
Monotonicity of the Extremal Functions
for One-dimensional Inequalities
of Logarithmic Sobolev Type

Laurent Miclo

Laboratoire d’Analyse, Topologie, Probabilités, UMR 6632, CNRS
39, rue F. Joliot-Curie, 13453 Marseille cedex 13, France
e-mail: miclo@latp.univ-mrs.fr
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1 Introduction and Result

On the Borel σ-field of R, let μ be a probability and ν a positive measure. We
are interested in the logarithmic Sobolev constant C(μ, ν) defined (with the
usual conventions 1/∞ = 0, 1/0 = ∞ and, most important, 0 · ∞ = 0) by

C(μ, ν) � sup
f∈C

Ent(f2, μ)
ν[(f ′)2]

∈ R̄+ (1)

where C is the set of all absolutely continuous functions f on R; f ′ denotes
the weak derivative of f . Recall that in general the entropy of a positive,
measurable function f with respect to a probability μ is defined as

Ent(f, μ) �

{
μ[f ln(f)] − μ[f ] ln(μ[f ]) if f ln(f) is μ-integrable
+∞ else

and that this quantity belongs to R̄+, as an immediate consequence of Jensen’s
inequality with the convex map R+ � x �→ x ln(x) ∈ R.
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One of our aims is to show that the above definition of C(μ, ν) is not
modified when restricted to monotone functions:

Theorem 1. Calling D the cone in C consisting of all functions f such that
f ′ � 0 a.e., one has

C(μ, ν) � sup
f∈D

Ent(f2, μ)
ν[(f ′)2]

∈ R̄+.

This can be illustrated by the most famous case of the logarithmic Sobolev
inequality (due to Gross [10]), where μ = ν is a Gaussian (non degener-
ate) distribution; then the maximising functions are exactly the exponentials
R � x �→ exp(ax + b) with a ∈ R

∗ and b ∈ R (see Carlen’s article [4]).

We shall also be interested in the following discrete version of the preceding
result. For a given N ∈ N

∗, consider the discrete segment E � {0, 1, ..., N}
as a linear non-oriented graph; call A �

{
{l, l + 1} : 0 � l < N

}
the set of

its edges. Denote by C the set of functions defined on E. If f ∈ C, its discrete
derivative f ′ is defined on A by

∀ 0 � l < N, f ′({l, l + 1}
)
� f(l + 1) − f(l)

Let also be given a probability μ on E and a measure ν on A. These notations
enable us to reinterpret (1) in this new setting, and, as above, our main concern
will be to prove:

Theorem 2. In this discrete framework, one has

C(μ, ν) = sup
f∈D

Ent(f2, μ)
ν[(f ′)2]

∈ R̄+

where D is the cone in C consisting of those functions with positive derivative.

In fact, using interlinks between the continuous and discrete contexts, one
can pass from one result to the other. So we shall start with the discrete
situation, which is more immediate and better illustrates our itinerary; then
similar properties in the continuous framework will derive from the discrete
one. The discrete proof can also be directly translated, but precautions must
be taken; more on this later.

These monotonicity properties will also be extended to some modified
logarithmic Sobolev inequalities (discrete, as in Wu [18] or coutinuous in the
sense of Gentil, Guillin and Miclo [9]).

More precisely, in the discrete case, one would like to replace the energy
term ν[(f ′)2] by the quantity Eν(f2, ln(f2)) defined for f ∈ C by∑

{l,l+1}∈A

ν({l, l + 1})[f2(l + 1) − f2(l)][ln(f2(l + 1)) − ln(f2(l))];

observe that this quantity is quadratically homogeneous. This will be done in
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Theorem 3. Consider the case that E = Z, with the previous notations ex-
tended to this setting. One has

sup
f∈C

Ent(f2, μ)
Eν(f2, ln(f2))

= sup
f∈D

Ent(f2, μ)
Eν(f2, ln(f2))

In the continuous framework, let H : R+ → R+ be a convex function such
that H(0) = 0 and H ′(0) = 1. We now wish to replace the energy term with
the following quadratically homogeneous quantity:

∀ f ∈ C, EH,ν(f) �
∫

H

((f ′

f

)2
)

f2 dν

where by convention the integrand equals (f ′)2 on the set where f vanishes.
As before, one then has

Theorem 4. If μ is a probability on R and ν a measure on R, one has

sup
f∈C

Ent(f2, μ)
EH,ν(f)

= sup
f∈D

Ent(f2, μ)
EH,ν(f)

.

Similar results will be obtained when it is the entropy which is modified; for
a precise statement, see sub-section 5.3.

But our main motivation comes from the modified logarithmic Sobolev
inequalities in Theorems 3 and 4, because we hope that the monotonicity
properties we have established eventually allow to apply Hardy inequalities.
Indeed, the link between Hardy and modified logarithmic Sobolev inequalities
is still poorly understood, whereas that between Hardy and Poincaré, or clas-
sical logarithmic Sobolev, inequalities is clear (see for instance Bobkov and
Götze’s article [3]).

Besides, let us mention that similar results for the Poincaré constant have
already been obtained, in the discrete case by Chen (in the proof of Theorem
3.2 in [7]) and in the continuous case by Chen and Wang (Proposition 6.4 in [6],
see also the end of the proof of Theorem 1.1 in Chen [8]), for diffusions which
are regular enough. Their method partially rests on the equation satisfied
by a maximising function (which then is an eigenvector associated to the
spectral gap). But it does not clearly adapt to logarithmic Sobolev inequalities,
nor even, in the case of the Poincaré constant, to the irregular situations
considered above (see for instance the continuity hypothesis needed in the
second part of Theorem 1.3 of Chen [8]); therefore we prefer another approach.
In particular, we do not a priori deal with the problem of existence of a
maximising function (which is crucial in the approach by Chen and Wang
[6, 8]). Furthermore, it may be preferable to attack this existence question
a posteriori, when discussion is restricted to increasing functions; for rather
regular situations, see also the last remark in Section 4.

Still in the case of the Poincaré constant, observe that the equation giv-
ing the maximising functions (if they exist) is not easily exploited, for it
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already involves the Poincaré constant which is unknown in general. More-
over, if in this equation the constant is replaced by the inverse of an eigen-
value other than 0 and the spectral gap, the functions which satisfy this new
equation are the corresponding eigenvectors, which are not monotone (under
irreducibility hypotheses; see for instance [12]). Therefore we prefer to base
our approach on Dirichlet forms rather than on the equation possibly satisfied
by the maximising functions.

Let us add that, at least in the case of the Poincaré constant, some mono-
tonicity properties can also be obtained when the underlying graph is a tree.
See [12] for a description of the eigenspace associated to the spectral gap (in
the discrete case).

The outline of the article is as follows: the next section deals with mono-
tonicity properties for the spectral gap; they have to be considered first to treat
the case when no extremal function exists in the above logarithmic Sobolev
inequalities. The situations when it exists will then be studied in Section 3,
still in the discrete setting. Then Section 4 will extend discussion to the con-
tinuous setting, by two different ways. The last section will be devoted to
extensions with modified entropy or energy.

Last, I wish to thank the referee whose sugestions led to a better
presentation.

2 Poincaré Inequality

In the discrete setting presented in the introduction, we consider the inverse
of the spectral gap (also called Poincaré constant) associated to μ and ν,
defined by

A(μ, ν) � sup
f∈C

Var(f, μ)
ν[(f ′)2]

∈ R̄+, (2)

where we recall that the variance of a measurable function f with respect to
a probability μ is defined by

Var(f, μ) =
∫ (

f(y) − f(x)
)2

μ(dx)μ(dy) ∈ R̄+.

The interest for us of A(μ, ν) comes from Theorem 2.2.3 in Saloff-Coste’s
course [17], where a result due to Rothaus [13, 14, 15] is adapted to the
continuous case (in a more general framework than our one-dimensional one).
It says that either C(μ, ν) = 2A(μ, ν), or there exists a function f ∈ C such
that C(μ, ν) = Ent(f2, μ)/ν[(f ′)2]. This alternative is shown by considering
a maximising sequence in (1). So, keeping in mind the aim presented in the
introduction, it is useful and instructive to start with its analogue for the
spectral gap:
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Proposition 1. Definition (2) is not changed when C is replaced with D, that
is, when only monotone functions are considered.

But first observe that the supremum featuring in (2) is always achieved. To
establish that, two situations will be distinguished.

a) The non-degenerate case where ν(a) > 0 for every a ∈ A. As the expres-
sions Var(f, μ) and ν[(f ′)2] are invariant when a constant is added to f and as
they are quadratically homogeneous, in (2) one may consider only functions
f such that f(0) = 0 and ν[(f ′)2] = 1. Let now (fn)n∈N

be a maximising se-
quence for (2) which satisfies those two conditions. The hypothesis on ν clearly
ensures boundedness in R

1+N of the sequence (fn)n∈N
. Hence a convergent

subsequence can be extracted, with limit a function f . This limit also verfies
ν[(f ′)2] = 1, wherefrom one easily deduces that A(μ, ν) = Var(f, μ)/ν[(f ′)2],
showing existence of an extremal function for (2).

b) If ν({i, i + 1}) = 0 for some {i, i + 1} ∈ A, two sub-cases can be
considered:

b1) If μ({0, ..., i}) > 0 and μ({i+1, ..., N}) > 0, putting f = 1{i+1,...,N},
one has Var(f, μ) > 0 and ν[(f ′)2] = 0, hence C(μ, ν) = +∞ and f is extremal.

b2) Else, one among μ({0, ..., i}) and μ({i+1, ..., N}) vanishes, and the
problem can be restricted to the segment {0, ..., i} or {i+1, ..., N}, whichever
has mass 1. By iteration, one is then back to one of the preceding cases.

Note that in the above case (b1), Proposition 1 is established; so we can
henceforth assume that ν > 0 on A. This observation is also valid for the
logarithmic Sobolev constant, and it almost makes it possible to assume the
irreducibility hypothesis of Theorem 2.2.3 of Saloff-Coste [17], except that μ
was a priori not supposed to be strictly positive on E. Yet, one always can
revert to this situation: call 0 � x0 < x2 < · · · < xn � N the elements of E
with strictly positive μ-weight. Given some real numbers y0, y1, ..., yn, consider
the affine sub-space of C consisting of those functions f such that f(xi) = yi

for each 0 � i � n, and try minimising ν[(f ′)2] therein. For fixed 0 � i < n,
this leads to look for the functions g on {xi, xi + 1, ..., xi+1} which minimise∑

xi�x<xi+1
ν({x, x+1})(g′({x, x+1}))2 under the constraints g(xi) = yi and

g(xi+1) = yi+1. By a simple application of the equality case in the Cauchy-
Schwarz inequality, this optimisation problem admits the following unique
solution:

∀ xi � x � xi+1,

g(x) = yi +
( ∑

xi�y<xi+1

1
ν
(
{y, y + 1}

))−1 ∑
xi�y<x

yi+1 − yi

ν
(
{y, y + 1}

) . (3)

So, setting

∀ 0 � i � n, μ̃(i) � μ(xi)

∀ 0 � i < n, ν̃({i, i + 1}) �
( ∑

xi�y<xi+1

1
ν({y, y + 1})

)−1

,
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one would be reduced to a situation where the underlying probability is every-
where strictly positive; moreover, using (3), one easily switches back and forth
between extremal functions for both problems. This would also fully justify
the reminder before Proposition 1.

On the other hand, we shall also discard the trivial case when μ is a Dirac
mass; this ensures that A(μ, ν) > 0.

We can now be a little more precise on the maximising functions in (2):

Lemma 1. Let f be a function realizing the maximum in (2). Assuming that
ν > 0 on A and that μ is not a Dirac mass, every maximising function has
the form af + b1 where a ∈ R

∗, b ∈ R and 1 denotes the constant function
with value 1.

Proof. Clearly, if f is maximising and if a ∈ R
∗ and b ∈ R, af + b1 is also

maximising in (2).
Conversely, let g be maximising in (2); by subtracting a constant, we may

suppose that μ[g] = 0. By variational calculus around g (i.e., by considering
g + εh, with ε ∈ R and any h ∈ C, and taking a first order expansion when
ε → 0 of the ratio Var(g + εh, μ)/ν[(g′ + εh′)2]), one easily sees that for each
i ∈ E, g satisfies

A(μ, ν)
[
ν
(
{i, i+1}

)(
g(i) − g(i+1)

)
+ ν

(
{i−1, i}

)(
g(i) − g(i−1)

)]
= μ(i)g(i)

with the conventions ν
(
{−1, 0}

)
= 0 = ν

(
{N,N + 1}

)
.

Now, since A(μ, ν) > 0 and ν > 0 on A, starting from g(0) these equations
inductively determine g(1), g(2), up to g(N). Note that g(0) �= 0, else we
would end up with g ≡ 0, contradicting A(μ, ν) > 0. So there is at most one
minimising function g for (2) which satisfies μ[g] = 0 and g(0) = 1. This is
exactly what the lemma asserts. 
�

Given a maximising f for (2), our strategy to show its monotonicity will
be as follows: supposing on the contrary f not to be monotone, we shall
decompose f as f̃ + f̂ , with f̃ (and hence also f̂) not belonging to the linear
span Vect(1, f), and with

Var(f, μ) = Var(f̃ , μ) + Var(f̂ , μ)

ν[(f ′)2] � ν[(f̃ ′)2] + ν[(f̂ ′)2].

Clearly, these two relations imply that f̃ and f̂ also are maximising for (2), a
contradiction since f̃ and f̂ do not have the form required by Lemma 1.

So let f be maximising for (2) but not monotone.
A point i ∈ E will be called a local maximum of f if for each j ∈ E verifying

f(j) > f(i), the segment �i, j� (the sub-segment of E with endpoints i and j)
contains an element k such that f(k) < f(i). By definition, a local minimum
of f will be a local maximum of −f .

We shall now construct f̃ by splitting f at a particular level. Replacing
f by −f if necessary, we may choose a local maximum i in �1, N − 1� such
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that f has a local minimum in �0, i� and another one in �i,N�. Among such
local maxima i, choose one which minimises f(i), and call it i0. Denote by
i1 (respectively i−1) the closest local minimum on the right (respectively on
the left) of i0. By possibly reversing the order of �0, N�, one can suppose that
f(i−1) � f(i1). Also, set i2 � max{y � i1 : ∀ i1 � x � y, f(x) = f(i1)}.

For s ∈ [f(i1), f(i0)], let Ss � �as, bs� be the discrete segment whose ends
are defined by

as � min{x ∈ �i−1, i0� : f(x) � s}
bs � min{x ∈ �i2, N� : f(x) � s} − 1

(with the convention that bs = N if the latter set is empty).
By those choices, particularly by minimality of i0, one easily verifies that

for any s ∈ [f(i1), f(i0)], f is increasing (this is always understood in the
wide sense) on �as, i0�, decreasing on �i0, i2� and increasing on �i2, bs +1� (the
reader is urged to draw a picture).

Still for s ∈ [f(i1), f(i0)], set for x ∈ E

f̃s(x) = f(x)1Sc
s
(x) + s1Ss

(x)

f̂s(x) = (f(x) − s)1Ss
(x).

One has indeed fs = f̃s + f̂s, and the claimed decomposition will be obtained
owing to the following two lemmas.

Lemma 2. For any s ∈ ]f(i1), f(i0)[, one has

ν[(f ′)2] � ν[(f̃ ′
s)

2] + ν[(f̂ ′
s)

2].

Proof. An immediate calculation first gives

ν[(f ′)2] = ν[(f̃ ′
s + f̂ ′

s)
2] = ν[(f̃ ′

s)
2] + ν[(f̂ ′

s)
2] + 2ν[f̃ ′

sf̂
′
s]

and then

ν[f̃ ′
sf̂

′
s] = ν

(
{as − 1, as}

)(
s − f(as − 1)

)(
f(as) − s

)
+ ν

(
{bs, bs + 1}

)(
f(bs + 1) − s

)(
s − f(bs)

)
(still with the convention that ν

(
{N,N + 1}

)
= 0). Now, from the fact that

s ∈ ]f(i1), f(i0)[, it appears that f(i−1) � f(as − 1) < s � f(as) � f(i0)
and f(i2) � f(bs) < s � f(bs + 1), which allows to notice that ν[f̃ ′

sf̂
′
s] � 0,

wherefrom the claimed inequality derives. 
�

Lemma 3. There exists s0 ∈ ]f(i1), f(i0)[ such that

Var(f, μ) = Var(f̃s, μ) + Var(f̂s, μ).



110 L. Miclo

Proof. The difference between the left and right hand sides is but twice the
covariance of f̃s and f̂s under μ, which equals

μ
[(

f̃s − μ[f̃s]
)(

f̂s − μ[f̂s]
)]

= μ
[(

f̃s − μ[f̃s]
)
f̂s

]
=

(
s − μ[f̃s]

)
μ
[
(f − s)1Ss

]
. (4)

Hence, it suffices to find an s ∈ ]f(i1), f(i0)[ such that μ[(f − s)1Ss
] = 0.

Put i3 � bf(i0) + 1; from the increasingness of f on �i−1, i0� and on �i2, i3�,
one is easily convinced that the map Ψ : [f(i1), f(i0)] � s �→ μ[(f − s)1Ss

] is
continuous. Now, the pattern of f on �i−1, i3� implies that Ψ(f(i1)) > 0 and
Ψ(f(i0)) < 0, so there exists s0 ∈ ]f(i1), f(i0)[ such that Ψ(s0) = 0. 
�

Notate f̃ = f̃s0 and f̂ = f̂s0 , where s0 is chosen as in the preceding lemma. To
finalize the proof of Proposition 1, it remains to see that f̃ is not in Vect(f,1).
To this end, notice that i1 is no longer a local minimum for f̃ (this function
may go down from i1 to i−1, and yet f̃(i1) = s0 > f(i1) � f(i−1) = f̃(i−1)),
and consequently f̃ cannot be written as af +b1 with a > 0 and b ∈ R. On the
other hand, the inequalities f̃(i−1) < f̃(i0) and f(i−1) < f(i0) also show that
f̃ cannot be written as af + b1 with a � 0 and b ∈ R. Therefore the claimed
result follows.

3 Splitting up the Entropy

Our aim here is to establish (2) in the discrete setting. According to the
results from the preceding section, it suffices to consider the case when there
exists a (non constant) maximising f for (1). For else, a maximising family
for the logarithmic Sobolev inequality is (1 + f/(n + 1))n∈N, where f is a
maximising function for the corresponding Poincaré inequality (and hence f
is monotone). Globally, the scheme of our proof will be similar to that of the
previous section, most of whose notation will be kept in use.

First of all, observe that one may from now on suppose that f � 0, by
possibly replacing f with |f |, since one has ν[(|f |′)2] � ν[(f ′)2]. Assume now
the hypothesis (to be refuted) that f is not monotone. Two possibilities arise:
either f has a local maximum i in �1, N−1� such that there is a local minimum
in �0, i� and one in �i,N�, or the same holds for −f . We shall consider the
first case only; the second one is very similar and left to the reader (one has
to work with the negatively valued function −f).

As in section 2, i−1, i0, i1, i2 and i3 are defined, then, for s ∈ [f(i1), f(i0)],
Ss, f̃s and f̂s. Our main task will consist in “splitting up” the entropy:

Lemma 4. There exists s1 ∈ ]f(i1), f(i0)[ such that

Ent(f2, μ) = Ent(f̃2
s1

, μ) + Ent
(
(s + f̂s1)

2, μ
)
.
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Proof. First remark that for all s ∈ [f(i1), f(i0)] and for all function F :
R+ → R, one has

μ
[
F (f)

]
= μ

[
F (f̃s)

]
+ μ

[
F (s + f̂s)

]
− F (s). (5)

Indeed, by definition, one can perform the following expansion:

μ
[
F (f)

]
= μ

[
1Sc

s
F (f̃s)

]
+ μ

[
1Ss

F (s + f̂s)
]

= μ
[
F (f̃s)

]
− μ

[
1Ss

F (s)
]
+ μ

[
F (s + f̂s)

]
− μ

[
1Sc

s
F (s)

]
= μ

[
F (f̃s)

]
+ μ

[
F (s + f̂s)

]
− F (s).

In particular, applying this to F : R+ � u �→ u2 ln(u2), it appears that

Ent(f2, μ) − Ent(f̃2
s1

, μ) − Ent
(
(s + f̂s1)

2, μ
)

= ϕ(y′
s) + ϕ(x′

s) − ϕ(y) − ϕ(xs)

with ϕ the convex map given by ϕ : R+ � u �→ u ln(u) and

y′
s = μ

[
f̃2

s

]
x′

s = μ
[
(s + f̂s)2

] y = μ[f2]
xs = s2.

Resorting again to (5), but with F (s) = s2, it appears that xs + y = x′
s + y′

s,
which means that both segments [xs, y] and [x′

s, y
′
s] have the same midpoint.

So, by convexity of ϕ, the inequality ϕ(xs)+ϕ(y) � ϕ(x′
s)+ϕ(y′

s) is equivalent
to |y − xs| � |y′

s − x′
s|. Or also, if some s1 ∈ ]f(i1), f(i0)[ happens to be

such that |y − xs| = |y′
s − x′

s|, then the equality in Lemma 3 holds (without
even using the convexity of ϕ). Now one computes (still owing to (5) with
F (s) = s2) that

y′
s − x′

s = μ[f̃2
s ] − μ

[
(s + f̂s)2

]
= μ[f2] + s2 − 2μ

[
(s + f̂s)2

]
= μ[f2] − s2 − 2μ[f̂2

s ] − 4sμ[f̂s] = y − xs − 2μ
[
f̂s(f̂s + 2s)

]
.

Hence it suffices to find an s ∈ ]f(i1), f(i0)[ such that μ
[
f̂s(f̂s + 2s)

]
= 0.

But f̂s + 2s is a positive function, whereas f̂s is positive for s = f(i1) and
negative for s = f(i0). The claim follows by continuity of the application
[f(i1), f(i0)] � s �→ μ[f̂s(f̂s + 2s)], which is easily seen not to vanish at the
endpoints. 
�

Besides, according to Lemma 2, one has for all s ∈ ]f(i1), f(i0)[

ν[(f ′)2] � ν[(f̃ ′
s)

2] + ν[(f̂ ′
s)

2] = ν[(f̃ ′
s)

2] + ν[((s + f̂s)′)2].

Using the notation and proof of that Lemma again, one can even say a little
more: equality can hold only if for all edges a ∈ A one has f̃ ′

s(a)f̂ ′
s(a) = 0,

which in particular entails that f(as) = s. So, for s ∈ ]f(i1), f(i0)[, the discrete
segment Ss contains at least three different points, as, i0 and i1.
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Now, what we saw just before implies that f̃s1 and s1 + f̂s1 also are max-
imising functions for (1), and that necessarily

ν
[
(f ′)2

]
= ν

[
(f̃ ′

s1
)2

]
+ ν

[(
(s1 + f̂s1)

′)2]
,

for else, one would have

Ent(f2, μ)
ν
[
(f ′)2

] <
Ent(f̃2

s1
, μ) + Ent

(
(s + f̂s1)

2, μ
)

ν
[
(f̃ ′

s1
)2

]
+ ν

[(
(s1 + f̂s1)′

)2]
� max

(
Ent(f̃2

s1
, μ)

ν
[
(f̃ ′

s1
)2

] ,
Ent

(
(s + f̂s1)

2, μ
)

ν
[(

(s1 + f̂s1)′
)2]

)

(the first inequality uses that by construction Ent(f2, μ) > 0). Therefore there
exist three successive points in Ss1 where f̃s1 assumes the same value (namely,
s1) and we shall now verify that this is not possible, more precisely that this
would imply constancy of f̃s1 , which does not hold (for f̃s1(i−1) < f̃s1(i0)).
Indeed, by variational calculus around a maximising function f , one sees that
f must verify for all i ∈ E (with the usual conventions)

C(μ, ν)
[
ν
(
{i, i+1}

)(
f(i) − f(i+1)

)
+ ν

(
{i−1, i}

)(
f(i) − f(i−1)

)]
= μ(i)f(i) ln

(f2(i)
μ[f2]

)
.

Recall that discussion has been reduced to the situation that μ, ν and C(μ, ν)
are strictly positive (see before Lemma 1); so if f takes the same value v at
three successive points y−1, y and y +1, with 0 < y < N , then the preceding
equation taken at i = y forces v ln(v2/μ[f2]) = 0, that is to say, v = 0 or
v =

√
μ[f2]. Applying then the equation at i = y + 1 instead, one obtains

f(y +2) = f(y +1), at least if y � N −2. Similarly, for i = y−1, f(y−2) = v
if y � 2. So equality f(i) = v propagates everywhere and f is constanty
equal to v.

These arguments terminate the proof of (2) by replacing the recourse to
Lemma 1. For even though the knowledge of μ[f2] and of f(0) determines a
maximising function f for (1) owing to the linear structure of the graph E (still
for fixed μ and ν verifying C(μ, ν) > 0 and ν > 0 on A, as we were allowed
to suppose in the preceding section), here this no longer implies Lemma 1
because the term μ(i)f(i) ln(f2(i)/μ[f2]) above is not affine in f(i). Besides,
this lemma never holds in the context of logarithmic Sobolev inequalities.
Indeed, let again f be a positive function which maximises (1). Perturbating f
by a constant function and performing a variational computation, one obtains
μ[f ln(f/μ[f2])] = 0. Set F (t) = μ[(f + t) ln((f + t)/μ[(f + t)2])] for all t � 0.
Differentiating twice this expression on R

∗
+, one obtains

F ′′(t) = 2
∫

1
f + t

dμ − 2
μ[f + t]

μ[(f + t)2]

(
2 − μ[f + t]2

μ[(f + t)2]

)
.
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Using Jensen’s inequality μ[1/(f + t)] � 1/μ[f + t] and the fact that the map
[0, 1] � x �→ x(2 − x) is bounded by 1, it appears that F ′′ is strictly positive
on R

∗
+ if f is not μ-a.s. constant (consider the case when Jensen’s inequality

is an equality). So, there may exist at most two t � 0 such that F (t) = 0.

Remark 1. The inequality μ[f̂f(i1)(f̂f(i1) + 2f(i1))] > 0 does not allow to de-
duce that Ent(f2, μ) < Ent(f̃2

f(i1)
, μ) + Ent((f(i1) + f̂f(i1))

2, μ); this is true
only under additional conditions concerning the signs of y′

f(i1)
− x′

f(i1)
and

y−xf(i1) (a similar observation holds at s = f(i0)). The possibility for y′
s−x′

s

and y − xs to change sign when s ranges over[f(i1), f(i0)] (the worst case is
when such changes precisely occur where μ[f̂s(f̂s + 2s)] vanishes) is as much
a nuisance as the the factor s−μ[f̃s] which appeared in (4). Therefore we are
a priori not sure of the existence of some s ∈ [f(i1), f(i0)] making one of the
functions f̃s and s + f̂s “strictly more maximising” than f . On the opposite,
in the spectral gap case, this conclusion was nonetheless reachable, by using
the extra fact that the map [f(i1), f(i0)] � s �→ s − μ[f̃s] is increasing (more
precisely, a further analysis easily shows that [f(i1), f(i0)] � s �→ s − μ[f̃s] is
increasing).

4 Continuous Situation

So we come back to the framework first considered in the introduction. We
shall only deal with the case of the logarithmic Sobolev constant; the Poincaré
constant can be treated in a very similar way. As already explained, the con-
tinuous situation will be reduced to the discrete one, thus giving the proof a
slight probabilistic touch. We shall also consider the other possibility, to adapt
the previous proofs, which leads to further analysing the (almost) minimising
functions. But whichever way is chosen, the beginning of the proof appears to
need some regularization as its first step.

For M > 0, let C[−M,M ] (respectively D[−M,M ]) be the sub-set of C (re-
spectively of D) consisting of the absolutely continuous functions with weak
derivative a.e. null on ]−∞,−M ] ∪ [M,+∞[. Also, put

C[−M,M ](μ, ν) � sup
f∈C[−M,M]

Ent(f2, μ)
ν[(f ′)2]

D[−M,M ](μ, ν) � sup
f∈D[−M,M]

Ent(f2, μ)
ν[(f ′)2]

.

One is easily convinced that these two quantities increase with M > 0 and
that they respectively converge for large M to C(μ, ν) and

D(μ, ν) � sup
f∈D

Ent(f2, μ)
ν[(f ′)2]

∈ R̄+.
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Call ν[−M,M ] the restriction of ν to [−M,M ] (it vanishes outside this interval)
and μ[−M,M ] the probability obtained by accumulating on the endpoints −M
and M the mass outside [−M,M ]; i.e., μ[−M,M ] is defined by

μ[−M,M ](B) � μ(B ∩ ]−M,M [) + μ(]−∞,M ])δ−M (B) + μ([M,+∞[)δM (B)

for B any Borel set in R. The interest of these measures is that C[−M,M ](μ, ν) =
C(μ[−M,M ], ν[−M,M ]) and D[−M,M ](μ, ν) = D(μ[−M,M ], ν[−M,M ]), so the con-
vergences seen above allow restriction to the case that μ and ν are supported
in the compact [−M,M ], where M > 0 is fixed from now on. We shall also
content ourselves with only considering functions defined on [−M,M ].

Denote by λ the restriction of the Lebesgue measure to [−M,M ] and, by
abuse of language, still call ν the Radon-Nikodym derivative of ν with respect
to λ (which exists without any restriction on ν, provided the value +∞ is
allowed; see for instance [11]). As weak derivatives are only a.e. defined, it
is well known that C(μ, ν) (or D(μ, ν)) is not modified when ν is replaced
with the measure having ν as density with respect to λ, which we henceforth
assume. One can also without loss suppose the function ν to be minorated by
an a.e. strictly positive constant. Indeed, this derives from the fact that for
any f ∈ C, one has

lim
η→0+

Ent(f2, μ)∫
(f ′)2 (η ∧ ν)dλ

=
Ent(f2, μ)
ν[(f ′)2]

and that this convergence is monotone. So, by exchanging suprema, equality
is preserved in the limit. Hence η > 0 wil be fixed in the sequel, so that ν � η
everywhere on [−M,M ], i.e., a suitable version of ν is chosen; but beware,
ν may still assume the value +∞ (remark that obtaining the corresponding
majorization of ν would be more delicate).

The next procedure consists in modifying μ and is a little less immediate;
a general preparation is needed:

Lemma 5. On some measurable space, let μ be a probability and f and g
two bounded, measurable functions. Suppose that ‖g − f‖∞ � ε � 1 (uniform
norm) and that the oscillation of f (i.e., osc(f) � sup f − inf f) is majorized
by a, where ε and a are positive real numbers. Then there exists a number
b(a) � 0, depending only upon a, such that∣∣Ent(g2, μ) − Ent(f2, μ)

∣∣ � b(a) ε.

Proof. Note that |f | and |g| fulfill the same hypotheses as f and g; so no
generality is loss by further supposing f and g to be positive.

Two situations are then distinguished, according to μ[f ] being “large” or
“small”. We shall start with the case when μ[f ] � 2 + 2a. This ensures that
f is majorized by 2 + 3a and g by 3 + 3a. Now, on the interval [0, 3 + 3a], the
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derivative of the map t �→ t2 ln(t2) is bounded by a finite quantity b1(a); this
entails that∣∣μ[g2 ln(g2)] − μ[f2 ln(f2)]

∣∣ � μ
[∣∣g2 ln(g2) − f2 ln(f2)

∣∣]
� b1(a)μ[|g − f |] � b1(a) ε.

Similarly, the norm inequality
∣∣√μ[g2] −

√
μ[f2]

∣∣ �
√

μ[(g − f)2] in L
2(μ)

yields ∣∣μ[g2] ln(μ[g2]) − μ[f2] ln(μ[f2])
∣∣ � b1(a) ε,

wherefrom finally the claimed inequality with b(a) = 2b1(a).
Consider now the case when μ[f ] > 2 + 2a. It seems more convenient to

deal with the map R+ � t �→ t ln(t). Performing an expansion with first-order
remainder, centred at μ[f2], one finds a θ ∈ [0, 1] such that μ[g2] ln(μ[g2])
equals

μ[f2] ln
(
μ[f2]

)
+

(
1 + ln

[
μ[f2] + θ(μ[g2] − μ[f2])

]) (
μ[g2] − μ[f2]

)
.

The same operation performed pointwise yields another measurable function
θ̃ with values in [0, 1] such that one has everywhere

g2 ln(g2) = f2 ln(f2) +
(
1 + ln

(
f2 + θ̃(g2 − f2)

))
(g2 − f2).

Integrating this against μ and taking into account the preceding equality, it
appears that

Ent(g2, μ) − Ent(f2, μ)

= μ
[(

ln
(
f2 + θ̃(g2 − f2)

)
− ln

[
μ[f2] + θ

(
μ[g2] − μ[f2]

)])
(g2 − f2)

]
. (6)

However, observe that

f2 + θ̃(g2 − f2) � f2 ∧ g2 �
(
μ[f ] − osc(f) − 1

)2

�
(
μ[f ] − a − 1

)2 � μ[f ]2

4

and similarly

μ[f2] + θ
(
μ[g2] − μ[f2]

)
� μ[f ]2

4
.

So one obtains the pointwise inequality∣∣∣ln(
f2 + θ̃(g2 − f2)

)
− ln

(
μ[f2] + θ

(
μ[g2] − μ[f2]

))∣∣∣
� 4μ[f ]−2

∣∣∣f2 + θ̃(g2 − f2) − μ[f2] − θ
(
μ[g2] − μ[f2]

)∣∣∣ .
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Let us look at the last absolute value. It can be majorized by(
f +

√
μ[f2]

)∣∣f −
√

μ[f2]
∣∣ + (f + g) |f − g|+(√

μ[g2] +
√

μ[f2]
) ∣∣∣√μ[g2] −

√
μ[f2]

∣∣∣
� 2

(
μ[f ] + a

)
a + (2μ[f ] + 2a + 1) ε + (2μ[f ] + 2a + 1) ε

� (2μ[f ] + 2a + 1)(a + 2).

On the other hand, one has as above∣∣g2 − f2
∣∣ �

(
2μ[f ] + 2a + 1

)
ε,

wherefrom, coming back to (6), it appears that

∣∣Ent(g2, μ) − Ent(f2, μ)
∣∣ � 4

(a + 2)
(
2μ[f ] + 2a + 1

)2

μ[f ]2
ε

and in that case the lemma holds with b(a) = b2(a), where

b2(a) � sup
t�2+2a

4
(a + 2)(2t + 2a + 1)2

t2
< +∞. 
�

This technical result will be used to measure how certain modifications of μ
influence C(μ, ν). More precisely, for fixed n ∈ N

∗, for any 0 � i � n put
xn,i � −M + i2M/n and introduce the probability

μn �
∑

0�i�n

μ
(
[xn,i, xn,i+1[

)
δxn,i

with the convention that xn,n+1 = +∞.

Lemma 6. With the notation of Lemma 5, for all n ∈ N
∗ one has

∣∣C(μn, ν) − C(μ, ν)
∣∣ � b

(√
2M

) √
2M

n
.

Proof. Calling C(ν) the set of absolutely continuous functions f such that
ν[(f ′)2] = 1, one has

C(μ, ν) = sup
f∈C(ν)

Ent(f2, μ)

and one also has a similar formula for C(μn, ν). Thus, to obtain the claimed
bound, it suffices to see that for all f ∈ C(ν), one has

∣∣Ent(f2, μn) − Ent(f2, μ)
∣∣ � b

(√
2M

) √
2M

n
.
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To that end, rewrite Ent(f2, μn) as Ent(f2
n, μ), where fn is the function which

equals f(xn,i) on [xn,i, xn,i+1[ for all 0 � i � n. To apply Lemma 5, it remains
to evaluate osc(f) and ‖fn − f‖∞. These estimates, and consequently also
the claimed result, easily follow from the following application of the Cauchy-
Schwarz inequality:

∀ x, y ∈ [−M,M ],

∣∣f(y) − f(x)
∣∣ =

∣∣∣∣
∫

[x,y]

f ′ dλ

∣∣∣∣ �
√∫

[x,y]

(f ′)2 dν

√∫
[x,y]

1
ν

dλ

� η−1/2
√

|y − x|,

where the last estimate holds for any function belonging to C(ν). 
�

Evidently, the above proof also shows that

|D(μn, ν) − D(μ, ν)| � b
(√

2M
) √

2M

n
;

so, to get convinced of the equality C(μ, ν) = D(μ, ν), it suffices to see that
C(μn, ν) = D(μn, ν) for all n ∈ N

∗. But this problem reduces to the discrete
context. Indeed, as before Lemma 1, the values of f(xn,i) being fixed, one
has to minimise the quantity

∫ xn,i+1

xn,i
(f ′)2 ν dλ for each given 0 � i < n. This

optimisation problem is simply solved; the minimal value is

(∫ xn,i+1

xn,i

1
ν

dλ

)−1(
f(xn,i+1) − f(xn,i)

)2

and is achieved by a function which is monotone on the segment [xn,i, xn,i+1].
Hence we are back to the discrete problem on n+1 points with the probability
μ̃n and the measure ν̃n respectively defined by

∀ 0 � i � n, μ̃n(i) � μn(xn,i)

∀ 0 � i < n, ν̃n

(
{i, i + 1}

)
�

(∫ xn,i+1

xn,i

1
ν

dλ

)−1

.

Sections 2 and 3 now allow to conclude.
From a possibly more analytically-minded point of view, remark that

Lemmas 5 and 6 could also allow to regularize μ, which could be supposed to
admit a C∞ density with respect to λ.

Let us now mention another possible approach, directly inspired from the
method of sections 2 and 3. A priori two problems arise in this perspective:
on the one hand, whether a minimising function exists (even in the case of the
Poincaré inequality), and on the other hand, when it exists, whether the set of
its global minima and maxima can have infinitely many connected components
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(this means, the function oscillates infinitely often; this is inconvenient for us,
see the considerations before Lemma 2). These problems can be bypassed as
follows. We put ourselves back in the framework preceding Lemma 5.

First, the notion of local minimum or maximum introduced in section 2
will be extended to the continuous case, with discrete segments replaced by
continuous ones. For f ∈ C, M(f) will denote the set of local minima and
maxima of f . For p ∈ N

∗, call Cp the set of functions f ∈ C such that M(f) has
at most p connected components. So one verifies that C1 (respectively C2) is
the set of constant (respectively monotone) functions. Set also C∞ � ∪p∈N∗Cp,
for which one has the following preliminary result:

Lemma 7. One has

C(μ, ν) = sup
f∈C∞

Ent(f2, μ)
ν[(f ′)2]

.

Proof. Let F denote the set of all measurable functions g : [−M,M ] → R

belonging to L
1([−M,M ], λ) and for which one can find n ∈ N

∗ and
−M = x0 < x1 < · · · < xn = M such that for all 0 � i < n, g has a constant
sign on ]xi, xi+1[ (0 is considered as having at the same time a positive and
negative sign). So C∞ is nothing but the set of antiderivatives of elements of F .

It then suffices to verify that {g ∈ F : ν[g2] � 1} is dense in the L
2(ν)

sense in the unit ball of this space. Indeed, let f ∈ C with ν[(f ′)2] = 1. Ac-
cording to the preceding property, there exists a sequence (gn)n∈N

of elements
of F converging to f ′. Put for all n ∈ N

∀ x ∈ [−M,M ], Gn(x) = f(−M) +
∫ x

−M

gn(y) dy.

Due to the minorization ν � η, it is clear that the Gn converge uniformly to
f for large n. And since osc(f) < +∞, Lemma 5 applies and shows that

lim
n→∞

Ent(G2
n, μ) = Ent(f2, μ),

wherefrom follows the equality in the lemma.
To show the claimed density, take g ∈ L

2(ν) with ν[g2] = 1; for n ∈ N, put

gn � g1{ν�n,|g|�n}.

By dominated convergence, the sequence (gn)n∈N
converges in L

2(ν) to g.
Now, for fixed n ∈ N, the measure (ν ∧ n)dλ is regular (in the sense of inner
and outer approximation of Borel sets; see for instance Rudin’s book [16]), so
one can find a sequence (g̃n,m)m∈N

in F such that

lim
m→∞

∫
(g̃n,m − gn)2 (ν ∧ n) dλ = 0.
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So, setting for all m ∈ N, ĝn,m � g̃n,m1{ν�n,|g|�n}, which still belongs to F ,
one also has

lim
m→∞

∫
(ĝn,m − gn)2 dν = 0

and the claimed density is established. 
�

The lemma entails that

C(μ, ν) = lim
p→∞

sup
f∈Cp

Ent(f2, μ)
ν[(f ′)2]

.

However, for p � 3 and f ∈ Cp \ C2, the considerations from the preceding
section applied to f yield f̃ ∈ Cp−1 and f̂ ∈ C4 such that

ν[(f ′)2] = ν[(f̃ ′)2] + ν[(f̂ ′)2]

Ent(f2, μ) = Ent(f̃2, μ) + Ent(f̂2, μ).

Let us make this more precise. For g ∈ C, a connected component of M(g)
will be called internal if it contains neither −M nor M . The union of the
internal connected components of M(g) will be denoted by M̃(g). One then
introduces a set C3 ⊂ Ĉ4 ⊂ C4 by imposing that Ĉ4∩ (C4 \C3) consists of the
functions g ∈ C4 \C3 such that minM̃(g)

g � g(−M), g(M) � maxM̃(g)
g. The

interest of this set Ĉ4 will be twofold for us: on the one hand, in the above
construction, one has f̂ ∈ Ĉ4, and on the other hand, if g ∈ Ĉ4 \ C2 then g̃
obtained from the preceding procedure is monotone.

However, the sole fact that f̂ ∈ C4 already showed that for p � 5, one has

sup
f∈Cp

Ent(f2, μ)
ν[(f ′)2]

= sup
f∈Cp−1

Ent(f2, μ)
ν[(f ′)2]

,

and by induction, one ends up with the fact that this quantity is nothing but
supf∈C4

Ent(f2, μ)/ν[(f ′)2]. More precisely, the preceding observations even
imply that

C(μ, ν) = sup
f∈Ĉ4

Ent(f2, μ)
ν[(f ′)2]

.

So let (fn)n∈N
be a sequence of elements from Ĉ4 satisfying ν[(f ′

n)2] = 1 for all
n ∈ N and C(μ, ν) = limn→∞ Ent(f2

n, μ). Two situations can be distinguished:
either one can extract from (fn)n∈N

a subsequence (still denoted (fn)n∈N
)

such that
(
fn(0)

)
n∈N

converges in R, or one has lim infn→∞ |fn(0)| = +∞.
The latter case corresponds to the equality C(μ, ν) = A(μ, ν)/2, whose treat-
ment amounts to that of the Poincaré constant, left to the reader. Thus, from
now on, we assume to be in the first situation described above. By weak com-
pactness of the unit ball of L

2(ν), one can extract a subsequence of (fn)n∈N
,
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such that (f ′
n)n∈N

is weakly convergent in L
2(ν). Together with the conver-

gence of (fn(0))n∈N
, this weak convergence implies that the sequence (fn)n∈N

converges pointwise on [−M,M ] to a function f which has a weak derivative
f ′ satisfying ν[(f ′)2] � 1 (because the norm is weakly lower semi-continuous).
However, the uniform continuity of the fn for n ∈ N (due to the majorization
by η−1/2 of their Hölder coefficient of order 1/2) ensures, via Ascoli’s theorem,
that the convergence of the fn towards f is in fact uniform on the compact
[−M,M ]. In particular, one obtains

Ent(f2, μ) = lim
n→∞

Ent(f2
n, μ) = C(μ, ν).

Discarding the trivial situation that C(μ, ν) = 0 (which corresponds to the
cases when μ is a Dirac mass or ν = +∞ a.s. on the convex hull of the support
of μ), one then obtains

Ent(f2, μ)
ν[(f ′)2]

� C(μ, ν),

with strict inequality if 0 � ν[(f ′)2] < 1, wherefrom necessarily ν[(f ′)2] = 1.
So f is a maximising function for (1), which, moreover, belongs to Ĉ4, whereof
one is easily convinced: at the cost of extracting a subsequence, one can require
that the number (between 0 and 2) of internal connected components is the
same for each fn and that there exists a point in each of these components
which converges in [−M,M ] for large n, and this allows to see a posteriori
that f ∈ Ĉ4). If f is not already monotone, the procedure of the preceding
section can be applied again to construct f̃ and f̂ . As f is maximising, so must
be these two functions too; now, owing to f belonging to Ĉ4, f̃ is necessarily
monotone. So these arguments allow to conclude that C(μ, ν) = D(μ, ν).

Remark 2. The latter proof rests partially on the existence of a maximising
function for (1), but, contrary to the approach by Chen and Wang [6, 8] (in
the case of the Poincaré constant), we have not tried to exploit the equation
it fulfills.

More generally, call S(μ) the convex hull of the support of μ and [s−, s+]
its closure in the compactified real line R � {−∞,+∞}. Still denoting by ν
the density of ν with respect to λ, assume that∫

S(μ)

1
ν

dλ < +∞.

One can then show that if C(μ, ν) > A(μ, ν)/2, a maximising function for (1)
exists (but these two conditions are not sufficient as can be seen by taking for
μ and ν the standard Gaussian distribution). Indeed, fix o ∈ S(μ) and define

∀ x ∈ S(μ), F (x) �
∫ x

o

1
ν(y)

dy.
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By the preceding condition, F is continuously extendable to [s−, s+]. Con-
sider then an absolutely continuous function f whose weak derivative satisfies∫

(f ′)2 dν � 1. Applying as above a Cauchy-Schwarz, inequality, one gets that

∀ x, y ∈ S(μ), |f(y) − f(x)| �
√
|F (y) − F (x)|,

and consequently, by Cauchy’s criterion, f too is continuously extendable
to [s−, s+]. One can then repeat the preceding arguments on this compact
(taking into account that ν−11I ∈ L

2(S(μ), ν) for each segment I ⊂ [s−, s+],
this alowing to obtain pointwise convergence from the weak compactness of the
unit ball of L

2(S(μ), ν)), and see that except when C(μ, ν) = A(μ, ν)/2, there
exists a maximising function f for (1) (and since it is known that dealing with
monotone functions is sufficient, Ascoli’s theorem can even be replaced with
one of Dini’s ones). Performing a variational calculation around this function,
one realizes that it satisfies two conditions:∫

S(μ)

f ln
( f2

μ[f2]

)
dμ = 0

and for a.a. x ∈ S(μ),

C(μ, ν)ν(x)f ′(x) =
∫

[s−,x]

f ln
( f2

μ[f2]

)
dμ. (7)

Obviously, if moreover the function ν is assumed to be absolutely continuous
and μ absolutely continuous with respect to λ, a further differentiation yields
a second-order equation (non linear in the zeroth order term) satisfied by f .

Last, if in addition [s−, s+] ⊂ R, ν(s−) > 0 and ν(s+) > 0, equation (7)
allows to recover a Neumann condition for f , namely f ′(s−) = f ′(s+) = 0.

5 Extensions

We present here a few generalisations of the preceding results, corresponding
to modifications of the quantities featuring in (1).

5.1 Modification of the Energy in the Discrete Case

We shall show here Theorem 3, whose context is now assumed, and we put

E(μ, ν) � sup
f∈C

Ent(f2, μ)
Eν

(
f2, ln(f2)

) .

Considering Z brings no further difficulty, since, as in section 4, one can with-
out loss consider only the finite situation where E = {0, ..., N} with N ∈ N

∗,
at the cost of accumulating mass on the endpoints and translating the ob-
tained segment. However, we take this opportunity to point out the most
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famous infinite example where the preceding constant is finite, namely the
Poisson laws on N: fix α > 0 and take

∀ l ∈ N, μ
(
{l}

)
�

αl

l!
exp(−α)

ν
(
{l, l+1}

)
� μ

(
{l}

)
.

It is then known (see for instance section 1.6 of the book [1] by Ané,
Blachère, Chafäı, Fougères, Gentil, Malrieu, Roberto and Scheffer) that
E(μ, ν) equals α.

To get convinced of Theorem 3, on has to inspect again the three-step
proof in sections 2 and 3.

• As in the case of the logarithmic Sobolev inequality, one is brought back,
up to a multiplicative constant, to the problem of estimating the Poincaré
constant when there exists a minimising sequence (fn)n∈N

verifying

∀ n ∈ N, Eν(f2
n, ln(f2

n)) = 1
lim

n→∞
|fn(0)| = +∞.

Indeed, it is well known (see for instance Lemma 2.6.6 in the book by Ané
and al. [1]) that

∀ f ∈ C, Eν(f2, ln(f2)) � 4ν[(f ′)2];

so the first condition above ensures that the oscillations of the fn are bounded
in n ∈ N (the situation should have been beforehand reduced to the case when
ν > 0). This observation allows to perform finite order expansions showing
the following equivalent for large n:

Ent(f2
n, μ)

Eν

(
f2

n, ln(f2
n)

) ∼ Var(fn, μ)
8ν[(f ′

n)2]
,

wherefrom one easily deduces

sup
f∈C

Ent(f2, μ)
Eν

(
f2, ln(f2)

) =
A(μ, ν)

8
= sup

f∈D

Ent(f2, μ)
Eν

(
f2, ln(f2)

) .

Thus it suffices to consider the situations where there exists a minimising
sequence (fn)n∈N

such that

∀ n ∈ N, Eν

(
f2

n, ln(f2
n)

)
= 1

lim sup
n→∞

|fn(0)| < ∞,

in which cases one can extract a subsequence that converges toward a max-
imiser for the supremum we are interested in.
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• Calling f this maximiser, one is easily convinced that it cannot vanish,
at least in the relevant situations where E(μ, ν) > 0. Performing then a vari-
ational computation around f shows it to verify for each i ∈ E the following
equation:

μ(i) f(i) ln
(f2(i)

μ[f2]

)
= E(μ, ν)

[
f(i)

[
ν
(
{i, i+1}

)(
ln(f2(i)) − ln(f2(i+1))

)
+ ν

(
{i−1, i}

)(
ln(f2(i)) − ln(f2(i−1))

)]
+

ν
(
{i, i+1}

)(
f2(i) − f2(i+1)

)
+ ν

(
{i−1, i}

)(
f2(i) − f2(i−1)

)
f(i)

]
(as usual, ν({−1, 0}) = 0 = ν({N,N+1}), hence the terms f(−1) and f(N+1)
never show up). If μ does not vanish, the form of this equation enables to ap-
ply the arguments of the end of section 3, taking advantage of the fact that
a maximising function for E(μ, ν) cannot take the same value at three con-
secutive points, unless it is constant (which won’t do either). Remark also
that contrary to sections 2 and 3, this equation does not allow to recursively
compute f from the values of f(0) and μ[f2], for the right-hand side is not
injective as a function of f(i+1) (for 0 � i < N), but only as a function of
f2(i+1). But this could be forseeen, since the signs of the functions really play
no role in the quantities considered here. There remain the cases when μ van-
ishes at some (interior) points; they cannot be discarded as before Lemma 1.
The simplest is to bypass the argument of the consecutive three points with
same value, by adapting the second proof of the preceding section (by classi-
fying the functions according to the maximal number of segments included in
their set of local extrema); this is immediate enough.

• The last point to be verified, which is also the most important, is the
possibility of modifying Lemma 2; namely, with the notations therein, is it
true that for all s ∈ ]f(i1), f(i0)[,

Eν

(
f2, ln(f2)

)
� Eν

(
(f̃ ′

s)
2, ln((f̃ ′

s)
2)

)
+ Eν

(
(f̂ ′

s)
2, ln((f̂ ′

s)
2)

)
(8)

for any function f with a constant sign (the situation should have been reduced
to that case). This question amounts to asking if for all 0 � x � y � z, one has

ϕx,z(y) � (z − x)
(
ln(z) − ln(x)

)
, (9)

where ϕx,z is the function defined by

∀ y ∈ [x, z], ϕx,z(y) � (y − x)
(
ln(y) − ln(x)

)
+ (z − y)

(
ln(z) − ln(y)

)
.

Now, differentiating this function twice shows it to be strictly convex, and (9)
then derives from the fact that ϕx,z(x) = ϕx,z(z) = (z − x)

(
ln(z) − ln(x)

)
.

One also derives therefrom that equality in (8) can hold only if f̃ ′
s(a)f̂ ′

s(a) = 0
for every edge a ∈ A.
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The other arguments of section 3 are valid without modification, since they
only involve entropy. Theorem 3 follows.

5.2 Modification of the Energy in the Continuous Case

Our aim here is to prove Theorem 4. Recall that H : R+ → R+ is a convex
function such that H(0) = 0 and H ′(0) = 1 (besides these two equalities,
we shall only use the bound x � H(x), valid for all x � 0). In particular, it
appears that

∀ f ∈ C, EH,ν(f) � ν
[
(f ′)2

]
. (10)

For μ a probability and ν a measure on R, put

F (μ, ν) � sup
f∈C

Ent(f2, μ)
EH,ν(f)

∈ R̄+.

In view of the second proof in the preceding section, the only non immediate
point in the proof of Theorem 4 concerns the cases that can be reduced to
that of the Poincaré constant. Indeed, after having supposed without loss that
μ is supported in [−M,M ] and that ν � η, with M,η > 0, we have to see
that if (fn)n∈N

is a maximising sequence for F (μ, ν) such that

∀ n ∈ N, EH,ν(f) = 1
lim

n→∞
|fn(0)| = +∞,

then F (μ, ν) = A(μ, ν)/2. But, again, such a sequence will satisfy ν[(f ′)2] � 1
for all n ∈ N, and the oscillations of the fn will be bounded, allowing to obtain
for large n the equivalent

Ent(f2
n, μ) ∼ Var(fn, μ)

2
.

By extracting a subsequence (first, by relative compactness of the fn, then, by
Ascoli’s theorem), one may suppose that the fn converge uniformly to f ∈ C,
with ν[(f ′)2] � 1, wherefrom

F (μ, ν) = lim
n→∞

Ent(f2
n, μ) = lim

n→∞

Var(fn, μ)
2

=
Var(f, μ)

2
� Var(f, μ)

2ν[(f ′)2]
� A(μ, ν)

2
.

However, the reverse inequality always holds. Indeed, note first that one may
content oneself in only dealing, for the supremum defining A(μ, ν), with func-
tions having a weak derivative essentially bounded in the sense of the Lebesgue
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measure on [−M,M ]. This is because only functions such that ν[(f ′)2] < +∞
need to be considered, and such functions can be approximated in the tra-
ditional way. Let f ∈ C with f � 0 and f ′ bounded. For n ∈ N, con-
sider fn � n + f . The oscillation of f being finite, for large n one has
Ent(f2

n, μ) ∼ Var(fn, μ)/2 = Var(f, μ)/2. On the other hand, since H ′(0) = 1,
one has by dominated convergence

lim
n→∞

EH,ν(fn) = lim
n→∞

∫
H

(
(f ′)2

(n + f)2

)
(n + f)2 dν =

∫
(f ′)2 dν.

It ensues therefrom that

Var(f, μ)
2ν[(f ′)2]

� F (μ, ν),

then the claimed inequality, by taking the supremum over such functions f .
Similar results hold when C is replaced with D. It therefore suffices to deal

with sequences (fn)n∈N
maximising for F (μ, ν), satisfying EH,ν(fn) = 1 for

all n ∈ N, and such that limn→∞ fn(0) exists in R. But in this situation, the
arguments in the second proof in section 4 easily adapt (after one has noted
that for each function f ∈ C which splits as f̃ + f̂ , with f̃ , f̂ ∈ C and f̃ ′f̂ ′ = 0
a.s., one trivially has EH,ν(f) = EH,ν(f̃) + EH,ν(f̂)).

Remark 3. One may wonder if there is a link between the discrete modified
logarithmic Sobolev inequalities, and the continuous ones as above. As an
attempt to shed light on such a link, consider again the approximation pro-
cedure used in the first proof of section 4. Thus we work with a probability μ
of the form

∑
0�n�N μ(n)δn. The constant F (μ, ν) can then be rewritten

sup
f∈C

Ent(f2, μ)
EJ (f)

(11)

with for each f ∈ C in the discrete context

EJ(f) �
∑

0�n<N

Jn,n+1

(
f(n), f(n + 1)

)

et where the maps (Jn,n+1)0�n<N are defined on R
2 by

∀ x, y ∈ R, Jn,n+1(x, y) � inf
g∈C([n,n+1]) :

g(n)=x, g(n+1)=y

∫ n+1

n

H

((g′

g

)2
)

g2 ν dλ.

Obviously, the supremum (11) is not changed by restricting it to monotone
functions, since this “discrete” problem can be interpreted in the continuous
context where this property has just been verified. But one could certainly also
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show it directly; note in particular that for any 0 � n < N and all real numbers
réels x � y � z, one has indeedJn,n+1(x, z) � Jn,n+1(x, y) + Jn,n+1(y, z) (it
suffices to split any function going from x to z as the sum of two functions,
the first one being its restriction going from x to y and remaining there).

This leads to ponder on the possibility of rewriting Eν as an EJ , for a
suitable choice of the continuous measure μ (the discrete one being given),
and of the function H.

5.3 Modification of the Entropy

We now aim to change the entropy term in (1); this leads to logarithmic
Sobolev inequalities modified in another sense (see for instance Chafäı [5]).
This will give the opportunity to test the limits of the arguments in section 3.
We shall content ourselves by treating the discrete case with the usual energy
given by the quadratic form C � f �→ ν[(f ′)2], although one may think that
similar considerations should allow to extend the following to the continuous
situation or to energies modified as above. Let ϕ : R+ → R be a convex
function, of class C3 on ]0,+∞[. The corresponding modified entropy is the
functional which to any map f ∈ C, f � 0 associates the quantity (positive
by Jensen’s inequality)

Eϕ[f ] = μ
[
ϕ(f)

]
− ϕ

(
μ[f ]

)
.

Unfortunately the expression Eϕ(f2) is no longer quadratically homogeneous
in f (unless it is proportional to the usual entropy in f2). To remedy this
flaw, we shall need two additional hypotheses. Call ψ the map defined by

∀ x > 0, ψ(x) � xϕ′(x) − ϕ(x).

One says that ψ is asymptotically concave if for some R > 0 the function ψ
remains below its tangents at points larger than R:

∀ y � R, ∀ x > 0, ψ(x) � ψ(y) + ψ′(y)(y − x).

This notably implies that ψ is concave on [R,+∞[ (which is not sufficient, but
becomes sufficient if moreover limx→+∞ ψ(x)− xψ′(x) = +∞). We shall first
suppose ψ to be asymptotically concave. The second additional hypothesis
states the existence of a constant η > 0 such that for any 0 < x < η, one has
ϕ′′(x) + xϕ′′′(x) � 0 (if ϕ is C3 on R+, this is ensured by ϕ′′(0) > 0; more
generally, if one does not even want to suppose ϕ to be of class C3 on R

∗
+, it

can be seen that it suffices to suppose that the map x �→ xϕ′′(x) is increasing
on some interval ]0, η[). An example of a function ϕ satisfying these conditions
is R+ � x �→ x ln

(
ln(e + x)

)
.

Remark that

∀ x > 0, ψ′(x) = xϕ′′(x) � 0
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and that this quantity decreases for x � R; hence it admits a limit L � 0
at +∞. So ϕ′′(x) � (1 + L)/x for x large, which shows that up to a constant
factor, ϕ(x) is dominated by x ln(x). Somehow, the usual entropy is an upper
bound for the modified entropies to be considered here.

For μ a probability on E = {0, ..., N} and ν a measure on the correspond-
ing set A of edges, we are interested in the quantity

G(μ, ν) � sup
f∈C

Eϕ(f2)
ν[(f ′)2]

and our aim here is to prove

Proposition 2. One has as usual

G(μ, ν) = sup
f∈D

Eϕ(f2)
ν[(f ′)2]

.

The main annoyance comes from the inhomogeneity of Eϕ, which a priori for-
bids to only consider maximising sequences for G(μ, ν) with energy bounded
above and below by a strictly positive constant. To remedy to that, observe
that nothing here hinders us from supposing μ and ν to be strictly positive
on E. This property ensures the existence of a constant b1 > 0 such that

∀ g ∈ C, ν[(g′)2] = 1 ⇒ μ[g2] � b1.

Fix a function g satisfying ν[(g′)2] = 1 and consider the function

F : R
∗
+ � t �→ Eϕ[tg2]/t. (12)

A computation gives its derivative as

∀ t > 0, F ′(t) = t−2
(
μ[ψ(tg2)] − ψ(tμ[g2])

)
.

So by our hypothesis that ψ is asymptotically concave, F is decreasing on
[R/b1,+∞[. This shows that

G(μ, ν) = sup
f∈C : ν[(f ′)2]�R/b1

Eϕ(f2)
ν[(f ′)2]

,

which enables us to only consider maximising sequences (fn)n∈N
satisfying

ν[(f ′
n)2] � R/b1 for all n ∈ N. One can also suppose that these functions fn

are positive. Write fn =
√

tngn, with tn > 0 (discarding the trivial cases that
tn = 0) and gn ∈ C satisfying ν[(g′n)2] = 1. Extracting a sub-sequence reduces
to the situation when the sequences (tn)n∈N

and
(
fn(0)

)
n∈N

are respectively
convergent in [0, R/b1] and R̄+. Several cases will be distinguished:

• If limn→∞ tn = 0, we shall verify that we may without loss suppose that
limn→∞ fn(0) > 0. Indeed, our second hypothesis on ψ ensures that for g ∈ C,
g � 0, the function F defined in (12) is increasing on ]0, η/max g2]. This is
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obtained via a second-order expansion with remainder: for fixed t > 0, there
exists a function θt : E → ]0, t max g2[ such that

ψ(tg2) = ψ(tμ[g2]) + ψ′(tμ[g2])t(g2 − μ[g2]) +
ψ′′(θt)

2
t2(g2 − μ[g2])2.

When this inequality is integrated with respect to μ, it appears that F ′(t) is
positive as soon as t max g2 � η. On the other hand, there exists a constant
b2 > 0 such that if g satisfies ν[(g′)2] = 1, then osc(g) � b2 and hence, if
moreover g is positive, max g2 � (g(0) + b2)2. Consequently, if one constructs
a new sequence (t̃n)n∈N

by setting

∀ n ∈ N, t̃n �
{

tn si tn(gn(0) + b2)2 > η
η/(gn(0) + b2)2 else,

the sequence (f̃n)n∈N
defined by f̃n � t̃ngn for n ∈ N remains maximising for

G(μ, ν). We consider from now on this sequence, still called (fn)n∈N
. Then

one has

∀ n ∈ N, tn(gn(0) + b2)2 � η,

that is to say f2
n(0)+2b2

√
tnfn(0)+ b2

2tn � η, which prevents the convergence
limn→∞ fn(0) = 0.

One can now perform a second-order expansion with remainder for Eϕ(f2
n);

there exists a new function θn valued in [fn(0) −
√

tnb2, fn(0) +
√

tnb2] and
such that

Eϕ(f2
n) = μ

[
ϕ′′(θn)(f2

n − μ[f2
n])2

]
/2.

First consider the case that l � limn→∞ fn(0) is finite. Since l > 0, one has
uniformly on E

lim
n→∞

ϕ′′(θn)(fn +
√

μ[f2
n])2/2 = 2l2ϕ′′(l2).

If l2ϕ′′(l2) > 0, one draws therefrom the equivalent for large n

Eϕ(f2
n) ∼ 2l2ϕ′′(l2)μ[(fn −

√
μ[f2

n])2] � 2l2ϕ′′(l2)Var(fn, μ),

wherefrom

lim
n→∞

Eϕ(f2
n)

ν[(f ′
n)2]

� 2l2ϕ′′(l2) lim sup
n→∞

Var(fn, μ)
ν[(f ′

n)2]
� 2l2ϕ′′(l2)A(μ, ν).

Similarly, one gets

lim
n→∞

Eϕ(f2
n)

ν[(f ′
n)2]

= 0
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when l2ϕ′′(l2) = 0. So it appears that one always has

G(μ, ν) � sup
l>0

2l2ϕ′′(l2)A(μ, ν) = sup
l>η

2l2ϕ′′(l2)A(μ, ν),

where the latter equality comes from the map x �→ xϕ′′(x) being increas-
ing on ]0, η]. Conversely the inequality G(μ, ν) � supl>η 2l2ϕ′′(l2)A(μ, ν)
is satisfied under all circumstances: for all l larger than some given η, in
the supremum defining G(μ, ν), it suffices to consider functions of the form
l + εf , with f ∈ C and ε > 0 which is made to tend to 0. The above ar-
gument also holds if limn→∞ fn(0) = +∞, by existence and finiteness of
L = limx→+∞ xϕ′′(x). Thus, in all cases, the convergence entails the equality
G(μ, ν) = supl>η2 2lϕ′′(l)A(μ, ν). Then, one also has

sup
f∈D

Eϕ(f2)
ν[(f ′)2]

=
(

sup
l>η2

2lϕ′′(l)
)

sup
f∈D

Var(f, μ)
ν[(f ′)2]

=
(

sup
l>η2

2lϕ′′(l)
)

A(μ, ν),

the claimed identity (2) follows.
• If limn→∞ tn ∈ ]0, R/b1], one is back in a more classical framework, and,

as already happened several times, two sub-cases will be considered.
- If limn→∞ fn(0) = +∞, the boundedness in n ∈ N of the oscillations of

the fn and the convergence limt→+∞ xϕ′′(x) = L allow again to perform a
second-order expansion with remainder, yielding for large n the equivalent

Eϕ(f2
n) ∼ L

2
Var(fn, μ)

if L > 0. On the other hand, if L = 0, it appears that

Eϕ(f2
n) � Var(fn, μ).

Since A(μ, ν) < +∞, the latter possibility implies that one is in the trivial
situation that G(μ, ν) = 0. If L > 0, one also obtains G(μ, ν) = LA(μ, ν)/2.
So one is reduced to the case of the Poincaré inequality.

- If limn→∞ fn(0) exists in R, one easily shows existence of some minimis-
ing function. But the proof of Lemma 4 immediately adapts to this situation,
in view of the form of the modified entropy Eϕ. Then the quickest way to
conclude that (2) holds is to adapt the second proof of section 4.
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Mathématique de France, Paris, 2000. With a preface by Dominique Bakry
and Michel Ledoux.



130 L. Miclo

2. F. Barthe and C. Roberto. Sobolev inequalities for probability measures on the
real line. Studia Math., 159(3):481–497, 2003. Dedicated to Professor Aleksander
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