of the type

β(n) = β(0) ln (n + e), with b = (m − 1)osc(V )β(0) < 1
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we have for some time mesh t (n) = O(n1+b ln n),

‖µt(n) − µβ(n)‖tv ≤ C1
ln (n + e)

(n + 1)1−b

for a certain constant C1 > 0, and for each δ > 0,

lim
n→∞ µt(n)(V ≥ VI + δ) = 0.

We note that in the latter case, the “true” cooling schedule β̃ is also quasi-logarithmic:
for large time p ∈ N, β̃(p) = O(ln(p)), as it is customary in simulated annealing.

In the context of Markov motions in an absorbing medium the choice of the muta-
tion kernel M is dictated by the problem at hand. In this situation the analysis on the
concentration levels discussed in this article will provide a way to predict the location
of a non-absorbed particle when the temperature of the medium decreases.

On the other side of the picture if we want to construct a Feynman-Kac simulated
annealing which converges to the global infimum of a potential we have the choice of
the mutation transitions. The concentration results presented here can be used to find
a judicious choice of mutation kernel. In view of the above theorem it is preferable to
explore the state space with a mutation transition satisfying condition (H) with a mixing
parameter m = 1. In the genetic interpretation (5) the algorithm evolves according to a
two stage mutation/selection. When the mutation transition has a mixing parameter m it
seems preferable to run m mutations between each selection procedure, so that we are
brought back to the situation m = 1. But in practice m can be very large and it may
be not efficient to wait too long between mutations (quantitatively, this corresponds to
a large constant C0 in the above theorem), especially for a given number of iteration
n ∈ N

∗.

2. Regularity Properties

The study of the asymptotic stability of Feynman-Kac type semi-groups has been initiat-
ed in [4].Although this study does not discuss the contraction properties of the non-linear
Feynman-Kac semi-group it designs a semi-group technique which can be easily trans-
ferred to obtain contraction properties of the mappings �

β
n . Next we present a slightly

more general formulation which applies to annealed Feynman-Kac models and capture
the main ideas.

Suppose Q is a given bounded and positive operator on B(E). We associate to Q the
non-linear semi-group �n, n ∈ N, defined on P(E) by the formula

∀ A ∈ E, �n(µ)(A) = µQn(A)/µQn(1).

Proposition 2.1. Suppose there exists an integer m ≥ 1 and a collection of numbers
εQ ∈ (0, 1) such that

Qm(x, .) ≥ εQ Qm(y, .).

Then we have for any µ, η and n ∈ N,

‖�n(µ) − �n(η)‖tv ≤ 2ε−2
Q (1 − ε2

Q)�n/m� ‖µ − η‖tv. (8)
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Proof. The contraction inequality (8) is essentially proved in [4]. We give next a short
proof which completes the arguments given there. By construction we notice that

�n(µ)(f ) = µQn(f )/µQn(1) = �n(µ)Qn(f )

with the Markov kernel Qn on E and the mapping �n on P(E) defined by

Qn(f ) = Qn(f )

Qn(1)
and �n(µ)(f ) = µ(Qn(1) f )

µ(Qn(1))
.

The sequence of kernels Qn and the mappings �n do not satisfy the semi-group property
but we have for any pair of indexes p + q = n,

Qn = Q
(q)

p Qq

with the Markov kernel

Q
(q)

p (f ) = Qp(Qq(1) f )

Qp(Qq(1))
.

To see this claim it suffices to use the semi-group property of Q and the definition of
Qn; indeed we have

Qn(f ) = Qp(Qq(f ))

Qp(Qq(1))
= Qp(Qq(1)Qq(f ))

Qp(Qq(1))
= Q

(q)

p Qq.

From this observation we can write

Qn = Q
(n−m)

m Q
(n−2m)

m · · · Q(n−�n/m�m)

m Qn−�n/m�m.

Under our assumptions we have for any q ∈ N, x, y ∈ E and n ≥ m,

Q
(q)

m (x, .) ≥ εQ Q
(q)

m (y, .) and Qn(1)(x) ≥ εQ Qn(1)(y). (9)

We recall that for any Markov kernel K such that for any x, y ∈ E,

K(x, .) ≥ δ K(y, .)

for some δ ∈ (0, 1) we have the contraction property

‖µK − ηK‖tv ≤ (1 − δ) ‖µ − η‖tv.

From this and the above considerations we obtain

‖µQ
(q)

m − ηQ
(q)

m ‖tv ≤ (1 − ε2
Q) ‖µ − η‖tv.

We end the proof of the proposition by noting that the decomposition

�n(µ)(f ) − �n(η)(f ) = η(Qn(1))

µ(Qn(1))
(µ − η)

(
Qn(1)

η(Qn(1))
(f − �n(η)(f ))

)

together with (9) yields that

‖�n(µ) − �n(η)‖tv ≤ 2ε−2
Q ‖µ − η‖tv.

This ends the proof of the proposition. �
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Next we apply Proposition 2.1 to determine the degree of contraction of the semi-group
�

β
n .When a Markov kernelM satisfies condition (H) for somem ≥ 1 and some ε ∈ (0, 1)

we write �(0) the integer

�(0) = (
1 + �ε−2�)(4 + �ln (2ε−2)�)

and �m(β), β ∈ R+, the collection of integers

�m(β) = m �(0) (1 + �eα(m)β�) (1 + �α(m)β�) with α(m) = (m − 1)osc(V ).

Theorem 2.2. Suppose the Markov kernel M satisfies condition (H) for some integer
m ≥ 1 and some parameter ε ∈ (0, 1). Then for any n ≥ m we have

‖�β
n(µ) − �β

n(η)‖tv < 2ε−2 e2α(m)β
(
1 − ε2 e−α(m)β

)�n/m� ‖µ − η‖tv.

In addition we have for any β ∈ R+,

‖�β

�m(β)(µ) − �
β

�m(β)(η)‖tv <
1

e
‖µ − η‖tv.

Thus �m(β) can be seen as a relaxation time for �β with respect to ‖·‖tv.

Proof. Let Q = MG be the composition of the Markov kernel M with the multiplicative
kernel G(f ) = e−βV f . For any positive function f ∈ B(E) we find that

Qm(f )(x)

Qm(f )(y)
= QQm−1(f )(x)

QQm−1(f )(y)
≥ e−βosc(V ) MQm−1(f )(x)

MQm−1(f )(y)

and by induction

Qm(f )(x)

Qm(f )(y)
≥ e−(m−1)βosc(V ) MmG(f )(x)

MmG(f )(y)

(this can also be seen directly on normalized Feynman-Kac formulae).
Hence under our assumptions we conclude that

Qm(x, .) ≥ ε e−α(m)β Qm(y, .).

Thus Q satisfies the mixing condition stated in Proposition 2.1 with

εQ = ε e−α(m)β .

Consequently we find that

‖�β
n(µ) − �β

n(η)‖tv < 2ε−2 e2α(m)β (1 − ε2 e−2α(m)β)�n/m� ‖µ − η‖tv.

The factor 2 in the second exponential term in the last display can be removed by using
the same lines of arguments as in the proof of Proposition 2.1 and noting that for any
positive function f ∈ B(E) ,

Q
(q)

m (f )(x) = Qm( Qq(1) f )(x)

Qm( Qq(1) )(x)
≥ e−(m−1)βosc(V ) MmG(Qq(1)f )(x)

MmG(Qq(1))(x)

≥ ε2 e−(m−1)βosc(V ) MmG(Qq(1)f )(y)

MmG(Qq(1))(y)
.
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To prove the second assertion we observe that

(1 − ε2 e−α(m)β)�m(β)/m ≤ e−ε2 e−α(m)β �m(β)/m ≤ e−ε2 �(0)(1+�α(m)β�).

Since we have

ε2�(0)(1 + �α(m)β�) = ε2(1 + �ε−2�) (4 + �ln (2ε−2)�) (1 + �α(m)β�)
≥ (4 + �ln (2ε−2)� + 2�α(m)β�)
≥ 1 + ln (2ε−2) + 2α(m)β,

we conclude that

2ε−2 e2α(m)β (1 − ε2 e−α(m)β)�m(β)/m ≤ 1/e.

The end of the proof is now straightforward. �

The uniform contraction property stated in Theorem 2.2 is an important first step in

proving the convergence Theorem 1.1. First, and as mentioned in Sect. 1.2, it guarantees
the existence of a unique collection of fixed point probability measures

µβ = �β(µβ) ∈ P(E) , β ∈ R+.

Furthermore it is also an important instrument tool for proving the following regularity
condition.

Proposition 2.3. When condition (H) holds true for some m ≥ 1 and ε ∈ (0, 1) we have
for any 0 ≤ β1 ≤ β2,

‖µβ1 − µβ2‖tv ≤ osc(V )�m(β1) (β2 − β1).

Proof. Using the fixed point property we have the decomposition

µβ1 − µβ2 = �
β1
�m(β1)

(µβ1) − �
β1
�m(β1)

(µβ2) + �
β1
�m(β1)

(µβ2) − �
β2
�m(β1)

(µβ2).

By the uniform property stated in Theorem 2.2 we notice that

‖µβ1 − µβ2‖tv ≤ e

e − 1
‖�β1

�m(β1)
(µβ2) − �

β2
�m(β1)

(µβ2)‖tv.

Let Pµ,n be the distribution of the sequence of random variables (X0, . . . , Xn) with
initial distribution µ, that is

Pµ,n(d(x0, . . . , xn)) = µ(dx0) M(x0, dx1) . . . M(xn−1, dxn).

In this notation we see that each distribution �
β
n(µ) is the n-time marginal of the Gibbs-

Boltzmann measure on En+1 defined by

P
β
µ,n(dx) = 1

Pµ,n(e−βVn)
e−βVn(x)

Pµ,n(dx)

with the potential Vn from En+1 into R+ defined for any x = (x0, . . . , xn) by

Vn(x) =
n∑

p=1

V (xp).
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It is now well-known that for any β1 ≤ β2

‖P
β1
µ,n − P

β2
µ,n‖tv ≤ β2 − β1

2
osc(Vn) ≤ n

β2 − β1

2
osc(V )

from which we conclude that

‖�β1
�m(β1)

(µβ2) − �
β2
�m(β1)

(µβ2)‖tv ≤ �m(β1)

2
(β2 − β1) osc(V ).

This ends the proof of the proposition, due to the elementary bound e ≤ 2(e − 1). �


3. Asymptotic Behavior

In the further development of this section we assume without further mention that the
Markov kernel satisfies condition (H) for some integer m ≥ 1 and some ε ∈ (0, 1).
Let β = (β(n))n∈N be a given non-decreasing inverse cooling schedule and let tm(n),
n ∈ N, be the associated time mesh defined by the following recursive formula:

tm(n + 1) = tm(n) + �m(β(n)) with tm(0) = 0.

We associate to the pair (β(.), tm(.)) the annealed Feynman-Kac flow µp, p ∈ N, defined
for each n ∈ N by

µp+1 = �β(n)(µp) for each tm(n) ≤ p < tm(n + 1).

In other words µp is the annealed Feynman-Kac flow with a constant inverse temper-
ature parameter β(n) between the dates tm(n) and tm(n + 1), that is for each 0 ≤ p <

tm(n + 1) − tm(n),

µtm(n)+p(f ) =
Eµtm(n)

(
f (Xp) e

−β(n)
∑p

q=1 V (Xq)
)

Eµtm(n)

(
e
−β(n)

∑p
q=1 V (Xq)

) .

The core idea in the study of the long time behavior of the annealed model consists in
combining the regularity properties of the fixed point distributions µβ with the contrac-
tion properties of the mappings �β . To this end we introduce the decomposition

µtm(n)−µβ(n) =
(
�

β(n−1)

�m(β(n−1))(µtm(n−1))−�
β(n−1)

�m(β(n−1))

(
µβ(n−1)

))+(µβ(n−1)−µβ(n)
)
.

From this display we now apply Theorem 2.2 and Proposition 2.3 to get the following
system of inequalities:

‖µtm(n) − µβ(n)‖tv

≤ 1

e
‖µtm(n−1) − µβ(n−1)‖tv + osc(V ) �m(β(n − 1)) (β(n) − β(n − 1))

and thus it appears that

en ‖µtm(n) − µβ(n)‖tv

≤ ‖µ0 − µβ(0)‖tv + osc(V )

n∑

p=1

ep �m(β(p − 1)) (β(p) − β(p − 1)). (10)

We are now in a position to state the main result of this section.
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Theorem 3.1.
– If m = 1 then we have t1(n) = �(0)n and we can choose

β(t) = (t + 1)a, for any fixed a ∈ (0, 1).

In addition we have for some c(a) < ∞,

‖µt1(n) − µβ(n)‖tv ≤ c(a)/n1−a. (11)

– If m > 1 then we can take

β(t) = β(0) ln (t + e), with b = α(m)β(0) < 1.

In this case we have tm(n) = O(nb+1 ln n) and for some c(b) < ∞,

‖µtm(n) − µβ(n)‖tv ≤ c(b) ln (n + e) /n1−b.

Proof. When m = 1 we recall that �1(β) = 2�(0) does not depend on β and t1(n) =
2�(0)n. By direct inspection, if we choose β(t) = (t + 1)a , for any fixed a ∈ (0, 1),
then we find from (10) that

en ‖µt1(n) − µβ(n)‖tv ≤ ‖µ0 − µβ(0)‖tv + 2 osc(V ) �(0)

n∑

p=1

ep ((p + 1)a − pa).

Recalling that xa − ya ≤ aya−1 (x − y) for any x, y ≥ 0, we get

n∑

p=1

ep ((p + 1)a − pa) ≤ a

n∑

p=1

ep

p1−a
≤ ae



1 +
n∑

p=2

ep−1

p1−a



 .

Next we observe that for any p ≥ 2,

ep−2

(p − 1)1−a
= 1

e

ep−1

p1−a

p1−a

(p − 1)1−a
≤ 21−a

e

ep−1

p1−a
≤ 2

e

ep−1

p1−a
,

so that we have
n∑

p=2

ep−1

p1−a
≤ (1 − 2/e)−1

n∑

p=2

ep−1

p1−a
− ep−2

(p − 1)1−a

≤ 2 e
en−1

n1−a
.

It follows that

‖µt1(n) − µβ(n)‖tv ≤ e−n + 6 osc(V ) �(0)

(
e−n + 2

n1−a

)
.

Since en ≥ n1−a , this yields that

‖µt1(n) − µβ(n)‖tv ≤ c(a)/n1−a

with
c(a) ≤ 1 + 18 osc(V ) �(0).
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Now we examine the situation where condition (H) is met only for some integer m > 1.
We begin in this case by observing that

�m(β) ≤ 4m �(0) eα(m)β (2 + α(m)β).

We now choose the cooling schedule β(t) = β(0) ln (t + e) with b = α(m)β(0) < 1.
In this notation, we find that from the above observation that

�m(β(n)) ≤ 4m �(0) (e + n)b (2 + b ln (n + e))

≤ 16m �(0) (e + n)b ln (n + e). (12)

This yields the following growth estimate on the corresponding time mesh

tm(n) =
n−1∑

p=0

�m(β(p)) ≤ 16meb �(0) ln (n + e)

n∑

p=1

pb

≤ 16m eb

b + 1
�(0) (n + 1)b+1 ln (n + e).

We deduce from (10) and (12) that

en ‖µtm(n) − µβ(n)‖tv

≤ 1 + 32m osc(V )β(0)�(0)
∑n−1

p=0 ln (p + e) ep+1

(p+e)1−b .

This implies that

en ‖µtm(n) − µβ(n)‖tv ≤ 1 + 32m osc(V )β(0)�(0) ln (n + e)

n∑

p=1

ep

p1−b
.

From the above estimates we have

e−n
n∑

p=1

ep

p1−b
≤ e−ne

(
1 + 2

en

n1−b

)
≤ 9

n1−b
.

This finally shows that

‖µtm(n) − µβ(n)‖tv ≤ c(b) ln (n + e)
1

n1−b

with

c(b) = 1 + 288m osc(V )β(0)�(0).

�
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4. Concentration Properties

This section is decomposed in two parts. In a first sub-section we provide a variational
formulation of the concentration properties of µβ . We use a large deviation analysis
to connect the Lyapunov exponent of the underlying Feynman-Kac semi-group at tem-
perature β−1 > 0 with the β-exponential moment of the potential V under µβ . The
description of the concentration level VI is discussed in the second part of this sec-
tion. We give sufficient conditions on the Markov kernel M under which VI coincides
with the essential infimum Vν of the potential. In the final part of the article we examine
the finite state space situation. We provide an alternative formulation of VI in terms of
the minimal mean potential along M-admissible cycles in E. We also examine the two
situations, where VI = Vν and VI > Vν .

4.1. Large deviation analysis. In this section we examine the concentration properties
of the fixed point distributions µβ as β tends to infinity. To obtain a better grasp of
what is at stake it is useful to interpret these distributions as the limiting measures of the
canonical Markov chain Z under the McKean distribution P

β
µ0 defined in (6). We recall

that this distribution describes the evolution of a non-homogeneous Markov chain with
elementary transitions

P
β
µ0

(Zn ∈ dy | Zn−1 = x) = MS
β
µn−1M

(x, dy) with P
β
µ0

◦ Z−1
n−1 = µn−1.

This chain can be regarded as a Feynman-Kac simulated annealing model. At each time
n the particle Zn−1 first evolves according to the transition kernel M to a new location
Yn. With a probability e−βV (Yn) we set Zn = Yn and with a probability 1 − e−βV (Yn) it
jumps to a new location Zn randomly chosen with the Boltzmann-Gibbs distribution

�β(ηn)(dy) = 1

ηn(e−βV )
e−βV (y) ηn(dy) with ηn = µn−1M = P

β
µ0

◦ Y−1
n .

These transitions tend to favor regions with low potential values. The precise description
of these areas is contained in the concentration properties of the limiting distributions
µβ . In contrast to what would be the case for traditional simulated annealing or sta-
tistical mechanics models here the limiting distributions are not defined in terms of a
Boltzmann-Gibbs measure. As a result the concentration analysis is more involved and
we have to find a new strategy to enter into these questions. Here the interplay between
µβ and the quantities (β, M, V ) is only described by the fixed point formula

∀ f ∈ B(E), µβ(f ) = µβ(Qβ(f ))/µβ(Qβ(1)) with Qβ(f ) = M
(
e−βf

)
.

As we already mentioned in the introduction under the uniform mixing condition (H)
the Markov kernel M has a unique invariant measure

ν = νM ∈ P(E)

and the sequence of occupation measures Ln = 1
n

∑n
p=1 δXp of the chain X under Pµ0

satisfies as n → ∞ a large deviation principle with good rate function

I (µ) = inf

{∫

E

µ(dx) Ent(K(x, .)|M(x, .))

}
, (13)
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where the infimum is taken over all Markov kernels K with invariant measure µ (cf.
[8]). In the most naive view we could think that the Feynman-Kac simulated annealing
model converges in probability to the ν-essential infimum Vν of the potential V (since
under (H) for any x0 ∈ E, Mm(x0, ·) is equivalent to ν, it is not really necessary to know
the latter probability to compute Vν). This intuitive idea appears to be true for regular
Markov transitions M with a diagonal term M(x, x) > 0 but it is false in more general
situations. To better introduce our strategy to study the concentration properties of µβ

we need a more physical interpretation of the Feynman-Kac models. If we interpret the
potential V as the absorption rate for a Markov particle with transition M evolving in
an medium with obstacles, the normalizing constants

Eµ



exp





−β

n∑

p=1

V (Xp)










represent the probabilities of a killed Markov particle starting with distribution µ and
conditioned to perform a long crossing of length n without being trapped. The cost at-
tached to performing long crossings is measured in terms of the logarithmic Lyapunov
exponents of the semi-group Qβ on the Banach space B(E),


(−βV ) = lim
n→∞

1

n
ln ||Qn

β(1)|| = lim
n→∞

1

n
ln sup

x
Ex

(
e
−β

∑n
p=1 V (Xp)

)
.

The next lemma shows that these Lyapunov exponents coincide with the logarithmic
rate of the β-exponential moment of the fixed point measures µβ . It also makes a link
between the large deviation rate I and the concentration properties of µβ . Informally it
shows that

µβ(eβV ) � eβVI ,

where VI is the value of the variational problem

VI := inf{µ(V ) µ ∈ P(E) : I (µ) < ∞}. (14)

Loosely speaking the concentration properties of the limiting measures µβ as β tends
to infinity are related to a competition in P(E) between the mean potential µ(V ) and
the I -entropy I (µ). The next lemma also shows that the concentration of µβ is related
to a variational problem in which the competition with the entropy I becomes less and
less severe as β tends to infinity.

Lemma 4.1. For any β ∈ R+ we have the formulae

−
(−βV )

β
= 1

β
ln µβ(eβV ) = inf

η∈P(E)

(
η(V ) + 1

β
I (η)

)
−−−−−−→
β → ∞

VI ≥ Vν.

Proof. If we take f = Qn
β(1) in the fixed point equality we readily find the recursive

formula
µβ(Qn+1

β (1)) = µβ(Qn
β(1)) µβ(Qβ(1)).

Thus we have for each n ≥ 0,

µβ(Qn
β(1)) = (µβ(Qβ(1)))n = Eµβ

(
e
−β

∑n
p=1 V (Xp)

)
. (15)
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Now if we take f = eβV in the fixed point equation we get

µβ(eβV ) µβ(Qβ(1)) = 1. (16)

Recalling that under condition (H) the Laplace transformation


(−βV ) = lim
n→∞

1

n
ln Eµ

(
enLn(−βV )

)

does not depend on the choice of the initial distribution µ we deduce that

−
(−βV ) = − ln µβ(Qβ(1)) = ln µβ
(
eβV

)
.

Since 
(−βV ) is also given as the Fenchel transformation of I ,


(−βV ) = sup
η∈P(E)

(η(−βV ) − I (η)), (17)

the end of the proof of the first assertion is clear. To end the proof we notice that

VI ≤ inf
η∈P(E)

(
η(V ) + 1

β
I (η)

)
≤ η0(V ) + 1

β
I (η0)

for each distribution η0 such that I (η0) < ∞. Letting β → ∞ we find that

VI ≤ lim sup
β→∞

inf
η∈P(E)

(
η(V ) + 1

β
I (η)

)
≤ η0(V ).

Taking the infimum over all distributions η0 such that I (η0) < ∞ we obtain

lim
β→∞

1

β
ln µβ(eβV ) = VI .

To see thatVI ≥ Vν , it is clearly sufficient to show that for any probabilityµ, I (µ) < +∞
implies that µ � ν. One easy way to obtain this assertion in our context is to note that
if I (µ) < +∞, then there exists a kernel K verifying µ = µK and K(x, ·) � M(x, ·)
for µ-a.s. all x ∈ E. But since for all x ∈ E, Mm(x, ·) is equivalent to ν, due to the
hypothesis (H), we get that µ = µKm � µMm ∼ ν. This ends the proof of the lemma.
�


By using the exponential version of Markov’s inequality, Lemma 4.1 provides a con-
centration property of µβ in the level sets (V < VI + δ), δ > 0. More precisely we have
for any δ > 0,

µβ(V ≥ VI + δ) = µβ
(
eβ(V −VI ) ≥ eβδ

)

≤ e−βδ µβ
(
eβ(V −VI )

)
,

from which one concludes that

lim
β→∞

1

β
ln µβ(V ≥ VI + δ) ≤ −δ.

Combining this concentration property with Theorem 3.1 we prove the following asymp-
totic convergence result.
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Proposition 4.2. Suppose condition (H) holds true for some m ≥ 1 and let tm(n) and
β(n) be respectively the time mesh sequence and the cooling schedule described in
Theorem 3.1. Then the corresponding annealed Feynman-Kac distribution flow µtm(n)

concentrates as n → ∞ to regions with potential less than VI , that is for each δ > 0
we have that

lim
n→∞ µtm(n)(V ≥ VI + δ) = 0.

Remark 4.3. The topological hypotheses that E is Polish and that V is continuous are
only necessary to obtain (17), see for instance [6]. So except for the definition (14), the
rest of the paper is true under the assumption that (E, E) is a measurable space and that
V is a non-negative bounded and measurable potential. In particular under this extended
setting we can consider

V∗ := − lim
β→+∞

1

β
lim

n→∞
1

n
ln (Ex[exp(−βV (X1) − · · · − βV (Xn))])

which always exists and does depend on the initial condition x ∈ E. Indeed, if we denote

∀ n ∈ N, ∀ β ∈ R+, λn(β) = inf
x∈E

ln
(
Ex

[
exp(−βV (X1) − · · · − βV (Xn))

])
,

then it is quite clear via the Markov property that (λn(β))n∈N is super-additive, so that
the following limit exists:

λ(β) := lim
n→∞

1

n
λn(β)

(this is just a rewriting of the traditional existence of the Lyapunov exponent of the
underlying unnormalized Feynman-Kac operator). Now taking into account condition
(H), it appears that for any n ≥ m and x, y ∈ E,

ε2 exp(−(m − 1)β osc(V )) ≤ Ey[exp(−βV (X1) − · · · − βV (Xn))]

Ex[exp(−βV (X1) − · · · − βV (Xn))]

≤ ε−2 exp((m − 1)β osc(V )),

thus we see that

lim
n→∞

1

n
ln

(
Ey[exp(−βV (X1) − · · · − βV (Xn))]

Ex[exp(−βV (X1) − · · · − βV (Xn))]

)
= 0,

and in particular for any initial distribution µ0, we have

λ(β) = lim
n→∞

1

n
ln
(
Eµ0 [exp(−βV (X1) − · · · − βV (Xn))]

)
.

Besides the lhs is convex in β, as a limit of convex functions, so we are assured of the
existence of

− lim
β→+∞

λ(β)

β
= − lim

β→+∞
λ(β) − λ(0)

β
= − sup

β>0

λ(β) − λ(0)

β

a priori in R
{−∞}, but as V is non-negative and bounded, we conclude that V∗ ∈ R+.
In this context, Lemma 4.1 can be rewritten as saying that under the topological

hypotheses that E is Polish and that V is continuous, we have V∗ = VI ≥ Vν .
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4.2. Concentration levels. This section is devoted to a discussion on the concentration
regions of µβ as β tends to infinity.

In a first subsection we examine Feynman-Kac models where the Markov kernel M

satisfies condition (H) with m = 1 or has a regular diagonal term. We show that in this
case the concentration level VI coincides with the essential infimum of the potential
with respect to the invariant measure of M .

The second part of this section focuses on Feynman-Kac models on finite state spaces.
We relate the exponential concentration of µβ with a collection of Bellman’s fixed point
equations. We propose an alternative characterization of the concentration level VI . We
show that VI can be seen as the minimal mean potential value over all closed cycles on
E. Thanks to this representation we will check that VI = Vν iff there exists a closed
cycle on V −1(Vν). For more general off-diagonal mutation transitions we have VI > Vν .
We illustrate this assertion with a simple three point example, showing furthermore that
µβ is not concentrating on “neighborhoods” of V −1(Vν).

4.2.1. Diagonal mutations. Certainly the easiest way to insure that VI = Vν is to im-
pose loops on every point of E for M . This assertion is based on the following simple
upper bound.

Proposition 4.4. Let x0 ∈ E be such that M(x0, x0) > 0, then we have VI ≤ V (x0).

Proof. By definition of the Markov chain X, we have that for any β ∈ R and any n ∈ N,

Ex0 [exp(−βV (X1) − · · · − βV (Xn))]

≥ Ex0 [�X1=x0, X2=x0, ... , Xn=x0 exp(−βV (X1) − · · · − βV (Xn))]

= {M(x0, x0)}n exp(−nβV (x0)),

thus


(−βV ) ≥ lim
n→∞

1

n
ln



Ex0



exp



−β

n∑

p=1

V (Xp)













≥ ln(M(x0, x0)) − βV (x0)

so that

VI = − lim
β→+∞


(−βV )

β
≤ V (x0).

�

As a corollary, we get that

VI ≤ inf
x∈EM

V (x),

where EM := {x ∈ E : M(x, x) > 0}.
In particular, to be sure that VI = Vν , it is sufficient that there exists a sequence

(xn)n∈N such that limn→∞ V (xn) = Vν and verifying M(xn, xn) > 0 for all n ∈ N. In
practice, this can be insured by imposing on the underlying exploration kernel M that
for all x ∈ E, M(x, x) > 0.
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Let us also remark that when condition (H) is satisfied for m = 1, this slight precau-
tion is even useless, since we have automatically VI = Vν . Indeed, this is an immediate
consequence of the next ordering of measures, for any β ∈ R+,

ε2 ν(e−βV ·)
ν(e−βV )

≤ µβ(·) ≤ 1

ε2

ν(e−βV ·)
ν(e−βV )

itself deduced from the fixed point formula.
As already mentioned at the end of Sect. 1, this suggests that in implementing genetic

algorithms, it is better to wait a certain number of mutation steps (here m) before pro-
ceeding to a selection step. We note the same is true for simulated annealing algorithms
(cf. for instance [1]).

4.2.2. Finite state space. We consider here the simpler case of a finite state space E

endowed with an irreducible Markov kernel M . Then the unique associated invariant
probability ν charges all points of E. We note that in this context the condition (H) is
equivalent to the aperiodicity of M , but we won’t require this property for our first result.
More precisely, our next objective is to give an explicit representation of VI , which in
this setting is just given by

VI = − lim
β→+∞

1

β
lim

n→∞
1

n
ln
(
Ex

[
exp(−βV (X1) − · · · − βV (Xn))

])
. (18)

We have already seen in Remark 4.3 that this definition does not depend on the starting
point x ∈ E, which could be replaced by any initial distribution.

We will say that a finite sequence of elements of E, C = (x1, · · · , xn), where the
length n ∈ N

∗ will be denoted in what follows by l(C), is a proper cycle (relatively to
M), if for any 1 ≤ i ≤ n, M(xi, xi+1) > 0, with the convention that xn+1 = x1, and
if all the xi , 1 ≤ i ≤ n, are distinct. We denote C the finite set of all such admissible
proper cycles. To any C = (x1, · · · , xn) ∈ C, we associate its mean potential

V (C) := 1

n

∑

1≤i≤n

V (xi).

Proposition 4.5. We have

VI = min
C∈C

V (C).

In particular it appears that the equality VI = Vν is equivalent to the existence of a
proper cycle inside V −1(Vν).

Proof. Denoting by VC the rhs in the above proposition, we begin by showing that
VI ≥ VC .

A finite collection P = (y1, ..., yn) of elements of E is called a path (relatively to
M) if for any 1 ≤ i < n, M(yi, yi+1) > 0 and as before we associate to this object its
length l(P ) = n ∈ N (n = 0 corresponds to the empty path, note that this length was
not permitted for cycles) and its mean potential V (P ) = ∑

1≤i≤n V (yi)/n.
If such a path is given, we can find k proper cycles C1, ..., Ck , and a sub-path R

of P (this does not mean that it is a subsegment, i.e. R is not necessarily of the form
(yr , yr+1, ..., yr+l(R))) of length less than card(E) such that

l(P )V (P ) =
∑

1≤i≤k

l(Ci)V (Pi) + l(R)V (R). (19)
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To be convinced of the existence of such a decomposition, we look for the first return
of the path P on itself: let s = min{t ≥ 2 : yt ∈ {y1, ..., yt−1}} and 1 ≤ r < s be such
that ys = yr . Then we define C1 := (yr , yr+1, ..., ys−1) and we consider the new path
P ′ := (y1, ..., yr−1, ys, ys+1, ..., yn) (one would have noted that M(yr−1, ys) > 0). Ap-
plying next recursively the previous procedure, we construct/remove the proper cycles
C2, ... , Ck and we end up with a path R whose elements are all different.

From formula (19), we deduce that

l(P )V (P ) ≥
∑

1≤i≤k

l(Ci)VC − card(E) ‖V ‖∞

≥ l(P )VC − 2card(E) ‖V ‖∞ .

Thus for any x ∈ E and n ∈ N
∗, we have

Ex[exp(−βV (X1) − · · · − βV (Xn))] ≤ exp(nβVC − 2card(E)β ‖V ‖∞)

and the announced bound follows at once.
To see the reciprocal inequality, let us consider C ∈ C such that V (C) = VC . If an

initial point x and a large enough length n are given, we construct a path Pn by first going
from x to a point of C by a self-avoiding path (whose existence is insured by irreducibil-
ity) and next always following C (in the direction included in its definition and jumping
from its last element to the first one). Then it is quite clear that limn→∞ V (Pn) = V (C),
thus denoting q = minx,y∈E : M(x,y)>0 M(x, y) and taking into account the bound

Ex[exp(−βV (X1) − · · · − βV (Xn))] ≥ qn exp(nβV (Pn))

we conclude by a similar argument to the one given in the proof of Proposition 4.5.
In fact the equality of the previous proposition is also true in the case of a Markov

kernel M admitting a unique recurrence class (but in this situation ν does not necessarily
charge all points of E). In the most general case, the initial point x in (18) plays a role:
VI (x) is the minimal mean potential of proper cycles included in the recurrence classes
which can be reached from x.

Remark 4.6. In view of the above result, it appears that if we note AC the set of positive
functions f defined on E which are of the form f = ∑

C∈C aC�C , where we have iden-
tified proper cycles C with the subset of their elements and where (aC)C∈C is a family
of non-negative reals, we have

VI = inf

{
ν(f V )

ν(f )
; f ∈ AC

}
.

This expression should be compared with the general formula for Vν :

Vν = inf

{
ν(f V )

ν(f )
; f ∈ A+

}
,

where A+ is the set of positive bounded measurable functions defined on (E, E).

To understand precisely concentration phenomenon for µβ , it would be very inter-
esting to obtain a large deviation principle: there exists a function U : E → R+ such
that

∀ x ∈ E, U(x) := − lim
β→+∞

ln(µβ(x))/β
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(necessarily minE U = 0, in analogy with generalized simulated annealing, U could
be called the underlying virtual energy). Unfortunately we have not been able to prove
such a convergence, even under the condition (H), but we are still trying to get this
result. Nevertheless, we note that under the latter hypothesis the family of mappings
(ln(µβ(·))/β)β≥1 is compact; indeed, let m ≥ 1 and ε > 0 be as in (H), we have for
any β > 0 and x ∈ E,

µβ(x) =
µβ(Qm

β (�{x}))
µβ(Qm

β (1))
≥ ε2e−(m−1)βosc(V ) ν(e−βV �{x})

ν(e−βV )
≥ ε2e−mβosc(V )ν(x),

thus

0 ≤ − 1

β
ln µβ(x) ≤ m osc(V ) − 1

β
ln(ε2 min

x∈E
ν(x)).

So at least under (H), we can consider accumulation functions U of − ln(µβ(x))/β for
β large.

In order to derive Bellman’s equations verified by this kind of objects, let us introduce
for n ∈ N

∗ and x, y ∈ E, the n-communication cost function,

V (n)(x, y) := min
P∈P(n)

x,y

V (P ),

where P(n)
x,y is the set of paths of length n going from x to y (i.e. P = (P1, . . . , Pn)

with M(x, P1) > 0 and Pn = y). In particular for any x, y ∈ E, V (1)(x, y) = V (y).
As in the proof of Proposition 4.4, we show without difficulties that for any x, y ∈ E,
lim infn→∞ V (n)(x, y) = VC (and this is a true limit if M is aperiodic, the difference of
the two terms being at most of order 1/n).

For a subset A ⊂ E we also define the M-boundary of A as the subset of all possible
sites which are accessible from A, that is

∂M(A) = {y ∈ E − A ; ∃ x ∈ A M(x, y) > 0}.

Now we can state

Proposition 4.7. Let U ∈ R
E+ be any accumulation point as above, then it satisfies the

Bellman’s fixed point equations

U(y) = inf
y∈E

(U(x) + nV (n)(x, y)) − nVI (20)

for any n ∈ N
∗ and nVI = infx,y∈E (U(x) + nV (x, y)). Furthermore we have the

inclusions

U−1(0) ⊂ (V ≤ VI ) and ∂MU−1(0) ⊂ (V > VI ). (21)

Before getting into the proof of this proposition, let us pause for a while and give
some comments on the consequence of these results. The inclusions (21) show that a
point x ∈ {V ≤ VI } with energy U(x) > 0 cannot be reached from U−1(0) (the reverse
being in general true). This shows that when all pairs of points x, y ∈ {V ≤ VI } can be
joined by a path in this level set then U−1(0) = {V ≤ VI }.
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Proof of Proposition 4.7. The Bellman’s equations are immediate consequences of the
equalities, seen in the proof of Lemma 4.1,

∀ n ∈ N
∗, ∀ x ∈ E, ∀ β > 0,

µβ(x) = (µβ [exp(βV )])n
∑

y∈E

µβ(y)Ey[�{x}(Xn) exp(−βV (X1) − · · · − βV (Xn))]

by taking the logarithm and dividing by β that we let go to infinity. To prove the in-
clusions (21), we suppose on the contrary that we can find a pair (x, y) ∈ E2 such
that

U(x) = 0 , M(x, y) > 0 U(y) > 0 and V (y) ≤ VI .

From the Bellman’s equation this will give that

U(y) = inf {U(z) + V (y) − VI ; z ∈ E , M(z, y) > 0}
≤ inf {U(z) ; M(z, y) > 0} ≤ U(x) = 0,

and we obtain a contradiction with the fact that U(y) > 0. �

We end this article with a simple three point example in which VI > Vν and

V −1(Vν) 	⊂ U−1(0). So we take for state space E = {0, 1, 2} and we consider the
Markov kernel defined by

M =



p 1 − p 0
0 0 1
1 0 0



 , with p ∈ (0, 1).

It is clear that M is irreducible and aperiodic and we check that its unique invariant
probability ν is given by

ν(0) = 1

3 − 2p
and ν(1) = ν(2) = 1 − p

3 − 2p
.

Let V : E → R+ be a potential function such that

V (0) >
V (0) + V (1) + V (2)

3
> V (2) > V (1) = 0. (22)

So the ν-essential infimum Vν is given by Vν = 0 = V (1) and by Proposition 4.5, we
have

VI = V (0) + V (1) + V (2)

3
.

This could also be deduced from the fact that here the rate function I satisfies

I (µ) < ∞ ⇐⇒ ∃ ∈ [0, 1] : µ = r(δ0 + δ1 + δ2)/3 + (1 − r)δ0,

a property which reflects that trajectories of X are concatenations of the words [0] and
[1, 2, 0] (except for a possible start with [2]). Our next objective is to solve explicitly
the Bellman’s fixed point equation (20) for n = 1:






U(0) = min {U(0), U(2)} + V (0) − VI

U(1) = U(0) + V (1) − VI

U(2) = U(1) + V (2) − VI .
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By (22), we see that in the first equality the min cannot be U(0) (otherwise V (0) = VI ),
so U(0) = U(2) + V (0) − VI and this shows that U(2) < U(0). The last equation also
implies that U(2) < U(1) and necessarily U(2) = 0, from which we obtain that U is
unique and that it is given by






U(0) = V (0) − VI

U(1) = VI − V (2)

U(2) = 0.

One concludes that limβ→∞ µβ(2) = 1 and that this convergence is exponentially fast.
In particular µβ does not concentrate for large β on the unique point 1 where the “es-
sential” infimum is achieved (this latter assertion could also be deduced directly from
the observation (21)).
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Springer, 2000, pp. 1–145

5. Del Moral, P., Miclo, L.: Particle approximations of Lyapunov exponents connected to Schrödinger
operators and Feynman-Kac semigroups. Preprint, publications du Laboratoire de Statistique et
Probabilités, no 2001-08, 2001

6. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Boston, London: Jones
and Bartlett, 1993

7. Duflo, M.: Random iterative models. Berlin: Springer-Verlag, 1997. Translated from the 1990 French
original by Stephen S. Wilson and revised by the author

8. Dupuis, P., Ellis, R.: A weak convergence approach to the theory of large deviations. New York:
John Wiley & Sons Inc., 1997. A Wiley-Interscience Publication

9. Holley, R., Stroock, D.: Simulated annealing via Sobolev inequalities. Commun. Math. Phys. 115,
553–569 (1988)

10. Miclo, L.: Recuit simulé sans potentiel sur un ensemble fini. In: Séminaire de Probabilités XXVI,
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