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ABOUT RELAXATION TIME OF FINITE GENERALIZED
METROPOLIS ALGORITHMS

BY L. MICLO

Instituto Nacional de Matemática Pura e Aplicada

In 1999 Catoni determined the critical rate H3 for the relaxation
time of generalized Metropolis algorithms, models for which the speed
of convergence to equilibrium can be strongly influenced by the effects
of a possible almost periodicity. We recover this result with the help of
Dobrushin’s coefficient and give characterizations of H3 in terms of other
ergodic constants. In particular, we prove that it also governs the large
deviation behavior of the singular gap for a sufficiently large but finite number
of iterations of the underlying kernel at low temperature.

1. Introduction. In recent lecture notes [2], Catoni considered a new critical
exponent H3 for finite generalized Metropolis algorithms. To present his result,
we begin by introducing its setting and recalling some elementary large deviation
facts.

On a finite set S containing at least two points, we are given a family (Pβ)β≥0
of S × S stochastic matrices, indexed by a nonnegative real parameter β which
plays the role of an inverse temperature. We assume that the entries of these
matrices satisfy large deviation principles at low temperature, which means that
the following limits exist:

∀x, y ∈ S, V (x, y)
def.= − lim

β→+∞β−1 ln
(
Pβ(x, y)

)
.(1)

A priori these quantities belong to R̄+
def.= R+ � {+∞}, but we furthermore make

the hypothesis that the rate matrix V
def.= (V (x, y))x,y∈S is irreducible, in the sense

that for all x �= y ∈ S there exists a finite sequence x = x0, x1, . . . , xn = y of
elements of S such that, for any 0 ≤ i < n, V (xi, xi+1) < +∞. Consequently,
for β ≥ 0 large enough, the Markov kernel Pβ will also be irreducible, in the
traditional meaning. In fact, up to a shift in the indexation by β ≥ 0, there is no
loss of generality in assuming (as we will do from now on) that we are always
assured of

∀x, y ∈ S, Pβ(x, y) > 0 ⇐⇒ V (x, y) <+∞
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because we will only be interested in asymptotical behavior for β large. As is well
known, this ensures that for any β ≥ 0 there is a unique invariant probability µβ

relative to Pβ . Using representions in terms of subtrees (cf., e.g., [7]), it is not very
difficult to deduce a large deviation principle for it: there is a function U :S→R+
(which is sometimes called the virtual potential associated with V ) such that

∀x ∈ S, U(x)=− lim
β→+∞β−1 ln

(
µβ(x)

)
.

Other important objects in this context are the mean exit times. More precisely,
for given x ∈ S and β ≥ 0, let us designate by Px,β the law of a homogeneous
Markov chain (Xn)n≥0 whose kernel of transition probabilities is Pβ and which
starts from the initial point x. Such processes are called generalized Metropolis
algorithms by Catoni [2], the classical situation corresponding to

∀β ≥ 0, ∀x, y ∈ S, Pβ(x, y)
def.= P (x, y) exp

(−β
(
U(y)−U(x)

)
+

)
,

where P is a reversible and irreducible Markovian kernel and U :S→R is a given
function (to be minimized). Let ∅ �=A �= S be a proper subset of S; we write

TA = inf{n≥ 0 :Xn /∈A} ≤ +∞
but remark that, under any of the Px,β , this random variable is a.s. finite. Again by
taking into account subtree representations of the following quantities, it can be
shown (cf. [7] or [2]) that the limits

∀x ∈A, h(x,A)
def.= lim

β→+∞β−1 ln(Ex,β[TA])

are well defined and obviously nonnegative. Then the exit height of A is naturally
defined by

H(A)=max
x∈A h(x,A)

and indeed it only depends on V .
Let us also consider the tensorized family (P⊗2

β )β≥0: for any β ≥ 0, P⊗2
β is the

Kronecker product of Pβ with itself, that is, the Markovian kernel on S2 defined
by

∀ (x1, x2), (y1, y2) ∈ S2, P⊗2
β

(
(x1, x2), (y1, y2)

)= Pβ(x1, y1)Pβ(x2, y2)

and which corresponds to independent evolutions on the factors of S × S. Clearly,
this family obeys a large deviation principle with respect to the rate function V ⊕V

given by

∀ (x1, x2), (y1, y2) ∈ S2, V ⊕ V
(
(x1, x2), (y1, y2)

)= V (x1, y1)+ V (x2, y2).

However, the irreducibility is not preserved by this manipulation. In fact, V ⊕ V

is irreducible if and only if V is aperiodic in an obvious sense. Nevertheless, the
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irreducibility assumption was not relevent for the above definition of the height
notion H , so we can apply it to V ⊕ V for proper subsets of S2, except that it can
take the value +∞. We are now in position to define the constant H3 introduced
by Catoni in [2]:

H3 =H(S2 \ �),(2)

where � is the diagonal of S2,

�= {
(x, x) ∈ S2 :x ∈ S

}
.

Its main interest is that it gives the critical exponential rate for a logarithmic
uniform relaxation property:

THEOREM 1.1. For any η≥ 0, consider the quantity

l(η)= lim sup
β→+∞

sup
x,y∈S

∣∣β−1 ln(Px,β[X�exp(ηβ)� = y])−U(y)
∣∣,

where �·� denotes the integer part. Then we are assured of

∀η >H3, l(η)= 0,

∀η <H3, l(η) > 0.

This result is due to Catoni [2], whose approach is based on large deviation
considerations in the spirit of the work of Freidlin and Wentzell [7]; see also
[1, 3, 17].

Our purpose here is to present a more direct proof via Dobrushin’s coefficient
and to discuss other characterizations of H3 in terms of ergodic constants. This
will lead us to wonder about the possibility of deducing their behavior for a
large number of iterations from some fixed finite ones, asymptotically at low
temperature. As we will see, this absence of a strong delaying effect is fulfilled
by singular values even in essentially irreversible situations, while this is not
necessarily true for the Dobrushin’s coefficient. This phenomenon is technically
important for the study of related simulated annealing algorithms and shows the
advantage brought by a spectral approach.

The paper is organized as follows: in the next section, we will see the link
between H3 and the time of relaxation in the sense of Dobrushin’s coefficient,
which relation will be extended to spectral gap and other ergodic constants in
Section 3. In Section 4, the above-mentioned difference of behavior in fixed times
between Dobrushin’s coefficient and spectral gap will be developed, followed by
a discussion about the consequences for generalized simulated annealing.
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2. Dobrushin’s coefficient. We will present another description of H3 which
enables us to derive straightforwardly Theorem 1.1.

More precisely, let us recall the definition of Dobrushin’s coefficient a(P )

associated with a Markovian kernel P , say on S:

a(P )= 1− 1
2 sup
x,y∈S

‖P (x, ·)− P (y, ·)‖,
where ‖ · ‖ designates the total variation norm; for any signed measure m on S,
‖m‖ :=∑

x∈S |m(x)|. Then, for any given 0 < ε < 1 and β ≥ 0, we can consider
the (deterministic) relaxation time

τa(β)
def.= inf

{
n≥ 0 :a(P n

β )≥ ε
}≤+∞.

Our main objective in this section is to show, always under the asumptions of the
Introduction, the following proposition.

PROPOSITION 2.1. Independently on the above choice of 0 < ε < 1, we have

H3 = lim
β→+∞β−1 ln

(
τa(β)

)
.

To go in this direction, we begin by discussing the general definition of the
height functional H . The next result can be deduced from Proposition 4.19 of [2]
and in fact its proof is very similar.

LEMMA 2.2. Let A be a proper subset of S and let 0 < ε̃ < 1 be fixed. We
define

tA(β)
def.= inf

{
t ≥ 0 : sup

x∈A
Px,β[TA > t] ≤ ε̃

}
.

Then we are assured of

H(A)= lim
β→+∞β−1 ln

(
tA(β)

)
.

The underlying idea is that if x ∈ A is “the starting point from which it is
the most difficult to get out of A,” then, under Px,β , TA is asymptotically an
exponential time [whose parameter is of order exp(H(A)β)]. This unpredictability
property of the (conveniently renormalized) worse exit time can be made rigorous
(cf. [10] or [12]), but we do not need to go so far here.

PROOF. Using the Markov property, we get that, for any x ∈ A, β ≥ 0 and
t, n ∈N,

Px,β[TA > nt] = Ex,β

[
1{TA>(n−1)t}PX(n−1)t ,β[TA > t]]

≤ Px,β[TA > (n− 1)t] sup
y∈A

Py,β[TA > t]

≤
(

sup
y∈A

Py,β[TA > t]
)n

.
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Thus, by considering t = tA(β), we obtain

Ex,β[TA] ≤ Ex,β

[
tA(β)

∑
n≥0

1TA>ntA(β)

]

= tA(β)
∑
n≥0

Px,β[TA > ntA(β)]

≤ tA(β)
∑
n≥0

(
sup
y∈A

Py,β[TA > tA(β)]
)n

≤ tA(β)
1

(1− ε̃)
,

where we can next take the supremum over x ∈A. On the other hand, we also have

ε̃ < sup
x∈A

Px,β[TA ≥ tA(β)]

≤ 1

tA(β)
sup
x∈A

Ex,β[TA].

These bounds and the definition of H(A) lead immediatly to the expected re-
sult. �

We will apply this result to the particular proper subset S2 \� in the context of
the tensorized family of Markov kernels, but we need first to recall some notions
from coupling theory. For β ≥ 0 and (x, y) ∈ S2, let P

⊗2
(x,y),β be the law of a

Markov chain (Xn, X̃n)n≥0, where (Xn)n≥0 and (X̃n)n≥0 are independent and of
respective distributions Px,β and Py,β . We define

T� def.= inf{n≥ 0 :Xn = X̃n}
and consider the sequence (Yn)n≥0 given by

∀n≥ 0, Yn =
{
X̃n, if n≤ T�,
Xn, if n≥ T�.

As is well known, (Yn)n≥0 admits Py,β for law and (Xn,Yn)n≥0 is called a simple
coupled chain.

Another basic computation is that, for any Markovian kernel P on S, we have

a(P )= inf
x,y∈S

∑
z∈S

P (x, z)∧ P (y, z).

Now these statements easily imply the next result, from which Proposition 2.1
follows at once:
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LEMMA 2.3. For any β ≥ 0 and n ∈N, we have

a(P n
β )

2

card(S)
≤ inf

(x,y)/∈�P
⊗2
(x,y),β[T� ≤ n] ≤ a(P n

β ).(3)

Consequently, we are assured of the inequalities

∀β ≥ 0, τa(β)≥ tS2\�(β) with ε̃ = 1− ε2

card(S)+ 1
,

∀β ≥ 0, tS2\�(β)≥ τa(β) with ε = 1− ε̃.

PROOF. To get the second bound of (3), it is sufficient to consider the
minimum in x �= y ∈ S in the inequality

P
⊗2
(x,y),β[T� ≤ n] = P

⊗2
(x,y),β[Xn = Yn]

=∑
z∈S

P
⊗2
(x,y),β[Xn = z= Yn]

≤∑
z∈S

P
⊗2
(x,y),β[Xn = z] ∧ P

⊗2
(x,y),β[Yn = z]

=∑
z∈S

P n
β (x, z)∧ P n

β (y, z).

For the reverse minoration, we do the same thing, but with respect to the bounds

P
⊗2
(x,y),β[Xn = Yn] ≥ P

⊗2
(x,y),β[Xn = X̃n]

=∑
z∈S

P
⊗2
(x,y),β[Xn = z= X̃n]

=∑
z∈S

P
⊗2
(x,y),β[Xn = z]P⊗2

(x,y),β[X̃n = z]

≥∑
z∈S

(
P
⊗2
(x,y),β[Xn = z] ∧ P

⊗2
(x,y),β[X̃n = z])2

≥ 1

card(S)

(∑
z∈S

P
⊗2
(x,y),β[Xn = z] ∧ P

⊗2
(x,y),β[X̃n = z]

)2

. �

To finish this section, we will show how Theorem 1.1 can be deduced without

difficulty from Proposition 2.1. So let η > 0 be given; for β ≥ 0, we note nβ
def.=

�exp((H3 + η)β)� and mβ
def.= �nβ/�exp(ηβ/2)��. We want to see that

lim
β→+∞ sup

x,y∈S
∣∣β−1 ln(Px,β[Xnβ = y])−U(y)

∣∣= 0.(4)
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To prove this convergence, let us recall some basic properties of Dobrushin’s
coefficient associated with a Markovian kernel P on S: for any probabilities ν

and µ on S, we are assured of

‖νP −µP ‖ ≤ (
1− a(P )

)‖ν −µ‖
and taking into account that if in the lhs we consider the supremum over all the
possible choices of µ and ν, then we get an equality, one is easily convinced that,
for any n,m ∈N,

1− a(P nm)≤ (
1− a(P n)

)m
.

Coming back to our given family of kernels and using Proposition 2.1 and the
definition of mβ , it appears that, for β sufficiently large,

a(P
mβ

β )≥ 1
2 .

Thus we obtain that, for such β and for any x ∈ S,

‖δxP nβ
β −µβ‖ = ‖δxP nβ

β −µβP
nβ
β ‖

≤ (1
2

)�exp(ηβ/2)�
,

which goes to zero extremely fast for large β (exponential of exponential); in
particular we have, for any y ∈ S, limβ→+∞µ−1

β (y)2−�exp(ηβ/2)� = 0. Since we
can also write

‖δxP nβ
β −µβ‖ =

∑
y∈S

∣∣∣∣Px,β[Xnβ = y]
µβ(y)

− 1
∣∣∣∣µβ(y)

we get that, for any y ∈ S,

lim
β→+∞

Px,β[Xnβ = y]
µβ(y)

= 1,

from which (4) follows, via the definition of the quasipotential U .
Now to see that H3 is really the critical exponent for that relaxation property,

let η > 0 be fixed and this time we let nβ
def.= �exp((H3 − η)β)� and mβ

def.=
nβ�exp(ηβ/2)�. We have to show that there exist x, y ∈ S such that

lim sup
β→+∞

∣∣β−1 ln(Px,β[Xnβ = y])−U(y)
∣∣ > 0.

Indeed, if it were not true, we could find a β0 ≥ 0 such that, for all β ≥ β0 and all
x, y ∈ S,

Px,β[Xnβ = y]
µβ(y)

≥ exp(−ηβ/2),
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a bound which implies that

a(P nβ )≥ exp(−ηβ/2).

Thus we would obtain that

a(Pmβ)≥ 1− (
1− exp(−ηβ/2)

)�exp(ηβ/2)�
,

which is larger than ε
def.= 1/10 for β ≥ β1 with β1 ≥ β0 large enough. One could

then derive that, for β ≥ β1, τa(β) ≤ mβ and passing to the limit for large β ,
conclude the contradiction that H3 ≤H3 − η/2.

REMARK 2.4. In fact the above approach enables one to see that H3 is also
the critical exponent for a stronger convergence:

∀η >H3, lim sup
β→+∞

sup
x,y∈S

∣∣∣∣Px,β[X�exp(ηβ)� = y]
µβ(y)

− 1
∣∣∣∣= 0,

∀η <H3, lim sup
β→+∞

sup
x,y∈S

∣∣∣∣Px,β[X�exp(ηβ)� = y]
µβ(y)

− 1
∣∣∣∣ > 0.

However, due to the weak assumption on the family (Pβ)β≥0, one cannot expect
precise estimations on µβ or τa(β), only large deviation results are available for
them (whose rates are respectively given by U and H3). For further reference,
also remark that this characterization remains true if in the above left-hand
side [or in the definition of l(η)], we rather consider a particular increasing
sequence (βk)k≥0 of positive real numbers satisfying limk→∞ βk = +∞ instead
of all large β ≥ 0. Indeed, the above lim sup can be replaced by lim inf, for
instance.

3. Spectral gaps and other ergodic constants. The previous analysis of
Dobrushin’s coefficient can be extended to some other quantifiers of convergence
to equilibrium speed, in particular due to the finiteness of the state space.

We begin by giving a general result. Let ϕ : R+ → R be a strictly convex
function such that ϕ(1) = 0. For fixed β ≥ 0, we define a functional Hϕ,β on P
the set of probabilities on S by

∀m ∈P , Hϕ,β(m)
def.= ∑

x∈S
ϕ

(
m(x)

µβ(x)

)
µβ(x).

In some sense, this quantity measures a “distance” to µβ ; at least an application
of Jensen’s inequality shows readily that Hϕ,β(m) > 0 for m �= µβ . If P is
a Markov kernel leaving µβ invariant, let αϕ,β(P ) be its relative contraction
coefficient:

αϕ,β(P )
def.= inf

m∈P \{µβ}
Hϕ,β(m)−Hϕ,β(mP )

Hϕ,β(m)
≥ 0.
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As before, we consider the order of the number of iterations of Pβ which will pro-
duce a sizeable effect with respect to this ergodic coefficient; that is, for a fixed
0 < ε < 1, we let

∀β ≥ 0, τϕ(β)
def.= inf

{
n≥ 0 :αϕ,β(P

n
β )≥ ε

}≤+∞.

Taking into account the general lower bound (cf. [4] or [5])

αϕ,β(P )≥ a(P )

for all Markovian kernels P over S for which µβ is invariant, it already appears
that

lim sup
β→+∞

β−1 ln
(
τϕ(β)

)≤H3.

The next result gives a sufficient condition on ϕ for this bound to be an equality
with a true limit.

PROPOSITION 3.1. Assume that, for all η > 0, ϕ(x) � exp(xη) for large
x ≥ 0. Then we are assured of

lim
β→+∞β−1 ln

(
τϕ(β)

)=H3.

PROOF. Let (βk)k≥0 be an increasing sequence of positive reals diverging to
+∞, such that

lim
k→∞β−1

k ln
(
τϕ(βk)

)= γ0
def.= lim inf

β→+∞β−1 ln
(
τϕ(β)

)
.

Let γ > γ0 be arbitrary; we let nk = �exp(γβk)� for k ≥ 0. Due to the remark at
the end of the previous section, it is sufficient to show that

∀x, y ∈ S, lim
k→∞

P
nk
βk

(x, y)

µβk(y)
= 1.

First, we note that up to the addition to ϕ of a linear function of type R+  x !→
a(x − 1), with a ∈ R, which does not alter the definition of Hϕ,β , we can assume
that ϕ is increasing (respectively decreasing) on [1,+∞[ (resp. [0,1]), and in
particular positive on R+ \ {1}. Thus, we obtain

sup
m∈P

Hϕ,β(m)≤ sup
x∈S

ϕ
(
1/µβ(x)

)
≤ ϕ

(
exp(Kβ)

)
for a sufficiently large constant K > 0, uniformly over all β ≥ 1.
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Then we reconsider arguments similar to the ones used in the first part of the
deduction of Theorem 1.1 from Proposition 2.1. Let z := (γ −γ0)/4 > 0; we have,
for all sufficiently large k ≥ 0,

sup
m∈P

Hϕ,βk (mP
nk
βk

)≤ [
1− αϕ,βk

(
P
�exp(βk(γ0+z))�
βk

)]exp(2zβk) sup
m∈P

Hϕ,βk (m)

≤ (1− ε)exp(2zβk)ϕ
(
exp(Kβ)

)
≤ exp

(
ln(1− ε) exp(2zβk)

)
exp

(
exp(zβk)

)
≤ exp

(− exp(zβk)
)
,

where in the last line but one, we have used the hypothesis made on ϕ with
η = z/K . Again the strength of this convergence to zero of the rhs enables us
to conclude that, for all x, y ∈ S,

lim
k→∞ϕ

(
P

nk
βk

(x, y)

µβk(y)

)
= 0,

which can be rewritten as the expected behavior. �

Certainly the more interesting special case corresponds to the quadratic
mapping

ϕ1 : R+  x !→ (x − 1)2

since for any Markovian kernel P leaving µβ invariant [in the sequel the set of such
matrices will be designated by I(µβ)], αϕ1,β(P ) is just λ(µβ,PP ∗), the largest
singular value of the restriction of P to the orthogonal complement of Vect(1) in
the Hilbert space L

2(µβ), that is, the largest eigenvalue on this subspace of PP ∗,
where P ∗ is the adjoint operator of P with respect to the natural scalar product of
L

2(µβ) (cf. [9]).
Related notions are the classical and modified logarithmic Sobolev constants

defined respectively by

l̃(µβ,PP ∗) def.= inf
f∈L2(µβ)\Vect(1)

µβ[f (Id− PP ∗)(f )]
Ent(f 2,µβ)

,

l(µβ,PP ∗) def.= inf
f∈L2(µβ)\Vect(1)

µβ[f 2(Id− PP ∗)(ln(f 2))]
Ent(f 2,µβ)

,

where the entropy of a function f ∈ L
2(µβ) is given by

Ent(f 2,µβ)
def.=

∫
f 2 ln

(
f 2/µβ(f

2)
)
dµβ.
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As usual, it is natural to consider the associated relaxation times, always for
sufficiently small fixed ε > 0 and any β ≥ 0,

τ̃l(β)
def.= inf

{
n≥ 0 : l̃(µβ,P

n
β P

n∗
β )≥ ε

}
,

τl(β)
def.= inf

{
n≥ 0 : l(µβ,P

n
β P

n∗
β )≥ ε

}
.

Due to the following general bounds, valid for any kernel P ∈ I(µβ) (cf. [5, 15]),

2− 4 minx∈S µβ(x)

ln(1/minx∈S µβ(x)− 1)
λ(µβ,PP ∗)≤ 2̃l(µβ,PP ∗)

≤ l(µβ,PP ∗)≤ 2λ(µβ,PP ∗)

[in case minx∈S µβ(x) = 1/2, the first factor above must be understood as 1, and
note that for β large it is always at least of order 1/β], and taking into account that,
for any given η > 0 and K > 0, we have, for sufficiently large β ≥ 0,(

1− ε

Kβ

)exp(ηβ)

≥ (1− ε)exp(ηβ/2),

it is easy to see that the same convergences as before are taking place:

lim
β→+∞β−1 ln

(
τ̃l(β)

)=H3,

lim
β→+∞β−1 ln

(
τl(β)

)=H3.

The latter could also have been deduced directly from Proposition 3.1, since it has
be shown that there exists a universal constant 0 < ρ < 1 such that, for any β ≥ 0
and any kernel P ∈ I(µβ),

ρl(µβ,PP ∗)≤ αϕ2,β(P )≤ l(µβ,PP ∗)

with ϕ2 : R+  x !→ x ln(x) (see [5]).
Finally, let us note that the isoperimetric constants associated with our family

will also have the same limiting behavior: they are defined for any β ≥ 0 and kernel
P ∈ I(µβ) by

i(µβ,PP ∗) def.= inf
A⊂S : 0<µβ(A)≤1/2

µβ(1AcPP ∗(1A))

µβ(A)
.

Due to the general bounds (cf. [14])

∀β ≥ 0,
i(µβ,PP ∗)
card(S)− 1

≤ λ(µβ,PP ∗)≤ 2i(µβ,PP ∗),(5)

we obtain, without much surprise,

lim
β→+∞β−1 ln

(
τi(β)

)=H3
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with, for sufficiently small fixed ε > 0,

τi(β)
def.= inf

{
n≥ 0 : i(µβ,P

n
β P

n∗
β )≥ ε

}
.

Thus it appears that in this context of finite generalized Metropolis algorithms,
the relaxation times τa(β), τi(β), τl(β), τ̃l(β) and τϕ(β), with ϕ satisfying the
condition of Proposition 3.1, are all of the same order exp(βH3) asymptotically at
large inverse temperatures β > 0, that is, independently of “reasonable” ways of
measuring the distance to the equilibrium probability µβ .

4. Absence of delaying effect. The objective of this section is to relate the
asymptotical behavior at low temperature of the singular values for a large number
of iterations to fixed finite ones.

First, let us recall some basic large deviation results for spectral quantities.
A family of Markovian kernels being given as before, for any β ≥ 0, we associate
a spectral gap with Pβ by the formula

λ(µβ,Pβ)
def.= inf

f∈L2(µβ)\Vect(1)

µβ[f (Id− Pβ)(f )]
µβ[(f −µβ(f ))2] .

Strictly speaking, it is the gap between 1 and the rest of the spectrum of the
autoadjoint operator (Pβ + P ∗

β )/2 (sometimes called the additive symmetrization

of Pβ , to distinguish it from the multiplicative one PβP
∗
β ) in L

2(µβ). Nevertheless,
as below Pβ will mainly be replaced by “reversibilized” kernels, we will keep this
denomination, which in this case is justified. Then it is well known that, under the
hypotheses of the Introduction, the next limit exists:

H2
def.= − lim

β→+∞β−1 ln
(
λ(µβ,Pβ)

)≥ 0.

Indeed, this behavior can be deduced at once from the bounds (5) where Pβ

replaces PP ∗, and the irreducibility of V implies the finiteness of the limit in
that situation. An interesting feature of this quantity is that it admits an explicit
description (cf. [8], whose computations can be extended to the present setting;
see also, for instance, [14]): let Cx,y denote the set of “paths” going from x to y,
that is, the finite sequences p = (pi)0≤i≤n of elements of S satisfying p0 = x and
pn = y. The elevation of such a path p is

e(p)= max
0≤i<n

U(pi)+ V (pi,pi+1).

Then the previous constant H2 is given by

H2 = max
x,y∈SH(x, y)−U(x)−U(y),

where the difficulty H(x,y) of going from x to y is defined by

∀x, y ∈ S, H(x, y)
def.= min

p∈Cx,y

e(p)
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(note that all these objects depend only on V ). The important property of H being
symmetrical in its two arguments was first noticed by Trouvé [16] and is linked
to the fact that, in the above definition of elevation, it is not necessary to consider
“nonoriented paths.”

However, as we have already alluded to, the kernels of interest in defining
natural Dirichlet forms in a discrete time setting are rather the P n

β P
n∗
β , for n≥ 1.

Thus we are led to consider the limit

∀n ∈N, h(n)
def.= − lim

β→+∞β−1 ln
(
λ(µβ,P

n
β P

n∗
β )

)≤+∞.

These quantities are easily seen to be nonincreasing in n ≥ 0, since for β ≥ 0
fixed, N  n !→ λ(µβ,P

n
β P

n∗
β ) is nondecreasing, and in fact a stationarity property

is taking place:

LEMMA 4.1. There exists n0 ≥ 0 such that, for all n≥ n0, we have

h(n)= h(n0).

In the sequel the rhs will then also be designated by h(∞).

PROOF. This result is quite clear in the degenerate situation where, for all
n ≥ 0, h(n) = +∞. Thus it is sufficient to consider the case where there exists
n1 ≥ 1 such that h(n1) <+∞.

Taking into account the monotonicity and the nonnegativity of the sequence
(h(n))n≥n1 , the lemma follows at once if we prove that {h(n) :n≥ n1} is discrete.
A priori, the latter set is included in the group generated on R by the real numbers
V (w,w′), w,w′ ∈ S, which unfortunately can be dense. So, to get round this little
difficulty, we define, for n≥ 0 and x, y ∈ S, the rate function

Wn(x, y)
def.= − lim

β→+∞β−1 ln
(
P n
β P

n∗
β (x, y)

)≤+∞,

which can be rewritten as

Wn(x, y)

= min
z∈S, (pi)0≤i≤n∈Cx,z, (qi)0≤i≤n∈Cy,z

(
V (x,p1)+ V (p1,p2)+ · · · + V (pn−1, z)

+U(y)+ V (y, q1)+ V (q1, q2)+ · · · + V (qn−1, z)−U(z)
)
.

Due to the above representations, for any n≥ 0, there exist x, y, v,w ∈ S such that
h(n)=Wn(x, y)+U(x)−U(v)−U(w). This leads us to consider E the additive
semigroup on R+ generated by the values V (w,w′), w,w′ ∈ S, and E′ the finite
set {U(w1)+ U(w2)− U(w3)− U(w4)− U(w5) :∀1 ≤ i ≤ 5, wi ∈ S}. Indeed,
for any n≥ n1, there exist e ∈E and e′ ∈E′ such that h(n)= e+e′, which implies
in particular that

e ≤K
def.= h(n1)+ max

e′′∈E′ |e′′|.
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Noting that the set E ∩ [0,K] is also finite, we see that only a finite number of
values are permitted for h(n), n≥ n1. �

We already observe that there is an immediate relation between h(∞) and H3,
which has corresponded to a well-known procedure of estimation since the article
of Fill [6]:

LEMMA 4.2. We are assured of

H3 ≤ h(∞).

PROOF. The case h(∞) = +∞ being obvious, we can restrict the study to
the situation h(∞) < +∞. Let n0 ≥ 1 be such that h(∞) = h(n0). Using the
following general inequality for k ∈N

∗,

1− λ(µβ,P
kn0
β P

∗kn0
β )≤ (

1− λ(µβ,P
n0
β P

∗n0
β )

)k
[which can be deduced by iteration from the bound 1 − λ(µβ,PQQ∗P ∗) ≤
(1 − λ(µβ,PP ∗))(1 − λ(µβ,QQ∗)), valid for all P,Q ∈ I(µβ)], it is easy to
see that, for any sufficiently small fixed ε > 0,

τλ(β)
def.= inf

{
n≥ 0 :λ(µβ,P

n
β P

∗n
β )≥ ε

}
≤ n0 inf

{
k ≥ 0 :λ(µβ,P

kn0
β P

∗kn0
β )≥ ε

}
≤ n0 inf

{
k ≥ 0 : 1− (

1− λ(µβ,P
n0
β P

∗n0
β )

)k ≥ ε
}

= n0 inf
{
k ≥ 0 :

(
1− λ(µβ,P

n0
β P

∗n0
β )

)k ≤ 1− ε
}

= n0

⌈
ln(1− ε)

ln(1− λ(µβ,P
n0
β P

∗n0
β ))

⌉
,

where, for all x ∈R, &x' def.= −�−x�, from which we deduce without difficulty the
above bound. �

If the inequality H3 < h(∞) were to be satisfied by some examples, it could be
interpreted as a “delaying effect,” since it means that the rate of convergence to
equilibrium will eventually be stronger than what can be expected by observation
of the relaxation at any fixed finite time (more specifically, we should call this
property “strong” delaying, to distinguish it from its weak form just meaning that
the smaller n0 ≥ 1 for which Lemma 4.1 is satisfied can be strictly larger than 1).
Nevertheless, we will now show our main result, saying that this phenomenon
cannot occur:

THEOREM 4.3. Indeed, we always have

H3 = h(∞).
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The proof of the inequality h(∞) ≤ H3 is not so straightforward as that of its
reverse in Lemma 4.2; in fact it will be based on an easy extension of a result
proved in [13] which we now recall. Let L be the set of local minima associated
with V , which are the points x ∈ S such that

∀y ∈ S, U(y) < U(x) (⇒ H(x,y) > U(x).

We introduce an equivalence relation ∼ on L by

∀x, y ∈L, x ∼ y ⇐⇒ H(x,y)=U(x)= U(y)(6)

and let L1, . . . ,LK be the associated equivalence classes. Another way to describe
them is to say that they are the biconnected [with respect to the directed graph
whose oriented edges are the arrows x → y between vertices x, y ∈ S satisfying
V (x, y)= 0] components of the bottoms of the wells corresponding to the energy
landscape defined by (U,V ) (which only depends on V ). We have shown in [13]
that if, for any 1 ≤ k ≤K , there exists at least one x ∈Lk such that V (x, x)= 0,
then with the previous notation we can take n0 ≤ card(S) − 1 and h(∞) = H2.
The main idea was to use in some sense nonincreasing and nondecreasing paths to
connect the sets L1, . . . ,LK , the points x satisfying V (x, x) = 0 enabling us to
manage the length of the paths.

Returning to the general situation, we denote by Vn, for n ∈ N, the rate matrix
associated with the family of Markovian kernels (P n

β )β≥0. We remark that the
subset L remains the same for all the Vn, n ≥ 1 (this is not necessarily true for
the L1, . . . ,LK , which can be divided into a finer partition of L). Furthermore,
noticing that, for any given x ∈ L, there exists a number nx ∈ N

∗ such that
Vnx (x, x) = 0, we see that we can find l ∈ N

∗ (for instance, it is possible to take
l =∏

x∈L nx ) for which Vl will satisfy

∀x ∈L, Vl(x, x)= 0.(7)

According to the above reminder, we thus obtain

h(∞) = − lim
n→+∞ lim

β→+∞β−1 ln
(
λ(µβ,P

ln
β P ln∗

β )
)

= − lim
β→+∞β−1 ln

(
λ(µβ,P

l
β)

)
def.= H2(l).

We will also designate by H3(n), for n ≥ 1, the constant defined as in the
Introduction, but with respect to the family of kernels (P n

β )β≥0. Theorem 4.3 will
then follow from the next two results:

LEMMA 4.4. For any n≥ 1, we have H2(n)≤H3(n).
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This bound was deduced by Catoni [2] from his characterization of H2 and H3
as critical exponents, but we will present here an alternative proof.

PROOF OF LEMMA 4.4. We note at once that we can restrict ourselves to
treat the case n = 1. For that purpose, we first come back to the notion of exit
height H(A), for proper subsets A of S, to recall a way to compute H3. Having
resort to either large deviation techniques (cf., e.g., [2]) or martingale and spectral
arguments (see [12]), it is possible to show that

H(A)=max
x∈A min

y /∈AH(x, y)−U(x).

To apply this explicit formulation to the tensorized kernels and A=�, we begin
by assuming that V is aperiodic. Then V ⊕ V is irreducible and its associated
quasipotential is U ⊕U :S2  (x, y) !→U(x)+U(y) (use, e.g., the fact that under
our hypotheses, for β ≥ 0, µ⊗2

β will necessarily be the unique invariant probability

of P⊗2
β ). Thus finally it appears that

H3 = max
x �=y∈S min

z∈S,n∈N∗ min
p=(pi)0≤i≤n∈Cx,z, q=(qi)0≤i≤n∈Cy,z

max
0≤i<n

U(pi)+U(qi)

(8)
+ V (pi,pi+1)+ V (qi, qi+1)−U(x)−U(y).

This equality remains true in case V is periodic, since then both sides are +∞.
How awful it may seem that this formula admits at least the advantage of showing
the following monotonicity of H3: if V (1) and V (2) are two irreducible rate
matrices admitting the same function U for quasipotential and if V (1) ≤ V (2)

(entry by entry), then with obvious notation H
(1)
3 ≤ H

(2)
3 . In particular, if H̃3

is the constant associated with the family of kernels ((Pβ + P ∗
β )/2)β≥0, then

we have H̃3 ≤ H3 and it is sufficient to prove that H2 = H̃2 ≤ H̃3. Meanwhile,
(Pβ + P ∗

β )/2 being autoadjoint in L
2(µβ), let f be a left-eigenvector associated

with 1− λ(µβ,Pβ), that is, satisfying

f
Pβ + P ∗

β

2
= (

1− λ(µβ,Pβ)
)
f.

We can suppose furthermore that supx∈S |f (x)| = 1 and consider then the

probability m0
def.= (1 + f )µβ [one would have noticed that 1 + f ≥ 0 and that

µβ(f )= 0]. We have

m0

(Pβ + P ∗
β

2

)�λ(µβ,Pβ)
−1�

= [
1+ (

1− λ(µβ,Pβ)
)�λ(µβ,Pβ)

−1�
f

]
µβ.

Now assume that H2 > 0 (otherwise the bound H2 ≤ H̃3 is trivial), in order that
limβ→+∞ λ(µβ,Pβ) = 0; we deduce from the previous equality that if we start
with m0 as initial distribution,

∀y ∈ S, lim
β→+∞

Pm0,β[X�λ(µβ,Pβ)
−1� = y]

µβ(y)
= 1+ f (y)

e
,
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and taking into account Remark 2.4, we obtain H2 ≤ H̃3 (note also that the equality
H̃2 = H̃3 is not always satisfied, due to the possible 2-periodicity of the kernels
(Pβ + P ∗

β )/2, for β ≥ 0). �

To conclude, we make the following observation.

LEMMA 4.5. For any n≥ 1, we are assured of H3(n)=H3.

PROOF. As we will give an entirely probabilist argument, let us consider again
(Xn,Yn)n≥0 a Markov chain of distribution P

⊗2
(x,y),β for (x, y) ∈ S2 and β ≥ 0. For

fixed n≥ 1, we consider the stopping time

T
(n)
�

def.= inf{m≥ 0 :Xnm = Ynm}
because H3(n) can be deduced from its expectations

H3(n)= sup
x �=y∈S

lim
β→+∞β−1 ln

(
E
⊗2
(x,y),β[T (n)

� ]
)
.

However, we note that nT (n)
� ≥ T

(1)
� ; thus the bound H3 =H3(1)≤H3(n) follows

at once.
For the reverse inequality, we will rather use the description of H3 presented in

Section 2. Taking into account that, for any x ∈ S and β ≥ 0, there exists at least
one point yβ ∈ S such that Pβ(x, yβ) ≥ 1/card(S), we deduce without difficulty
that

∀x ∈ S, ∀β ≥ 0, P
⊗2
(x,x),β[(Xn,Yn) ∈ �] ≥ 1

card(S)2n .

Using the Markov property in a traditional way, it appears that, for all t ∈ N, all
β ≥ 0 and all (x, y) ∈ S2,

1

card(S)2n P
⊗2
(x,y),β[T (1)

� ≤ t] ≤ P
⊗2
(x,y),β[T (n)

� ≤ �t/n� + 1].
This leads us to introduce, for 0 < ε < 1,

t
(n)
β (ε)

def.= inf
{
t ∈N : inf

(x,y)∈S2\�
P
⊗2
(x,y),β[T (n)

� ≤ t] ≥ ε
}

since we then have

∀β ≥ 0, t
(n)
β

(
ε

card(S)2n

)
≤

⌊ t(1)β (ε)

n

⌋
+ 1.

The bound H3 ≥ H3(n) is now a consequence of Lemma 2.2, which can be
rewritten to say that, for all n≥ 1 and 0 < ε < 1,

H3(n)= lim
β→+∞β−1 ln

(
t
(n)
β (ε)

)
. �
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Let us indicate that there are situations where Theorem 4.3 can be deduced in a
simpler way. We begin by assuming furthermore that, for any β ≥ 0, the kernel Pβ

is reversible with respect to µβ . In this setting, for all n ≥ 1, 1 − λ(µβ,P
n
β P

∗n
β )

is the largest eigenvalue of the restriction of P 2n
β on L

2(µβ) \ Vect(1). The

nonnegativity of the spectrum of P 2
β = PβP

∗
β enables us then to see that, for all

n≥ 1,

λ(µβ,P
n
β P

∗n
β )= 1− (

1− λ(µβ,P
2
β )

)n
.

Let 0 < ε < 1 and β ≥ 0 be given; it appears that

τλ(β)= inf
{
n≥ 0 :

(
1− λ(µβ,P

2
β )

)n ≤ 1− ε
}

=
⌈

ln(1− ε)

ln(1− λ(µβ,P
2
β ))

⌉
.

By considering asymptotic behavior for β ≥ 0 large [special care is needed to
treat the cases h(1)= 0 and h(1)= +∞] in this equality, we get H3 = h(1) and
consequently H3 ≥ h(∞). Thus Lemma 4.2 shows that, in symmetrical situations,
we are assured of the identities H3 = h(1)= h(∞). This approach can be extended
to deal with the weak reversible cases, which verify the hypothesis that

∀x, y ∈ S, U(x)+ V (x, y)=U(y)+ V (y, x)≤+∞.

Indeed, if V satisfies that condition, we can find a new associated family of kernels
(P̂β)β≥0 such that, for any β ≥ 0, P̂β is reversible with respect to its invariant
probability µ̂β . For instance, we can consider, for all β ≥ 0,

∀x, y ∈ S, P̂β(x, y)= exp(−βV (x, y))∑
z∈S exp(−βV (x, z))

,

∀x ∈ S, µ̂β(x)=
∑

y∈S exp(−βV (x, y))∑
y,z∈S exp(−βV (y, z)) exp(−βU(y))

× exp
(−βU(x)

)
.

(9)

Then we obtain Ĥ2 = Ĥ3 and we conclude by using the fact that these quantities
only depend on V , namely H2 = Ĥ2 and H3 = Ĥ3. More generally, equations (9)
show that an S × S matrix whose entries belong to R̄+ is a rate matrix (i.e., there
exists a corresponding family of Markov kernels) if and only if any of its rows
contains a null entry.

Opposite to the previous considerations, we note that a delaying effect can occur
for Dobrushin’s coefficient. More precisely, it is easy to be convinced that, for any
n≥ 1, the following limit exists:

h̄(n)=− lim
β→+∞β−1 ln

(
a(P n

β )
) ∈ [0,+∞].
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Furthermore, by reasoning quite similar to that of the beginning of this section, we
see that the sequence (h̄(n))n≥1 is decreasing and stationary: there exists n1 ∈ N

∗

such that, for all n≥ n1, h̄(n)= h̄(n1)
def.= h̄(∞). It also appears that H3 ≤ h̄(∞).

However, the equality is no longer enforced, as the next counterexamples show,
for N ≥ 3: on the state space {1,2, . . . ,N}, we consider the rate matrix V given
by

∀1≤ x, y ≤N, V (x, y)=



0, if x = y,

1, if |x − y| = 1,

+∞, otherwise.

We compute that the associated quasipotential U is identically null, that H3 = 1
and that h̄(∞) = &N/2', proving there is no possibility of bounding h̄(∞) from
above in terms of H3, uniformly in the cardinal of the state space S.

Nevertheless, due to the relations we have mentioned in Section 3 between the
spectral gap, the isoperimetric constant and the (classic or modified) logarithmic
Sobolev coefficient, we see that there is no delay for the latter ones. A heuristic
reason for that property is that their definitions use the corresponding invariant
probability and the presence of such a time asymptotic object really helps.

To end this section, here are a few supplementary observations about related
extensions:

REMARK 4.6. (a) The previous considerations show that the following
characterization also holds:

H3 =max
n≥1

H2(n)≥H2(1)=H2.

Certainly the simplest example for which H3 >H2 is given by S = {0,1} and

V =
(

1 0
0 +∞

)
,

for which H2 = 0 and H3 = 1. In particular, contrary to the analogous property
for H3 proved in Lemma 4.5, we are not always assured of H2(n) = H2 for all
n ≥ 1. Let us recall a probabilist interpretation of H2(n), for n ≥ 1: choose an
arbitrary global minimum x0 [i.e., a point of S satisfying U(x0)= 0] and define

T (n)
x0

= inf{m≥ 0 :Xnm = x0};
we have (cf. [12] or [2])

H2(n)=max
x∈S lim

β→+∞β−1 ln
(
Ex,β[T (n)

x0
]).

The occurrence of maxn≥1 H2(n) >H2 is then seen to be permitted by the eventual
“nonstability” of x0, that is, the possibility that V (x0, x0) > 0 [since the proof of
Lemma 4.5 can be reused to imply that H2(n)=H2 for all n≥ 1, if V (x0, x0)= 0].
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However, the subset M of all the global minima is asymptotically stable, in the
sense that

∀x ∈M, lim
β→+∞β−1 ln

(
Pβ(x,M)

)= 0;

thus we obtain that, for all n≥ 1, H1(n)=H1
def.= H1(1), where

∀n≥ 1, H1(n)=max
x∈S lim

β→+∞β−1 ln
(
Ex,β[T (n)

M ])
with

T
(n)
M = inf{m≥ 0 :Xnm ∈M}.

The critical roles of the three constants H1, H2 and H3 are described by
Catoni in [2] for generalized Metropolis algorithms; see also [11] for a spectral
interpretation of H1 (given in some continuous time special cases, but that could
be extended to the present setting).

(b) We strongly believe that the picture given here could be made even more
precise by the introduction of (low temperature) asymptotical periodicity classes,
at least when H2 < H3. The period should be the larger common divisor of the
natural numbers n≥ 1 satisfying H2(n)=H3. In particular this would allow us to
show that, in Lemma 4.1, we can choose n0 ≤ card(S)− 1.

(c) The existence of such a finite n0 ∈N
∗ satisfying

H3 =− lim
β→+∞β−1 ln

(
λ(µβ,P

n0
β P

n0∗
β )

)
(10)

is technically important for a spectral treatment of simulated annealing. In this
context, we need to make another assumption on the variations of the kernel Pβ

with respect to β , which is not a consequence of (1) nor implies it:

(H) There exists a constant K > 0 such that, for all β, β ′ ≥ 0 (or sufficiently
large),

∀x, y ∈ S,

∣∣∣∣ ln
(
Pβ(x, y)

Pβ ′(x, y)

)∣∣∣∣≤K|β − β ′|

(with the special convention that 0/0 = 1), which in particular implies, via the
representation in terms of subtrees (cf. [7]), that

∀x ∈ S,

∣∣∣∣ ln
(
µβ(x)

µβ ′(x)

)∣∣∣∣≤K
(
card(S)− 1

)|β − β ′|.

Now let (Xn)n≥0 be a time-inhomogeneous Markov chain starting from an initial
distribution m0 and whose kernel of transition probabilities at any time n ∈ N is
Pβ(n), where, for example, β(n)= k−1 ln(n+ 1) with k >H3. Using the approach
presented in [13], it can be shown that, for large n, the distribution of Xn will be
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closed to µβ(n), in total variation norm or relative entropy sense. Thus Xn will
eventually concentrate on the global minima of U , giving to them weights close to
those granted by µβ(n) (which itself may not converge under the assumptions of the
Introduction). Due to the delaying effect for Dobrushin’s coefficients, we could not
reach this precision by only using them. Indeed, we would have to play with very
large times, which are especially difficult to handle in inhomogeneous settings.
On the contrary, (10) is more easy to perturb. This puts forward the advantage of
considering singular values or similar ergodic constants. The constant H3 is critical
for the above behavior, which means that this property will no longer be satisfied
for every initial probability m0 if 0 < k < H3. This can be seen for instance by
applying the estimation of exit times presented in [12] to simulated annealing
algorithms associated with the tensorized kernels (P⊗2

β )β≥0 and by taking into
account the fact that in the maximum appearing in (8) [or hidden in (2)], we can
choose (x, y) /∈ � such that x, y ∈ S are both global minima of U . However,
again, the development of the above point (b) would help the understanding of
this behavior.

(d) Let us give an example of application for the strong ergodicity in law
(namely the convergence in law for large time to a probability not depending
on the initial distribution) for generalized simulated annealing with a cost
function depending (a little) on time. On an oriented irreducible finite graph,
we are given for any edge (x, y) a C1 mapping R+  β !→ Uβ(x, y) ∈ R

[if (x, y) is not an edge of the graph, Uβ(x, y) ≡ −∞]. We assume the
existence of U(x, y) := limβ→+∞Uβ(x, y) in R for any edge (x, y) and that
lim supβ→+∞ β|∂βUβ(x, y)| < +∞. Then we consider, for any β ≥ 0, the
Markovian kernel Pβ defined by

∀x, y ∈ S, Pβ(x, y)= exp(βUβ(x, y))∑
z∈S exp(βUβ(x, z))

.

It is immediate to verify that (1) and (H) are satisfied. Let X = (Xn)n∈N be an
inhomogeneous Markov chain associated as above with an evolution of the inverse
of the temperature given by βn = k−1 ln(1 + n), for all n ≥ 0. As a consequence
of the previous considerations, H3 is the infimum of the values k such that X is
strongly ergodic in law [and the limit distribution can be written in terms of the
U(x, y), where (x, y) is an edge].

(e) For n≥ 1, we define

H
(2)
2 (n)= lim

β→+∞β−1 ln
[
λ
(
µ⊗2
β , (P n

β )
⊗2)],

h(2)(n)= lim
β→+∞β−1 ln

[
λ
(
µ⊗2
β , (P n

β )
⊗2(P n∗

β )⊗2)].
Let x0 be a fixed global minimum; writing

∀n≥ 1, T
(n)
(x0,x0)

= inf
{
m≥ 0 : (Xnm,Ynm)= (x0, x0)

}
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the former quantities also admit the interpretation

H
(2)
2 (n)= max

(x,y)∈S2
lim

β→+∞β−1 ln
(
E
⊗2
(x,y),β[T (n)

(x0,x0)
]
)
.

Thus it appears that, for all n≥ 1,

H3 ≤H
(2)
2 (1)≤H

(2)
2 (n).

Note, however, that the subset of local minima for U ⊕U is just the product of the
set of local minima for U with itself; thus if l ≥ 1 is such that (7) is satisfied, then
we also obtain

H
(2)
2 (l)= h(2)(l)= h(l)=H2(l),

the middle equality coming from a general property of singular values under the
Kronecker product (cf. Theorem 4.2.15 of [9]), saying that, for all n ≥ 1 and all
β ≥ 0, λ(µ⊗2

β , (P n
β )

⊗2(P n∗
β )⊗2) = λ(µβ,P

n
β P

n∗
β ). Taking into account that our

previous proofs indeed show the equality H2(l)=H3, we conclude that

H
(2)
2 (1)=H3

and consequently that, for all n≥ 1,

H
(2)
2 (n)=H3(n)=H3.

Notice that this new characterization of H3 (or that of Theorem 4.3) seems not
so trivial to work out directly from its formulation in terms of elevations of paths
given in (8).

(f) Let M1, . . . ,Mκ be the classes of equivalence for the restriction to the subset
of global minima M of the relation introduced in (6) (in fact, for 1 ≤ i ≤ κ ,
there exists 1≤ ki ≤K such that Mi =Lki ). The conjectured simulated annealing
interpretation of the constants H2 and H1 is that they should be critical respectively
for the next behaviors, according to the position of the parameter k in front of the
previous inverse logarithmic evolution of the temperature with respect to these
constants [always under (H)]:

(i) for all initial distributions and for all 1≤ i ≤ κ , asymptotically when n≥ 0
goes to infinity, the probability that Xn belongs to Mi is close to the weight
µβ(n)(Mi );

(ii) the probability that Xn belongs to M converges to 1 for large n≥ 0.

This latter characterization of H1 was proved by Trouvé [17] under a hypothesis
a little stronger than just a large deviation behavior for the entries of the Markov
kernels (Pβ)β≥0, but already, in the case of a general cost function V , generalizing
results obtained by Catoni [1] in the reversible situation. The corresponding
property of H2 for generalized Metropolis algorithms, meaning that, for all η > 0,

sup
x∈S,1≤i≤K

lim
β→+∞

∣∣Pβ,x[X�exp(β(H2+η))� ∈Mi] −µβ(Mi )
∣∣= 0
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and

sup
x∈S,1≤i≤K

lim sup
β→+∞

∣∣Pβ,x[X�exp(β(H2−η))� ∈Mi] −µβ(Mi)
∣∣ > 0

would also be new. It should come from the precise behavior of conveniently
renormalized exit times which enables us to agglutinate the points of each Mi ,
for 1≤ i ≤ κ (see [12]).

Acknowledgments. I am very grateful to the referee and to an Associate
Editor, whose careful readings pointed out and corrected several mistakes in a
first version of this paper. I also thank the Instituto Nacional de Matemática Pura e
Aplicada, CNPq, Brazil, where this work was done, for its hospitality and support.

REFERENCES

[1] CATONI, O. (1992). Rough large deviation estimates for simulated annealing: application to
exponential schedules. Ann. Probab. 20 1109–1146.

[2] CATONI, O. (1999). Simulated annealing algorithms and Markov chains with rare transitions.
Séminaire de Probabilités XXXIII. Lecture Notes in Math. 1709 69–119. Springer, Berlin.

[3] CATONI, O. and CERF, R. (1995–1997). The exit path of a Markov chain with rare transitions.
ESAIM Probab. Statist. 1 95–144 (electronic).
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