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Abstract. The convergence of the generalized simulated annealing with time-inhomogeneous
communication cost functions is discussed. This study is based on the use of log-Sobolev inequalities
and semigroup techniques in the spirit of a previous article by one of the authors. We also propose
a natural test set approach to study the global minima of the virtual energy. The second part of the
paper is devoted to the application of these results. We propose two general Markovian models of
genetic algorithms and we give a simple proof of the convergence toward the global minima of the
fitness function. Finally we introduce a stochastic algorithm that converges to the set of the global
minima of a given mean cost optimization problem.
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Introduction. Let E be a finite state space and q an irreducible Markov kernel.
The main purpose of this paper is to study the limiting behavior of a large class of
time-inhomogeneous Markov processes controlled by two parameters (γ, β) ∈ R2

+ and
associated with a family of Markov kernels Qγ,β(x, y) having the following property:

∃k > 0 : k−1 q(x, y)e−βVγ(x,y) ≤ Qγ,β(x, y) ≤ k q(x, y)e−βVγ(x,y),(1)

where V : R+ × E2 → R+ ∪ {∞}, Vγ(x, y) < +∞ ⇐⇒ q(x, y) > 0, and for any
x, y ∈ E, (γ, β)→ Qγ,β(x, y) ∈ C1.

For a discussion on the origins of this problem the reader is referred to the in-
troduction of Trouvé [12], who studies the asymptotic behavior of such chains, with
time-homogeneous function V (x, y), using large deviation techniques. The fundamen-
tal notions here are those of the log-Sobolev constant a(γ, β) of Qγ,β and the relative
entropy of a measure with respect to another measure. Other complementary re-
sults relating to time-inhomogeneous communication cost function can be found in
Frigerio–Grillo [7], Younes [13], and more recently in Löwe [9], where Sobolev in-
equalities rather than log-Sobolev inequalities are used for classical models where q
is assumed to be reversible and Vγ is associated with an a priori potential depending
on γ.

For a probability measure m on E, inverse-freezing schedule β ∈ C1(R+,R+) and
γ ∈ C1(R+,R+), we denote (Ω, P, Ft, Xt) as the canonical process associated with the
family of generators (Lγt,βt)t≥0 = (Qγt,βt − I)t≥0 whose initial condition is m0 = m,
and we denote mt as the distribution of Xt.

The aim of section 1.1 is to give several conditions on the rate of increase of
γt, βt → +∞ to ensure the entropy ofmt with respect to πγt,βt converges to 0. We shall
examine as much of the theory as possible in a form applicable to general optimization
problems and applicable in particular to mean cost optimization problems.
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1223

To illustrate our results we will restrict attention to various special classes of
generalized simulated annealing. We will commence with a detailed analysis of general
Markov kernels of the form

Qβ(x, y) =
∑
u∈U

qβ(x, u, y)e−βV (x,u,y),(2)

where U is a given finite set, V : E×U×E → R+, and qβ : E×U×E → R+, β ∈ R+,
is a family of functions satisfying some continuity and irreducibility conditions. This
situation can be formulated in the general form (1). We will settle this question and
provide the explicit computation of the corresponding communication cost function
V . In a final stage we will give several conditions on the rate of decrease of the cool-
ing schedule to ensure the convergence in probability of the corresponding canonical
process Xt, as t → +∞, to the set of global minima of the virtual energy associated
with V .

Another application is the situation in which the Markov kernel Qγ,β has the form

Qγ,β(x, y) = qβ(x, y) eβVγ(x,y)

with

lim
γ→+∞Vγ(x, y) = V (x, y), lim

β→+∞
qβ(x, y) = q(x, y)

for some Markov kernel q and some function V : E × E → R+. In this situation, let
πβ be the unique invariant probability measure of the Markov generator Lβ = Qβ−I,
where

Qβ(x, y) = q(x, y) e−β V (x,y).

We will give several conditions on the rate of decrease of the cooling schedule and on
the rate of convergence limt→+∞ Vγt = V to ensure the entropy of mt with respect to
πβt converges to 0.

The above results imply that the canonical process Xt converges in law to the
set of the global minima V ? of a virtual energy V . This leads us to investigate
more closely the properties of such function. Section 1.2 introduces a natural test set
approach to study V ?. Specifically, we will give a condition for a given subset H ⊂ E
to contain V ?.

Section 2 is devoted to application of these results, an area of which is the situation
in whichQβ is the transition probability kernel of a genetic algorithm. Such algorithms
can be formulated by a Markov process with state space E = SN (N > 1 and S a

finite set) and whose transition probabilities Qβ includes a mutation transition Q
(1)
β

and a selection mechanism Q
(2)
β . More precisely the mutation transition is modeled by

independent motion of each particle and the selection mechanism chooses randomly
in the previous population according to a given fitness function. The first convergence

result was obtained by Cerf [2] in the case in which Qβ = Q
(1)
β Q

(2)
β and the mutations

vanish, that is, limβ→+∞Q
(1)
β (x, y) = 1x(y).

In section 2.1 we will use the results of section 1.1 and the test set approach
introduced in section 1.2 to derive a new and simple proof of the convergence in
probability of such algorithms to the set of the global minima of the fitness function
in the following situations:

Qβ = Q
(1)
β Q

(2)
β and Qβ = αQ

(1)
β + (1− α)Q

(2)
β , 0 < α < 1.
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1224 P. DEL MORAL AND L. MICLO

Finally, in subsection 2.2 we will apply the results of the first section to mean cost
optimization problems. However, here we touch upon a slightly different aspect of the
theory. Namely, the object will be to find the global minima of a function U : E → R+

defined by

U(x) = E(L(Z, x)),

where Z is a random variable taking values in a finite set F and L : F ×E → R+. We
will solve this optimization problem by an original method based on the use of Monte
Carlo simulations coupled with simulated annealing. This special case will require
specific developments because the corresponding function Vγ will necessarily behave
as a random process. We will present a time-inhomogeneous Markov process which
converges to the global minima of U .

1. General results. The purpose of this section is to study the limiting behavior
of time-inhomogeneous Markov chains controlled by two parameters (γ, β) ∈ R2

+ and
associated with a family of Markov kernelsQγ,β(x, y) having the property (1), with the
assumptions given in the introduction. This is in keeping with our second objective,
which is to introduce some areas in which such results are useful.

The reader who is especially interested in genetic algorithms has to consult Corol-
lary 1 and Propositions 3 and 4. Finally, the numerical solving of mean cost opti-
mization problems requires only the use of Theorem 2 or Corollary 4.

1.1. Relative entropy convergence. Our analysis will be based entirely on
considerations of the time-continuous semigroup associated with the Markov kernels
Qγ,β(x, y) introduced in (1). Namely, define for f : E → R

Lγ,βf(x) =
∑
y∈E

(f(y)− f(x)) Qγ,β(x, y).

For a probability measure m on E, an inverse-freezing schedule β ∈ C1(R+,R+), and
γ ∈ C1(R+,R+), we denote (Ω, P, Ft, Xt) as the canonical process associated with the
family of generators (Lγt,βt)t≥0 = (Qγt,βt − I)t≥0 whose initial condition is m0 = m,
and we write mt the distribution of Xt.

Whenever X is time-homogeneous (i.e., βt = β and γt = γ) it is well known that
Lγ,β has a unique invariant probability measure πγ,β so that

∀f : E → R πγ,β(Lγ,βf) = 0

and πγ,β charges all the points. It is also convenient to recall the notion of log-Sobolev
constant of Qγ,β . Namely,

a(γ, β)
def
= min {Eγ,β(f, f)/Lγ,β(f), Lγ,β(f) 6= 0} ,

where the Dirichlet form Eγ,β and Lγ,β are defined by

Eγ,β(f, g) = −〈Lγ,βf, g〉πγ,β = −
∑
x∈E

Lγ,βf(x) g(x) πγ,β(x),

Lγ,β(f) =
∑
x∈E

f(x)2 log
(
f(x)2/‖f‖22,πγ,β

)
πγ,β(x).
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1225

Let us recall the notion of relative entropy of a measure m with respect to a measure
π charging all the points

Entπ(m) =
∑
x∈E

m(x) log (m(x)/π(x)) .

Using this notation, whenever X is time-homogeneous, one has the following basic
inequality (for instance, see Miclo [10]):

d

dt
Entπγ,β (mt) ≤ −2 a(γ, β) Entπγ,β (mt).(3)

For an expository paper on log-Sobolev constants for the general Markov chain on
finite spaces the reader is referred to Diaconis–Saloff-Costes [5]. Holley and Stroock [8]
use Sobolev and log-Sobolev inequalities to study the standard simulated annealing.
For another approach using only spectral gap estimates the reader should consult [4].
Using log-Sobolev inequalities, one of the authors addressed the convergence of a
simulated annealing associated with a Markov transition kernel of the form using the
entropy distance to stationarity (see [10]). The purpose of this section is to extend
these results to general Markov transition kernels of form (1).

What follows is an exposition of some basic results regarding the description of
πγ,β , by Bott–Mayberry [1] and also exposed in Freidlin–Wentzell [6]. For x ∈ E we
denote GE(x), or G(x) when there are no possible confusions, as the set of x-graphs.
We shall also use the following notations for x ∈ E and g ∈ G(x):

Rγ,β(x) =
∑

g∈G(x)

Qγ,β(g), Qγ,β(g) =
∏

(y→z)∈g
Qγ,β(y, z),

Vγ(g) =
∑

(y→z)∈g
Vγ(y, z), Qγ,β(x, y) = q(x, y) e−β Vγ(x,y).

Then, whenever X is time-homogeneous, its invariant distribution πγ,β is given by

πγ,β(x) = Rγ,β(x)/
∑
z∈E

Rγ,β(z).

Similarly, let µγ,β be the invariant probability measure of

Lγ,βf(x) =
∑
y∈E

(f(y)− f(x)) Qγ,β(x, y).

If a(γ, β) is the log-Sobolev constant of Qγ,β , then under assumption (1) there exists
some constant k1 > 0 such that

k−1
1 µγ,β(x) ≤ πγ,β(x) ≤ k1µγ,β(x).(4)

Now, from the very definition of µγ,β and (4), we have the estimate

−β−1 log πγ,β(x) −−−−−→
β → +∞

Vγ(x)−min
z∈E

Vγ(z) with Vγ(x)
def
= min

g∈G(x)
Vγ(g).

As a direct consequence of Lemma 3.3, Diaconis–Saloff-Costes [5], and the inequalities
(1) and (4) there exists some constant B > 0 such that

B−1 a(γ, β) ≤ a(γ, β) ≤ B a(γ, β).
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1226 P. DEL MORAL AND L. MICLO

Finally, by Theorem 3.23 of Holley–Stroock [8] and the inequalities stated in Mi-
clo [10], we have the following proposition.

Proposition 1. There exists some constant A > 0 such that a(γ, β) ≥ A e−β c(γ)

1+β ,

where c(γ) is the critical height associated with the communication cost Vγ given by

c(γ) = max
x,y∈E

(
min
p∈Sx,y

eγ(p)− Vγ(x)− Vγ(y)

)
+ min
z∈E

Vγ(z),

eγ(p) = max
1≤i≤n

min (Vγ(pi−1) + Vγ(pi−1, pi), Vγ(pi) + Vγ(pi, pi−1)),

where Sx,y is the set of all the finite sequences from x to y and eγ(p) denotes elevation
of a path. It can also be shown that

c(γ) = max
x,y∈E

(
min
p∈Cx,y

ẽγ(p)− Vγ(x)− Vγ(y)

)
+ min
z∈E

Vγ(z),

where

ẽγ(p) = max
1≤i≤n

Vγ(pi−1) + Vγ(pi−1, pi)

and Cx,y is the set of all paths (admissible for q) from x to y.
By choosing t→ (γt, βt) to go to infinity and using (3) we arrive at

d

dt
Entπγt,βt (mt) ≤ −2 A

e−βt c(γt)

1 + βt
Entπγt,βt (mt)−

∑
x∈E

mt(x)
d

dt
log πγt,βt(x).(5)

Therefore it remains to estimate the derivatives dπγ,β/dβ and dπγ,β/dγ. For this
purpose, write

Qγ,β(g) = Qγ,β(g)/
∑
h∈Ix

Qγ,β(h), Ix =

g ∈ G(x) :
∏

(y→z)∈g
q(y, z) > 0

 .

By a simple analysis it is easily checked that

d

dβ
logRγ,β(x) =

∑
g∈Ix

Qγ,β(g)
d

dβ
logQγ,β(g),

d

dβ
log πγ,β(x) =

∑
z∈E

(
d

dβ
logRγ,β(x)− d

dβ
logRγ,β(z)

)
πγ,β(z).

In order to derive a useful inequality we assume there exist two functions d1, d2 :
R+ → R+ such that

sup
g∈∪xIx

d

dβ
logQγ,β(g)− inf

g∈∪xIx
d

dβ
logQγ,β(g) ≤ d1(γ),(6)

sup
g∈∪xIx

d

dγ
logQγ,β(g)− inf

g∈∪xIx
d

dγ
logQγ,β(g) ≤ d2(β).(7)

Note that by the very definitions of the sets Ix it clearly suffices to have∣∣∣∣ ddβ logQγ,β(x, y)

∣∣∣∣ ≤ d̃1(γ),

∣∣∣∣ ddγ logQγ,β(x, y)

∣∣∣∣ ≤ d̃2(β)
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1227

for every q(x, y) > 0 and two functions d̃1, d̃2 : R+ → R+. Now we are ready to apply
the following technical lemma.

Lemma 1 (Stroock [11]). If µ is a probability measure and θ ∈ L1(µ)+ satisfies∫
θdµ = 1, then for every φ ∈ L∞(µ) satisfying

∫
φdµ = 0 one has∣∣∣∣∫ φ θ dµ

∣∣∣∣ ≤ √2 ‖φ‖L∞(µ)

(∫
θ log θ dµ

)1/2

.

Using this lemma with µ = πγ,β , φ = d log πγ,β/dβ (resp., φ = d log πγ,β/dγ), and
θ = mt/πγt,βt and writing

It
def
= (Entπγt,βt (mt))

1/2

we see from (5) that

dIt
dt
≤ −A0

e−βt c(γt)

1 + βt
It +A1 d1(γt)

∣∣∣∣dβtdt
∣∣∣∣+A2 d2(βt)

∣∣∣∣dγtdt
∣∣∣∣(8)

for some constants A0, A1, A2 > 0. Hence by taking, for t sufficiently large, an inverse-
temperature schedule of the form βt = K−1 log t we obtain

dIt
dt
≤ −At It +Bt

with

At = A0 t
−c(γt)/K(1 +K−1 log t)−1 and Bt = A1

d1(γt)

Kt
+A2 d2(K−1 log t)

∣∣∣∣dγtdt
∣∣∣∣ .

Now, it is well known that

∃t0 ∈ R+

∫ +∞

t0

As ds = +∞, lim
t→+∞

Bt
At

= 0 =⇒ lim
t→+∞ It = 0.

We can now summarize the entire consideration in the following way.
Theorem 1. Assume that c = lim supγ→+∞ c(γ) < +∞ and the conditions

sup
x∈E

∣∣∣∣ ddβ µγ,β(x)

∣∣∣∣ ≤ d1(γ), sup
x∈E

∣∣∣∣ ddγ µγ,β(x)

∣∣∣∣ ≤ d2(β)

are satisfied for two nonnegative functions d1, d2.
When the inverse-freezing schedule has parametric form βt = K−1 log t, for t

sufficiently large and K > c, we have

lim
t→+∞Entπγt,βt (mt) = 0(9)

whenever

dγt
dt

= o
(

1/(d2(log t1/K)tc/K log t)
)
, d1(γt)/t = o

(
1/(tc/K log t)

)
.(10)
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1228 P. DEL MORAL AND L. MICLO

Remark. The hypothesis above might seem difficult to check; we shall see in fact
that in many cases it is indeed fulfilled. In practice the Markov kernels Qγ,β are
known and it clearly suffices to check that

sup
g∈∪xIx

d

dβ
logQγ,β(g)− inf

g∈∪xIx
d

dβ
logQγ,β(g) ≤ d1(γ),

sup
g∈∪xIx

d

dγ
logQγ,β(g)− inf

g∈∪xIx
d

dγ
logQγ,β(g) ≤ d2(β).

Because of the general orientation provided in this section we can proceed imme-
diately to review the most important special class of generalized simulated annealing,
which we shall study later. Let us consider the transition probability kernels

Qβ(x, y) =
∑
u∈U

qβ(x, u, y)e−βV (x,u,y),(11)

where U is a given finite set, V : U × E2 → R+, and qβ(x, u, y) ≥ 0. The proof of
Theorem 1 shows it is important that the Markov kernel q is irreducible. For this
purpose we will assume the existence of nonnegative functions q(x, u, y) so that

(C) qβ(x, u, y) > 0⇐⇒ q(x, u, y) > 0, lim
β→+∞

qβ(x, u, y) = q(x, u, y),

and we will work with the following irreducibility condition:

(I)∀x, y ∈ E ∃(pk, uk)1≤k≤r : p0 = x, pk ∈ E uk ∈ U pr = y q(pk, uk, pk+1) > 0.

Our immediate goal is to prove the following consequence of Theorem 1 which gives
conditions assuring the convergence stated in Theorem 1 for a time-inhomogeneous
Markov chain with transitions (11). This corollary is applied in section 2 to the
convergence of genetic algorithms

Corollary 1. Assume qβ and q satisfy the continuity and irreducibility condi-
tions (C) and (I). Then, the transition probabilities

Qβ(x, y) =
∑
u∈U

qβ(x, u, y)e−βV (x,u,y)(12)

satisfy the inequalities (1) with

V (x, y) = min
u∈U(x,y)

V (x, u, y), U(x, y) = {u ∈ U : q(x, u, y) > 0},

q(x, y) =
∑

u∈U?(x,y)

q(x, u, y), U?(x, y) = {u ∈ U(x, y) : V (x, u, y) = V (x, y)}.

Let V be the virtual energy function corresponding to the above communication cost
function

V (x) = min
g∈G(x)

∑
(y→z)

V (y, z)

and let c be the corresponding critical height. In addition, suppose that for every
q(x, u, y) > 0 and for some β0 ≥ 0

sup
β≥β0

∣∣∣∣d log qβ
dβ

(x, u, y)

∣∣∣∣ < +∞.(13)
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1229

In this case, if m is a probability measure on E and if βt assumes the parametric form
βt = K−1 log t, for sufficiently large t, with K > c, then

lim
t→+∞Entπβt (mt) = 0 and lim

t→+∞P (Xt ∈ V ?) = 1,

where (Ω, P, Ft, Xt) is the canonical process associated with the family of generators
(Lβt)t≥0 = (Qβt − I)t≥0 whose initial condition is m0 = m, mt is the distribution of
Xt, πβ is the unique invariant probability measure of Lβ, and

V ? = {x ∈ E : V (x) = min
E

V }.

Proof. Using the form of qβ we have for some suitable function ε(β) → 0, as
β → +∞,

(1− ε(β)) Kβ(x, y) ≤ Qβ(x, y) ≤ (1 + ε(β)) Kβ(x, y),(14)

where

Kβ(x, y) =
∑

u∈U(x,y)

q(x, u, y)e−βV (x,u,y).

But now we have that

Kβ(x, y) =
∑

u∈U?(x,y)

q(x, u, y) e−βV (x,y)

+e−βV (x,y)
∑

u∈U(x,y)−U?(x,y)

q(x, u, y) e−β(V (x,u,y)−V (x,y))

= q(x, y)e−βV (x,y) + e−βV (x,y)
∑

u∈U(x,y)−U?(x,y)

q(x, u, y) e−β(V (x,u,y)−V (x,y)).

Thus, condition (I) implies that q is irreducible. Furthermore, if we write

I = {(x, y) ∈ E2 : U(x, y) 6= ∅},
J = {(x, u, y) ∈ E × U × E : (x, y) ∈ I u ∈ U(x, y)}

and

h1 = min
(x,y)∈I

∑
u∈U(x,y)−U?(x,y)

q(x, u, y)/q(x, y),

h2 = min
(x,u,y) : u 6∈U?(x,y)

V (x, u, y)− V (x, y),

then using (14) we get the system of inequalities

(1− ε(β)) q(x, y) eβV (x,y) ≤ Qβ(x, y) ≤ (1 + ε(β)) (1 + h1 e
−βh2)q(x, y) eβV (x,y).

To end the proof it remains to check condition (6). Choose q(x, y) > 0; after some
computations we find∣∣∣∣d logQβ(x, y)

dβ

∣∣∣∣ ≤ sup
u∈U(x,y)

∣∣∣∣d log qβ
dβ

(x, u, y)

∣∣∣∣+ sup
u∈U(x,y)

V (x, u, y).
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1230 P. DEL MORAL AND L. MICLO

Thus (13) implies (6), and using Theorem 1 the proof of the first assertion is complete.
Examination of the invariant distribution of Lβ soon yields that ∀x 6∈ V ? we have
limβ→+∞ πβ(x) = 0. Then, to prove the last assertion it is enough to recall the basic
inequality

‖mt − πβt‖2TV ≤ 2 Entπβt (mt),

where ‖.‖TV is the distance in total variation given by

‖µ− ν‖TV = 2 sup
A⊂E

|µ(A)− ν(A)|.

It is quite clear from definition (12) that the following situations are covered:

Qβ = Q
(1)
β Q

(2)
β and Qβ = αQ

(1)
β + (1− α)Q

(2)
β , 0 < α < 1.

In section 2 we will develop properties of both class of chains which we shall find
includes, as a special case, the evolutionary processes studied by Cerf in [2]. For the
sake of unity and to highlight issues specific to evolutionary processes, we give some
examples to suggest how these results translate in this special situation.

Examples.
1. If d1(γ) = γp and d2(β) = βq for some p ≥ 0 and q > 0, it clearly suffices to

choose γt = log t.

2. Let us study a way to combine the transitions Q
(1)
β , . . . , Q

(r)
β given by

Q
(k)
β (x, y) = q

(k)
β (x, y) e−βV

(k)(x,y), V (k) : E2 → R+, q
(k)
β (x, y) ≥ 0.

It is clear from (11) that the following situation is covered:

(a) Qβ(x, y) = Q
(1)
β . . . Q

(r)
β (x, y) =

∑
z1,...,zr−1∈E

Q
(1)
β (x, z1) . . . Q

(r)
β (zr−1, y).

This situation can be formulated in the form (11) with U = Er−1 and

qβ(x, u, y) = q
(1)
β (x, u1) . . . q

(r)
β (ur−1, y),

V (x, u, y) = V (1)(x, u1) + · · ·+ V (r)(ur−1, y).

Also from (11), the following situation is covered:

(b) Q̃β(x, y) =

r∑
k=1

αk Q
(k)
β (x, y) with

r∑
k=1

αk = 1.

This situation can be formulated in the form (11) with E = {1, . . . , r} and

qβ(x, u, y) = αu q
(u)
β (x, y), V (x, u, y) = V (u)(x, y).

Probabilistically and in precise language 1(a) has the interpretation of being
the transition of a chain obtained through overlapping r − 1 other chains,
and 1(b) has the interpretation of being the transition of a chain obtained
through choosing randomly at each step among r chains. Let us remark, by
way of illustration, that it is also possible to consider a way of combining 1(a)
and 1(b) that subsumes such parallel and series combinations. For instance,

each transition probability Q
(k)
β in the expression (a) may be of type (b) and

conversely. As a result one has a great freedom in the design and the physi-
cal construction of the transition probabilities Qγ,β , and they appear ideally
suited to describe a large class of processes encountered in applications.D
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1231

3. Let us examine the above example when r = 2. In this situation we introduce
the irreducibility condition (I)′

q(1) irreducible and ∀x ∈ E q(2)(x, x) > 0(15)

and the continuity condition (C)′

lim
β→+∞

q
(k)
β (x, y) = q(k)(x, y), q

(k)
β (x, y) = 0⇐⇒ q(k)(x, y) = 0 ∀k = 1, 2,

(16)
where q(k)(x, y) are transition probability kernels such that

q(k)(x, y) = 0⇐⇒ V (k)(x, y) = +∞ ∀k = 1, 2.

In this situation the conditions (C) and (I) of Corollary 1 are satisfied. In
addition, if we assume that for every k = 1, 2 and q(k)(x, y)∣∣∣∣∣d log q

(2)
β

dβ
(x, y)

∣∣∣∣∣ < +∞,

then the last condition (13) introduced in Corollary 1 is satisfied.
Corollary 2. Suppose the Markov kernel of the chain has the form

Qγ,β = qβ(x, y)e−βVγ(x,y)

with

qβ(x, y) = 0⇐⇒ q(x, y) = 0, lim
β→+∞

qβ(x, y) = q(x, y)

and assume the following conditions are satisfied for every β, γ ∈ R+ and some con-
stant d > 0:

c = sup
γ
c(γ) < +∞, sup

g∈∪xIx
Vγ(g)− inf

g∈∪xIx
Vγ(g) ≤ d,

sup
g∈∪xIx

d

dβ
log qβ(g)− inf

g∈∪xIx
d

dβ
log qβ(g) ≤ d sup

g∈∪xIx

d

dγ
Vγ(g)− inf

g∈∪xIx
d

dγ
Vγ(g) ≤ d.

When the inverse freezing schedule has parametric form βt = K−1 log t, for t suffi-
ciently large and K > c, we have

lim
t→+∞Entπγt,βt (mt) = 0 whenever

dγt
dt

= o(1/(tc/K log2 t)).

As a consequence we have the well-known corollary that follows.
Corollary 3 (Miclo [10]). Suppose the Markov kernel of the chain has the form

Qγ,β = q(x, y)e−βV (x,y) def
= Qβ(x, y).

When the inverse freezing schedule has parametric form βt = K−1 log t, for t suffi-
ciently large and K > c, we have

lim
t→+∞Entπβt (mt) = 0,
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1232 P. DEL MORAL AND L. MICLO

where πβ is the unique invariant probability measure of the Markov generator Qβ−I.
The usefulness of Theorem 1 will now be illustrated in the case where the transi-

tion probabilities Qγ,β converge to a transition probability kernel Qβ as γ → +∞.
Theorem 2. Let Qβ(x, y) be a Markov kernel such that Qβ(x, y) = 0 ⇐⇒

q(x, y) = 0. Suppose the assumptions of Theorem 1 are satisfied and for every
q(x, y) > 0

lim
t→+∞ | logQγt,βt(x, y)− logQβt(x, y)| = 0.(17)

Then

lim
t→+∞Entπβt (mt) = 0,(18)

where πβ is the unique invariant probability measure of the Markov generator Qβ−I.
Proof. By the same line of argument as before πβ may be described as follows:

πβ(x) =
Rβ(x)∑
z∈E Rβ(z)

with Rβ(x) =
∑
g∈Ix

Qβ(g) and Qβ(g) =
∏

(y→z)∈g
Qβ(y, z).

(19)
It follows that

log
πγ,β
πβ

(x) = − log

∑
g∈Ix

∏
(y→z)∈g

(QβQ
−1
γ,β)(y, z) Qγ,β(g)


− log

 ∑
x′∈E,g∈Ix′

∏
(y→z)∈g

(Qγ,βQ
−1
β )(y, z) Q̃β(g)

 ,

where

Qγ,β(g) = Qγ,β(g)/
∑
h∈Ix

Qγ,β(h) and Q̃β(g) = Qβ(g)/
∑

z∈E,h∈Iz
Qβ(h).

By Jensen’s inequality, we have

log
πγ,β
πβ

(x) ≤ 2 sup
g∈∪zIz

| logQγ,β(g)− logQβ(g)|.

Finally, we obtain

Entπβt (mt) ≤ Entπγt,βt (mt) + 2 sup
g∈∪xIx

| logQγt,βt(g)− logQβt(g)|.(20)

Using (9) the proof is complete.
We now make the above observations precise by considering more specific, al-

though general, transitions Qγ,β .
Corollary 4. Let V be a nonnegative function V : E×E → R+ and Qγ,β(x, y) =

qβ(x, y) eβVγ(x,y). Suppose the assumptions of Corollary 2 are satisfied and, for every
q(x, y) > 0,

|Vγt(x, y)− V (x, y)| = o(1/ log t).(21)
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1233

When the inverse-freezing schedule has parametric form βt = K−1 log t, for t suffi-
ciently large and K > c, we have

lim
t→+∞Entπβt (mt) = 0 and lim

t→+∞P (Xt ∈ V ?) = 1,(22)

where πβ is the unique invariant probability measure of the Markov generator Qβ − I
with

Qβ(x, y) = q(x, y) e−βV (x,y), V ? = {x ∈ E : V (x) = min
E

V },

and

V (x) = min
g∈G(x)

∑
(y→z)∈g

V (y, z).

If Vγt(x, y) = (Ut(y) − Ut(x))+ with Ut : E → R+ and limt→+∞ Ut(x) = U(x),
condition (21) takes the form

lim
t→+∞ log t |Ut(x)− U(x)| = 0.

The following examples illustrate the results and the conditions stated in the above
theorems.
Examples.

1. Let us now turn our attention to the transition probability kernel

Qγ,β(x, y) = q(x, y) e−βVγ(x,y),

where

Vγ(x, y) = (Uγ(y)− Uγ(x))+ if q(x, y) > 0 and +∞ otherwise.

In this case conditions (6) and (7) take the form

sup
x∈E

Uγ(x)− inf
x∈E

Uγ(x) ≤ d1(γ), sup
x∈E

d

dγ
Uγ(x)− inf

x∈E
d

dγ
Uγ(x) ≤ d2(β)/β.

In addition, if

sup
x,γ

Uγ(x) < +∞, sup
x,γ

d

dγ
Uγ(x) < + infty,

then we can choose d2(β) = β d2 and d1(γ) = d1 < +∞ (d1, d2 > 0) and the
condition (10) takes the form

dγt
dt

= o(1/(tc/K(log t)2)).

2. Let us examine the above example with time-inhomogeneous potential given
by

Uγ(x) = θ(γ)−1

∫ θ(γ)

0

C(s, x) ds
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1234 P. DEL MORAL AND L. MICLO

with C : R+ × E → R+ bounded and d
dγ log θ(γ) < +∞.

From the boundedness of C we can choose constants d1, d2 > 0 so that d1(γ) =
d1 and d2(β) = β d2 satisfy the required conditions. Finally, if γt = A log t
and θ(γ) = eγ , then we have

dγt
dt

= A/t = o
(

1/(tc/K(log t)2)
)
,

d

dγ
log θ(γ) = 1,

and

Uγt(x) =
1

tA

∫ tA

0

C(s, x) ds.

1.2. General results on the virtual energy. In section 1 we proved the
convergence in probability of a class of stochastic algorithms to the set of the global
minima V ? of a virtual energy function V . The crucial need of course is to estimate V ?.
In the case where q is symmetric and V (x, y) = (U(y)−U(x))+ with U : E → R+ it is
well known that V ? = U?. For a generalization of this see Trouvé [12]. The situation
becomes considerably more involved when the above assumptions are dispensed with.
The purpose of this section is to introduce a natural test set approach to study V ?.
More precisely, we will give several conditions for a given subset H ⊂ E to contain
V ?.

Let us recall some basic definitions. Let E be a finite set and q an irreducible
Markov kernel. Assume that a given function V : E × E → R+ satisfies

V (x, y) < +∞⇐⇒ q(x, y) > 0.

Let us write Cx,y the paths p in E joining x and y, that is,

∀k ∈ {0, . . . , |p| − 1} q(pk, pk+1) > 0 and p0 = x, p|p| = y,

where |p| is the length of p. For x, y ∈ E, p ∈ Cx,y, and g ∈ G(x) we note

V (p) =

|p|−1∑
k=0

V (pk, pk+1), V (g) =
∑

(y→z)∈g
V (y, z), V (x) = min

g∈G(x)
V (g).

For H ⊂ E and g an x-graph over H (that is, g ∈ GH(x)) it is convenient to define
a new communication cost VH by making the set H a taboo set. Namely, for every
x, y ∈ H

VH(x, y) = min {V (p) : p ∈ Cx,y with ∀k ∈ {1, . . . , |p| − 1} pk 6∈ H},
VH(g) =

∑
(y→z)∈g

VH(y, z).

It is also convenient to define the virtual energy function associated with VH :

∀x ∈ H VH(x) = min
g∈GH(x)

VH(g)− min
y∈H,h∈GH(y)

VH(h).

Finally, let us write

V (H) = min
x∈H

V (x) and V ?H =
{
x ∈ H : VH(x) = min

H
VH

}
.

D
ow

nl
oa

de
d 

12
/0

3/
13

 to
 1

30
.1

20
.2

27
.2

46
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1235

Lemma 2. ∀x ∈ H, VH(x) = V (x)− V (H).
Lemma 2 is an easy consequence of the following lemma.
Lemma 3. Let Q be an irreducible transition probability over E with invariant

measure µ. Let X be a Markov chain with transition probability Q and initial measure
m such that m(x) > 0 ∀x ∈ E. Given a subset H ⊂ E define

T1 = inf {n ≥ 1 : Xn ∈ H} Q̃ = P (XT1 = y/X0 = x).

Then Q̃ is an irreducible Markov kernel over H and its invariant probability measure
is given by

µ̃(x) = µ(x)/µ(H).

There are several ways to prove Lemmas 2 and 3. The following may be the
shortest in this context.

Proof of Lemma 3. The proof is a consequence of the law of large numbers. Let
us set by induction on the parameter n ≥ 1

Tn+1 = inf {k > Tn : Xk ∈ H}, n ≥ 1.

Now, under the above conditions, the random process Y = (Yn)n≥0 defined by

Y0 = X0, Yn = XTn , n ≥ 1,

is an irreducible Markov chain over H with transition probability kernel Q̃. Let µ̃ be
its invariant probability measure. First we note that P-almost surely

∀x ∈ E 1

n

n∑
i=1

1x(Yi) −−−−−→
n→ +∞

µ̃(x)

On the other hand we have

1

n

n∑
i=1

1x(Yi) =
Tn
n

(
1

Tn

Tn∑
i=1

1x(Xi)

)
,

n

Tn
=

1

Tn

Tn∑
i=1

1H(Xi),

and

1

Tn

Tn∑
i=1

1x(Xi) −−−−−→
n→ +∞

µ(x),
1

Tn

Tn∑
i=1

1H(Xi) −−−−−→
n→ +∞

µ(H)

P-almost everywhere (P.a.e.). The lemma follows immediately.
We come to the proof of Lemma 2.

Proof of Lemma 2. We shall give a sketch of the proof. Let us denote by Qβ the
Markov kernel over E given by

Qβ(x, y) =

{
|E|−1

exp−βV (x, y) if x 6= y,

1− |E|−1 ∑
z∈E :z 6=x exp−βV (x, z) otherwise.

Let µβ be the invariant measure of Qβ . From the description of µβ in terms of
x-graphs over E it is clear that

µβ(x) ∼
β → +∞

C(x) exp−βV (x)
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1236 P. DEL MORAL AND L. MICLO

for some nonnegative function C : E → R∗+. If one now defines Q̃β as in Lemma 3,
by elementary large deviation arguments one sees the equivalence

Q̃β(x, y) ∼
β → +∞

q̃(x, y) exp−βVH(x, y) ∀x, y ∈ H

for some irreducible Markov kernel q̃ : E × E → R+. Therefore if µ̃β is the invariant

measure of Q̃β one has for some nonnegative function C̃ : E → R∗+

µ̃β(x) ∼
β → +∞

C̃(x) exp−βVH(x),

from which our claim follows easily.
We now give a definition that we will use in our formulation of our test set

approach to understand the limiting behavior of a generalized simulated annealing.
Definition 1. Let H be a subset of E. We say that a partition H = {H1, . . . , Hn}

of H is a V -partition if for every 1 ≤ i ≤ n and x, y ∈ Hi, x 6= y, there exists a path
p ∈ Cx,y such that

∀0 ≤ k < |p| pk ∈ Hi and V (pk, pk+1) = 0.

We observe that for a given subset H ⊂ E, one can always obtain a V -partition.
For instance

H = {{x} : x ∈ H}

is a V -partition. Given a V -partition H = {H1, . . . , Hn} of H ⊂ E, it is convenient to
define a new communication cost function VH by setting for every x ∈ Hi and y ∈ Hj ,
1 ≤ i, j ≤ n

VH(x, y) = {V (p) : p ∈ Cx,y ∃0 ≤ n1 < n2 ≤ |p|
∀0 ≤ k ≤ n1, pk ∈ Hi, ∀n1 < k < n2, pk 6∈ H, ∀n2 ≤ k ≤ |p|pk ∈ Hj} .

It is easily seen that VH(x, y) does not depend on the choice of x ∈ Hi and y ∈ Hj .
Moreover we note that if H = {{x} : x ∈ H}, then VH = VH .

Let VH be the virtual energy function associated with the communication cost
function VH, namely,

∀x ∈ H VH(x) = min
g∈GH(x)

VH(g) with VH(g) =
∑

(y→z)∈g
VH(y, z).

As usual, we also put

V ?H =
{
x ∈ H : VH(x) = min

H
VH
}
.

Proposition 2. If H is a V -partition of a subset H ⊂ E, then we have VH =
VH .

Proof. Let us prove that for every x ∈ H

min
g∈GH(x)

VH(g) = min
g∈GH(x)

VH(g).
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1237

Because H = {H1, . . . , Hn} is a V -partition it is clear that VH ≤ VH . So our claim
will follow provided that for every g ∈ GH(x) we can build a new g̃ ∈ GH(x) such that
VH(g) ≥ VH(g̃). For this purpose let g ∈ GH(x) for some x ∈ H and let i ∈ {1, . . . , n}
such that x ∈ Hi. We will construct an x-graph g̃ ∈ GH(x) such that VH(g) ≥ VH(g̃).
For this we introduce the set

Γ = {(j → k) : ∃(y, z) ∈ g such that y ∈ Hj and z ∈ Hk}.
Obviously Γ is not an i-graph over {1, . . . , n} but examination of Γ soon yields that
it contains at least one i-graph Gi. Now for j 6= i and (j → k) ∈ Gi (unique) there
exists an arrow (yj → zk) ∈ g such that yj ∈ Hj and zk ∈ Hk.

On the other hand, from the definition of VH there exists a path p ∈ Cyj ,zk and
0 ≤ n1 < n2 ≤ |p| such that

∀0 ≤ l ≤ n1 pl ∈ Hj , ∀n1 < l < n2 pl 6∈ H, ∀n2 ≤ l ≤ |p| pl ∈ Hk,

and V (p) = VH(yj , zk). Given such a path p ∈ Cyj ,zk let us set

ỹj = pn1
, z̃k = pn2

.

Finally, because H is a V -partition there exists for every 1 ≤ i ≤ n a ỹj-graph
g̃j ∈ GHj (ỹj) such that V (g̃j) = 0, with the convention ỹi = x.

Using the above construction it is easily seen that the set of arrows

g̃ =

n⋃
i=1

g̃i
⋃ ⋃

(j→k)∈Gi
{(ỹj → z̃k)}

is an x-graph over H and, from the construction of g, it follows that

VH(g) ≥ VH(g̃) =
∑

(j→k)∈Gi
VH(ỹj , z̃k) =

∑
(j→k)∈Gi

VH(ỹj , z̃k) = VH(g̃).

This ends the proof.
The following concept of λ-stability leads to a natural test set approach to study

V ?.
Definition 2. Let λ be a nonnegative real number. A subset H ⊂ E is called λ-

stable with respect to a communication cost function V when the following conditions
are satisfied:

1. ∀x ∈ H ∀y 6∈ H, V (x, y) > λ,
2. ∀x /∈ H ∃y ∈ H, V (x, y) ≤ λ.
The importance of the notion of λ-stability resides in the following result, which

extends Lemma 4.1 of Freidlin–Wentzell [6].
Proposition 3. Let λ be a nonnegative real number and H ⊂ E. Any λ-stable

subset H with respect to V contains V ? and VH = V/H
Proof . Let H be a λ-stable subset of E. Let x 6∈ H and let g be an element of

G(x) such that V (g) = V (x). There exists almost one y ∈ H such that V (x, y) ≤ λ.
Now we note p the exit path from y to x extracted from g, that is,

p0 = y, p|p| = x and ∀k = 0, . . . , |p| − 1, (pk → pk+1) ∈ g.
Write k0 = inf{k = 0, . . . , |p| − 1 : pk 6∈ H}. Let g be the graph obtained from g
by replacing the arrow (pk0−1 → pk0

) by (x→ y). Then we have g ∈ G(pk0−1) and

V (x) = V (g) > V (g) ≥ V (pk0−1), pk0−1 ∈ H.
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1238 P. DEL MORAL AND L. MICLO

This completes the proof of the first assertion. The last assertion is a clear consequence
of Lemma 2.

Let us now reduce all of the results of this section to a proposition which we shall
use for later reference.

Proposition 4. Let A be a 0-stable subset of E with respect to V and let A be
a V -partition of A. If H is a λ-stable subset of A with respect to VA for some λ ≥ 0,
then V ? ⊂ H.

Proof. Using Proposition 3 it is easily seen that V ? ⊂ A, VA = V/A = VA,
and V ?A ⊂ H. Thus one gets V ? = V ?A = V ?A ⊂ H, and the proof of Proposition 4 is
completed.

2. Applications. In this section we examine two applications. In section 2.1 we
use the results of the first section to derive a new and simple proof of the convergence
of the genetic algorithms. We shall prove this important result in a way different from
the original proof of Cerf [2]. The proof splits quite naturally into two distinct parts:

1. We use the relative entropy convergence results stated in the first section to
prove the convergence of the algorithm.

2. Then we investigate the test set approach, introduced in the second part of
section 1, to prove that the set of the global minima of the virtual energy
is contained in the product of the set of the global minima of the fitness
function.

In section 2.2 we apply Corollary 4 to construct a stochastic algorithm for the numer-
ical solving of a general mean cost optimization problem.

2.1. Genetic algorithms. A genetic algorithm is a discrete time Markov pro-
cess x̂ = (x̂n)n with state space E = SN (N > 1 and S a finite set) and whose
transition probabilities Gn include a mutation Mn and a selection Sn mechanism.
The N -tuple of elements of S, i.e., the points of the set E, are called particle systems
and most will be denoted by the letters x, y, z. In what follows, we shall distinguish
two kinds of combinations, namely,

(a) P (x̂n ∈ dx /x̂n−1 = z ) =

∫
E

Mn(z, dy) Sn(y, dx),

(b) P (x̂n ∈ dx /x̂n−1 = z ) = α Mn(z, dx) + (1− α) Sn(z, dx), 0 < α < 1.

Mutations. The mutation transition is modeled by independent motion of each
particle, that is,

Mn(z, dy) =
N∏
p=1

Kn(zp, dyp),

where Kn is a Markov kernel over S, z = (zp)1≤p≤N , and y = (yp)1≤p≤N .
Selection. In the selection transition the particles are chosen randomly and

independently in the previous population according to a given selection function Fn :
S → R+, namely,

Sn(y, dx) =
N∏
p=1

N∑
i=1

Fn(yi)
N∑
j=1

Fn(yj)

1yi(dx
p).
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1239

The study of the convergence, as N → +∞ or n→ +∞, of such algorithms requires
specific developments because each individual particle is no longer Markovian and it
is difficult to produce mean error estimates. In [3] one of the authors applied and
extended such algorithms to nonlinear filtering problems. An apparent difficulty in
establishing a convergence result as n→ +∞ is finding a candidate invariant measure
that enables us to describe some aspects of the limiting behavior of the algorithm.
To our knowledge, Cerf gives in his Ph.D. dissertation [2] the first convergence result
n→ +∞ for a genetic algorithm to converge in probability to the global minima of a
given fitness function. More precisely, he studies the following situation:

1. The state space S is finite and Gn = Mn Sn.
2. The mutation Markov transition kernels Kn(x1, y1) are governed by a param-

eter a and a cooling schedule β(n) : N→ R+, namely,

Mn(x, y) = Q
(1)
β(n)(x, y)

def
=

N∏
p=1

kβ(n)(x
p, yp)(23)

with

kβ(x1, y1)
def
=


k(x1, y1) e−a β if x1 6= y1,

1−
∑
z1 6=x1

k(x1, z1) e−a β if x1 = y1,(24)

where k is a given irreducible Markov kernel on the space S.
3. The selection operator is built with a fitness function f : S → R+ and a

cooling schedule β(n) : N→ R+, namely,

Sn(x, y) = Q
(2)
β(n)(x, y)

def
=

N∏
p=1

N∑
i=1

e− β(n) f(xi)

N∑
j=1

e− β(n) f(xj)

1xi(y
p).(25)

Cerf gives several conditions on the rate of decrease of the cooling schedule β(n) →
+∞ to ensure all the particles visit the set of global minima, as times goes on, when
the number of particles is greater than a critical value. He carries out in a discrete
time setting a precise study using large deviation techniques and the powerful tools
developed by Trouvé [12]. Simplifying and extending techniques of Cerf and Trouvé,
our results are obtained by using the relative entropy convergence result stated in
Corollary 1 and by investigating the test set approach introduced in section 1.2.

2.1.1. General results and notations. In this section we will consider genetic
algorithms described by the transition probability kernel

Qβ = Q
(1)
β Q

(2)
β or Q̃β = α1Q

(1)
β +α2Q

(2)
β with α1 +α2 = 1 and 0 < α1 < 1

(26)
and nonnecessarily vanishing mutations. More precisely, we assume that the mutation
transition kernels kβ in (24) have the property

∃b > 0, b−1 k(x1, x2) e−β a(x1,x2) ≤ kβ(x1, x2) ≤ b k(x1, x2) e−β a(x1,x2),(27)

where a : S2 → R+, a(x, y) < +∞⇐⇒ k(x, y) > 0, k is an irreducible Markov kernel,
and the relation on S defined by

x1 ∼ x2 ⇐⇒ a(x1, x2) = 0
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1240 P. DEL MORAL AND L. MICLO

is an equivalence relation. This leads us naturally to consider the partition S1, . . . , Sn(a),
n(a) ≥ 1, induced by ∼. If x1 is a typical element of S, then the equivalence class of
x1 will be denoted by S(x1):

S(x1) = {x2 ∈ S : x1 ∼ x2}.

We further require that

a(x1, x2) = 0 =⇒ f(x1) = f(x2)

and for some β0 > 0

∀x1, x2 ∈ S sup
β≥β0

|d log kβ(x1, x2)/dβ| < +∞.(28)

To our knowledge the models of evolutionary processes (26) have not been covered by
the literature of genetic algorithms.

Examples. The following mutation transition kernels have the properties (27) and
(28):

1. kβ(x1, x2) =

{
k(x1, x2) e−β a(x1,x2) if a(x1, x2) > 0,

|S(x1)|−1
(

1−∑y1 6∈S(x1) k(x1, y1) e−β a(x1,y1)
)

otherwise.

2. kβ(x1, x2) =
e−β a(x1,x2) k(x1, x2)∑

y1∈S e−β a(x1,y1) k(x1, y1)
∀(x1, x2) ∈ S2.

Finally, let us note that if a is given by

a(x1, x2) = a (1− 1x1(x2)) ∀(x1, x2) ∈ S2 : k(x1, x2) > 0,

then the first transition probability kernel is clearly the same as the mutation transi-
tion probability kernel (24) studied by Cerf.

In this special situation, the first model Qβ = Q
(1)
β Q

(2)
β is of course identical to

Cerf’s model of a genetic algorithm.
Let us recall some terminology introduced by Cerf in [2]. The cardinality of a set

will be denoted by |.|. If x and y belong to E = SN and f : S → R+, we write

[x] = {xk : 1 ≤ k ≤ N}, f? = {x1 ∈ S : f(x1) = min
S
f},

x̂ = {k : 1 ≤ k ≤ N , f(xk) = f̂(x)}, f̂(x) = min
1≤k≤N

f(xk),

x(y1) = Card{k : 1 ≤ k ≤ N , xk = y1}.

Using these notations, an easy calculation shows that for k = 1 or k = 2

Q
(k)
β (x, y) = q

(k)
β (x, y) e−βV

(k)(x,y), q
(k)
β (x, y) = q(k)(x, y) θ

(k)
β (x, y),

where

q(1)(x, y) =
∏

i:a(xi,yj)>0

k(xi, yi), q(2)(x, y) =
N∏
i=1

x(yi)

|x̂| ,

V (1)(x, y) =
N∑
i=1

a(xi, yi) if q(1)(x, y) > 0,

D
ow

nl
oa

de
d 

12
/0

3/
13

 to
 1

30
.1

20
.2

27
.2

46
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1241

V (2)(x, y) =
N∑
i=1

(
f(yi)− f̂(x)

)
if q(2)(x, y) > 0,

θ
(1)
β (x, y) =

∏
i:a(xi,yi)=0

kβ(xi, yi),

θ
(2)
β (x, y) =

1 + |x̂|−1
∑
k 6∈x̂

exp−β(f(xk)− f̂(x))

−N .
As usual, we will use the convention

∀k ∈ {1, 2} V (k)(x, y) = +∞⇐⇒ q(k)(x, y) = 0.

The asymptotic mutation dynamics of the genetic algorithms is governed by the kernel
k and the function a. The irreducibility condition on the kernel k and the fact that a
is an equivalence relation are sufficient conditions to allow the system of particles to
visit all the state space E. Thus, using the above notations, it is easily checked that

• q(1) is irreducible and q(2)(x, x) > 0 for every x ∈ E;
• for every k = 1, 2 and q(k)(x, y) > 0 we have supβ≥β0

|d log θkβ(x, y)/dβ| < +∞
for some β0 ≥ 0.

Then, returning to our general model (12), the conditions introduced in Corol-
lary 1 are satisfied in both situations:

1. Qβ(x, y)
def
= Q

(1)
β Q

(2)
β (x, y) =

∑
u∈U

qβ(x, u, y)e−βV (x,u,y)

with U = E, V (x, u, y) = V (1)(x, u)+V (2)(u, y), q(x, u, y) = q(1)(x, u)q(2)(u, y),

and θβ(x, u, y) = θ
(1)
β (x, u) θ

(2)
β (u, y), qβ(x, u, y) = θβ(x, u, y)q(x, u, y).

2. Q̃β(x, y)
def
= α1 Q

(1)
β (x, y) + α2Q

(2)
β (x, y) =

∑
u∈U

qβ(x, u, y)e−βV (x,u,y)

with U = {1, 2}, V (x, u, y) = V (u)(x, y), q(x, u, y) = αu q(u)(x, y),

and θβ(x, u, y) = θ
(u)
β (x, y), qβ(x, u, y) = θβ(x, u, y)q(x, u, y).

2.1.2. A convergence theorem. To clarify the notations, in the remainder of
section 2 we will use the diacritic (.̃) to distinguish the communication cost functions,
the virtual energy function, and the critical height associated with the transition
probability kernels Qβ from those associated with Q̃β .

From the above observations and Corollary 1, choosing β of the form

βt = K−1 log t, where K > c (resp., K > c̃),

for t sufficiently large yields that the canonical process (Ω, P, Ft, Xt) associated with
the family of generators (Lβt)t≥0 = (Qβt − I)t≥0 (resp., (Q̃βt − I)t≥0) converges in

probability to the set of the global minima V ? (resp., Ṽ ?) of the virtual energy V
(resp., Ṽ ) associated with Qβ (resp., Q̃β) and described in Corollary 1. One open
problem is to compare c and c̃. Let us remark that c̃ does not depend on the choice
of the parameter α ∈]0, 1[. In view of these observations the bulk of the proof rests
on showing that V ? and Ṽ ? are subsets of (f?), where (f?) is the set in E defined by

(f?) =
{
x ∈ E : f̂(x) = min

E
f
}
.
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1242 P. DEL MORAL AND L. MICLO

The main purpose of this section is to prove a more general result. We will prove
that V ? and Ṽ ? are subsets of (f?) ∩A, where A is the set in E defined by

A = {x ∈ E : xk ∼ xl ∀1 ≤ k, l ≤ N}.
By A we will denote the partition of A induced by the equivalence relation ∼

A = {A1, . . . , An(a)}, Ai = {x ∈ E : [x] ⊂ Si} ∀1 ≤ i ≤ n(a).

As usual we associate with each typical element x = (x1, . . . , xN ) ∈ A the subset

A(x) = {y ∈ E : [y] ⊂ S(x1)}.
Note that A is 0-stable with respect to V and Ṽ . Moreover, from our constructions,
a routine proof yields that A is a V and Ṽ -partition of A. In view of Propositions 2
and 3 it follows that V ? ⊂ A, Ṽ ? ⊂ A, and

∀x ∈ A V (x) = min
g∈GA(x)

VA(g), Ṽ (x) = min
g∈GA(x)

ṼA(g).

Now, from Proposition 4, to prove that V ? and Ṽ ? are subsets of (f?) it clearly suffices
to find a constant λ such that the subset (f?)∩A is λ-stable with respect to VA and ṼA.

As we will see such results hold when the size N of the particle systems is greater
that a critical value which depends on the functions a and f . We shall study this
critical size now, beginning with two important lemmas.

Before proceeding we need to introduce some additional notations.
By Γx1,x2 , x1, x2 ∈ S, we denote the paths q in S joining x1 and x2, that is,

∀0 ≤ l < |q| k(xl, xl+1) > 0, q0 = x1, q|q| = x2.

We will also denote R(a) as the smallest integer such that for every x1, x2 ∈ S in two
different classes there exists a path joining x1 and x2 with length |q| ≤ R(a). More
precisely,

R(a) = max
1≤i,j≤n(a)

min
(xi,xj)∈Si×Sj

min
q∈Γxi,xj

|q|.

It also will be convenient to use the following definitions:

4a = min {a(x1, x2) : a(x1, x2) 6= 0}, 4f = min {|f(x1)−f(x2)| : f(x1) 6= f(x2)},
δ(a) = sup {a(x1, x2) : x1, x2 ∈ S}, δ(f) = sup {|f(x1)− f(x2)| : x1, x2 ∈ S}.

Lemma 4. For every x, y ∈ A such that f̂(x) ≥ f̂(y) we have

ṼA(x, y) ≤ δ(a) R(a).(29)

Moreover, for every x ∈ A there exists a state y ∈ (f?) ∩A such that

VA(x, y) ≤ (δ(a) + δ(f)) R(a).(30)

Lemma 5. For every x, y ∈ A such that f̂(x) < f̂(y) we have

VA(x, y) ≥ min(∆a,∆f) N and ṼA(x, y) ≥ min(∆a,∆f) N.(31)
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1243

Let us write

λ(a, f) = (δ(a) + δ(f)) R(a), λ̃(a, f) = δ(a) R(a),

N(a, f) = λ(a, f)/min(∆a,∆f), Ñ(a, f) = λ̃(a, f)/min(∆a,∆f).

Combining Lemmas 4 and 5 one easily gets

N > N(a, f) =⇒ (f?) ∩A is λ(a, f)-stable with respect to VA,
N > Ñ(a, f) =⇒ (f?) ∩A is λ̃(a, f)-stable with respect to ṼA.

These results and Proposition 4 combine to yield the following theorem.
Theorem 3. We denote (Ω, P, Ft, Xt) as the canonical process associated with

the family of generators (Lβt)t≥0 = (Qβt − I)t≥0 (resp., (Q̃βt − I)t≥0), c (resp., c̃)

the critical height associated with the communication cost function V (resp., Ṽ ), and
mt the distribution of Xt. If βt assumes the parametric form βt = K−1 log t, for
sufficiently large t, with K > c and if N > N(a, f) (resp., Ñ(a, f)), then we have

lim
t→+∞Entπβt (mt) = 0 and lim

t→+∞P (Xt ∈ (f?) ∩A) = 1,

where πβ is the invariant probability measure of Lβ = Qβ − I (resp., Q̃β − I).
We come to the proof of Lemmas 4 and 5.
Proof of Lemma 4. Let x = (x1, . . . , xN ) and y = (y1, . . . , yN ) be two elements of

A such that f̂(x) ≥ f̂(y). First let us remark that

x1 ∼ y1 =⇒ ∀1 ≤ k ≤ N, a(xk, yk) = 0 =⇒ ∀1 ≤ k ≤ N, f(xk) = f(yk).

In this situation, a routine proof yields

VA(x, y) = 0 and ṼA(x, y) = 0.

If a(x1, y1) > 0 then the irreducibility condition implies the existence of a path q ∈
Γx1,y1 and a pair of integers 0 ≤ n1 < n2 ≤ |q| such that

∀0 ≤ k ≤ n1, qk ∈ S(x1), ∀n1 < k < n2, qk 6∈ S(x1), ∀n2 ≤ k ≤ |q|, qk ∈ S(y1).
(32)
Let us prove (29). For this, let p ∈ C̃x,y be the path defined by

∀0 ≤ k ≤ |q|, pk = (qk, x2, . . . , xN ), p|q|+1 = (y1), p|q|+2 = y.

From the definition of q we have

∀0 ≤ k ≤ n1, pk ∈ A(x), ∀n1 < k ≤ |q|, pk 6∈ A, ∀k ∈ {|q|+1, |q|+2}, pk ∈ A(y).
(33)
Moreover, it follows that

0 ≤
n1−1∑
k=0

Ṽ (pk, pk+1) ≤
n1−1∑
k=0

V (1)(pk, pk+1) = 0,

0 ≤ Ṽ (p|q|, p|q|+1) ≤ V (2)(p|q|, p|q|+1) = 0, and

Ṽ (p|q|+1, p|q|+2) = V (1)(p|q|+1, p|q|+2) = 0.
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1244 P. DEL MORAL AND L. MICLO

Now, it appears from the proceeding that

Ṽ (p) ≤
n1−1∑
k=0

Ṽ (pk, pk+1) +

|q|−1∑
k=n1

Ṽ (pk, pk+1) + Ṽ (p|q|, p|q|+1) + Ṽ (p|q|+1, p|q|+2)

=

|q|−1∑
k=n1

Ṽ (pk, pk+1) ≤ δ(a)|q|.

Therefore Ṽ (x, y) ≤ δ(a) R(a) and the proof of (29) is completed.
The proof of (30) is just a little more complicated.

Suppose x ∈ A and y′ is an element of A such that f̂(x) ≥ f̂(y′) = minS f and
a(x1, y

′
1) > 0. Let q be the path joining x1 and y′1 and defined as in (32). Using the

above notations, let (tm)m be the sequence of integers defined by

t0 = n1, tm = inf
{
k > tm−1 : f(qk) < f(qtm−1

)
} ∀m ≥ 1.

Using the assumption f̂(x) ≥ f̂(y′) = minS f , examination of q soon yields that there
exists an m0 ≥ 1 such that tm0

≤ n2 and f(qtm0
) = minS f . Consequently, we have

constructed a sequence of states (qtm)0≤m≤m0 such that

f̂(x) = f(qt0) > f(qt1) > · · · > f(qtm) > · · · > f(qtm0
) = f̂(y),(34)

where y = (qtm0
, . . . , qtm0

) ∈ A ∩ (f?). With each state qtm we associate a state
pm ∈ E, 0 ≤ m ≤ m0, by setting

pt0 = (qt0 , x2, . . . , xN ), ptm = (qtm , . . . , qtm , xN ) ∀1 ≤ m ≤ m0.

First we note that ptm 6∈ A ∀1 ≤ m ≤ m0 and

f̂(x) = f̂(pt0) > f̂(pt1) > · · · > f̂(ptm) > · · · > f̂(ptm0
) = min

S
f = f̂(y).

Our next task is to construct a sequence of paths (p(m))0≤m≤m0+1 such that

p(0) ∈ Cx,pt0 , p(m) ∈ Cptm−1
,ptm , ∀1 ≤ m ≤ m0 p(m0+1) ∈ Cptm0

,y,

and
• the path p(0) has length |p(0)| = t0 and for every 0 ≤ k ≤ t0 the states p

(0)
k

belong to A(x);
• for every 1 ≤ m ≤ m0, p(m) is a path joining ptm−1 and ptm in time

|p(m)| = tm − tm−1,

and for every 0 ≤ k ≤ tm − tm−1 the states p
(m)
k do not belong to A except

the first initial state p
(1)
0 = pt0 ∈ A(x);

• p(m0+1) = (ptm0
, y).

It is straightforward to see that any path p(0) satisfying the above conditions has
null cost, that is, V (p(0)) = 0. Then, to obtain the desired upper bound it clearly
suffices to have

∀1 ≤ m ≤ m0 V (p(m)) ≤ (tm − tm−1) (δ(a) + δ(f)).

We proceed to define (p(m))0≤m≤m0+1 as follows:

D
ow

nl
oa

de
d 

12
/0

3/
13

 to
 1

30
.1

20
.2

27
.2

46
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1245

1. In view of (32) and (34) it is natural to define the initial path p(0) def
=

(p0, . . . , pt0) by setting

∀0 ≤ k ≤ t0 = n1 pk = (qk, x2, . . . , xN ) ∈ A(x).

As has already been noted, a simple calculation shows that

V (p(0)) =

t0−1∑
k=0

V (1)(pk, pk+1) + V (2)(pk+1, pk+1) = 0.

2. Taking into account that t1 is the first time k such that f(qk) < f̂(x) we are

lead to define p(1) def
= (pt0 , pt0+1, . . . , pt1) by setting

∀t0 ≤ k < t1 pk = (qk, x2, . . . , xN ), pt1 = (qt1 , . . . , qt1 , xN ).

Let us write pt1 = (qt1 , x2, . . . , xN ). In this situation pk 6∈ A ∀t0 < k ≤ t1
and it is easy to verify that

V (p(1)) ≤
t1−2∑
k=t0

V (1)(pk, pk+1) + V (2)(pk+1, pk+1) + V (1)(pt1−1, pt1)

+V (2)(pt1 , pt1)

≤ (t1 − t0)(δ(a) + δ(f)).

3. As for item 2, we define the paths p(m) def
= (ptm−1

, ptm−1+1, . . . , ptm) for 2 ≤
m ≤ m0 by setting

∀tm−1 ≤ k < tmpk = (qk, qtm−1
, . . . , qtm−1

, xN ), ptm = (qtm , . . . , qtm , xN ).

Here again we have pk 6∈ A ∀tm−1 ≤ k ≤ tm. Let us introduce a new state
ptm = (qtm , qtm−1

, . . . , qtm−1
, xN ). It is then an elementary matter to prove

the inequalities

V (p(m)) ≤
tm−2∑
k=tm−1

(
V (1)(pk, pk+1) + V (2)(pk+1, pk+1)

)
+V (1)(ptm−1, ptm) + V (2)(ptm , ptm)

≤ (tm − tm−1 − 1) (δ(a) + 2 δ(f)) + δ(a) + δ(f)

≤ (tm − tm−1) (δ(a) + δ(f)).

4. Finally, let us note that

0 ≤ V (p(m0+1)) ≤ V (1)(ptm0
, ptm0

) + V (2)(ptm0
, y) = 0.

Consider the path p = (p(0), . . . , p(m0+1)) ∈ Cx,y obtained by joining end to end all
these paths. From the above inequalities it follows easily that V (p) ≤ |q| (δ(a)+δ(f)).
As a clear consequence one gets

VA(x, y) ≤ (δ(a) + δ(f)) R(a).

This ends the proof of Lemma 4.
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1246 P. DEL MORAL AND L. MICLO

Much more is true. In view of our assumptions on the function a and the con-
structions given in the proof of Lemma 4 we observe easily that

∀x ∈ A ∀y ∈ A ∩ (f?) VA(x, y) ≤ (δ(a) + δ(f)) R(a).

Proof of Lemma 5. Let (x, y) be a pair of points of A such that f̂(x) < f̂(y).

Now, let p belong to C̃x,y. Note that since f̂(x) < f̂(y) there exists a real number λ

such that f̂(x) < λ < f̂(y). Let us set

∀0 ≤ l ≤ |q| Il =
{
i ∈ {1, . . . , N} : f(pil) > λ

}
and nl = |Il|.

It follows easily that n0 = 0 and n|p| = N .
Now, let Tk, 0 ≤ k ≤ N , be the first time l ≥ 0 such that nl ≥ k. More precisely,

Tk = inf {l ∈ {0, . . . , |p|} : nl ≥ k} ∀0 ≤ k ≤ N.
Clearly it appears from the above that

T0 = 0, TN ≤ |p|, nTN = N, nT0
= n0 = 0.(35)

By definition of the communication cost function V (1) we can see that

V (1)(pTk−1, pTk) ≥
∑

i∈ITk−ITk−1

a(piTk−1, p
i
Tk

) ≥ (nTk − nTk−1) ∆a ∀1 ≤ k ≤ N.

(36)
More precisely, pTk−1 contains nTk−1 individuals piTk−1 such that f(piTk−1) > λ and

pTk contains nTk individuals pjTk such that f(pjTk) > λ. Therefore, if V (1)(pTk−1, pTk) <
+∞, then the transition pTk−1 → pTk necessarily involves at least (nTk − nTk−1) in-
dividual mutations.

Similarly, if V (2)(pTk−1, pTk) < +∞, then the system pTk contains at least (nTk −
nTk−1) new individuals piTk ∈ [pTk−1

] such that f(piTk) > λ. Thus a discussion similar
to that above leads to

V (2)(pTk−1, pTk) ≥ (nTk − nTk−1) ∆f.(37)

Finally, by definition of Ṽ , we have

Ṽ (q) ≥ Ṽ (pT1−1, pT1
) + · · ·+ Ṽ (pTN−1, pTN ).

Let us remark that

nTk−1 ≤ k − 1 ≤ nTk−1
∀1 ≤ k ≤ N.

Thus, combining (36) and (37) , we arrive at

Ṽ (q) ≥ N min (∆a,∆f).

Taking the minimum of all p ∈ C̃x,y and taking into account that V ≥ Ṽ we obtain

V (x, y) ≥ Ṽ (x, y) ≥ N min (∆a,∆f).

Finally we have

ṼA(x, y) ≥ Ṽ (x, y) ≥ N min (∆a,∆f) and VA(x, y) ≥ V (x, y) ≥ N min (∆a,∆f).
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1247

This ends the proof of Lemma 5.
Remark. Lemmas 4 and 5 show that the costs of good transitions are bounded

whereas the costs of the bad ones increase at least linearly with the size of the system.
On the basis of the definition of V and Ṽ and in view of the proof of these lemmas
it is clear that the above result is easier to establish for the cost function Ṽ . It also
turns out that the estimate of the cost of bad transitions with respect to Ṽ provides
a quick and natural way to estimate their costs with respect to V .

In [2] an inductive proof of this result is presented for the genetic algorithm
associated with V and without the equivalence relation considered here. The main
contribution here is the extension of the results presented in [2] to any equivalence
relation a and to the genetic algorithm associated with the cost function Ṽ .

On the other hand and in contrast to the inductive proof presented in [2], the
approach described here is based on a precise study of the cost of bad or good paths.

The constants λ(a, f), λ̃(a, f) represent the difficulty for a population to travel
from an equivalence class to better ones. In connection with this remark it is inter-
esting to note that λ̃(a, f) does not depend on the fitness function f and

λ(a, f) > λ̃(a, f).

In other words, it is more difficult for the genetic algorithm associated with V to move
from one configuration to a better one. The above observations also imply that the
critical value N(a, f) is greater than Ñ(a, f).

Examples. Let us see what happens when our second general model (26) is spe-
cialized for the case where the state is

S = {−1,+1}S , S = [−n, n]p, p ≥ 1,

and the fitness function f : S → R is given by

f(x) =
1

2

∑
s∈S

∑
s′∈Vs

x(s) x(s′) +
1

2

∑
s∈S

x(s),

where

∀s ∈ S Vs = {s′ ∈ S : |sk − s′k| ≤ 1, 1 ≤ k ≤ p}.
Let k be the Markovian mutation kernel on S given by

k(x1, x2) =
1

|V(x1)| 1V(x1)(x2),

V(x1)
def
= {x2 ∈ S : Card{s ∈ S : x1(s) 6= x2(s)} ≤ 1}.

Suppose that the function a is given by

a(x1, x2) = (1− 1x1(x2)) ∀(x1, x2) ∈ S2 : k(x1, x2) > 0.

Then, one can check that

R(a) ≤ max
x,y

min
q∈Cx,y

|q| = card(S) = (2n+ 1)p and δ(a) = ∆(a) = 1.

Let N be an integer that N > (2n+1)p. The above theorem shows that N individuals
will solve the optimization problem when using the genetic algorithm associated with
Q̃β .
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1248 P. DEL MORAL AND L. MICLO

2.2. Mean cost optimization. In this section we discuss the ways in which
the results of section 1 are applied in mean cost optimization problems. Namely, the
object will be to find the global minima of a function V : E → R+ given by

V (x) = E(U(Z, x)) or V (x) = min
g∈G(x)

∑
(y,z)∈g

E(V(Z; y, z)),

where
• E is a finite set and G(x) is the set of x-graphs over E,
• Z is a random variable taking value in a finite set F (we denote µ its distri-

bution),
• U : F × E → R+, and V : F × E × E× → R+.

We have seen how to construct a stochastic algorithm converging in probability to
global minima of the virtual energy associated with a communication cost function. It
is clear from the description above that the appropriate communication cost function
is given by

V (x, y) = (E(U(Z; y))− E(U(Z;x)))+ or V (x, y) = E(V(Z; y, z)).

Unfortunately the huge size of the set F often precludes the use of such an algorithm,
and the essential problem is to compute a mean cost function at each step. Therefore
it is natural to choose, for instance, a Markovian kernel K which ensures that

Vγt(x, y) =
1

tA

∫ tA

0

V(Zs;x, y) ds −−−−−−−−→
t→ +∞

V (x, y) = E(V(Z;x, y)) P.a.e.

or Vγt(x, y) =

(
1

tA

∫ tA

0

U(Zs; y) ds− 1

tA

∫ tA

0

U(Zs;x) ds

)+

−−−−−−−−→
t→ +∞

V (x, y) = (E(U(Z; y))− E(U(Z;x)))
+

P.a.e.,

where
• Vγ def

= 1/eγ
∫ eγ

0
V(Zs;x, y) ds or

Vγ
def
=
(

1
eγ

∫ eγ
0
U(Zs; y) ds− 1

eγ

∫ eγ
0
U(Zs;x) ds

)+

,

• γt = A log t,
• Zs is a time-homogeneous Markov process associated with the generator L =
K − I,
• µ is an invariant measure of L.

Before starting the description of our stochastic algorithm, we give some details about
the above convergences.

Lemma 6. Let K be a an irreducible transition kernel with unique invariant
measure µ. For every x, y ∈ E and A > 0 we have

lim
t→+∞

√
tA

log t
|Vγt(x, y)− V (x, y)| = 0 P.a.e.

Proof. In this situation it is well known that for every x, y ∈ E there exists a
bounded function F (.;x, y) such that

V(.;x, y)− µ(V(.;x, y)) = L(F(.;x, y)) and µ(F(.;x, y) = 0.
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CONVERGENCE AND APPLICATIONS OF SIMULATED ANNEALING 1249

This equation is the Poisson equation associated with V(.;x, y) and L. Thus, one gets
the decomposition

1

t

∫ t

0

(V(Zs;x, y)− µ(V(.;x, y))) ds =
1

t
(F (Zt;x, y)− F (Z0;x, y)−M(x, y)t),

where M(x, y) is a martingale with angle bracket 〈M(x, y)〉 given by

〈M(x, y)〉t =
∑
z∈F

∫ t

0

(F (z;x, y)− F (Zs;x, y))2 K(Zs, z) ds.

Since the function F is bounded we have 〈M(x, y)〉t ≤ c t for some nonnegative
constant. Finally, by the standard iterated-log law and since jumps are bounded, it
follows that

1

t
M(x, y)t ≤

√
2 c t log log(c t)

t

and thus limt→+∞
√

t
log t

∣∣ 1
tM(x, y)t

∣∣ = 0. This ends the proof.

Remark. The Poisson equation is a standard tool in the study of Markov processes.
For instance it was also used by Younes [13] to study the convergence of a stochastic
gradient algorithm to a maximum likelihood estimator. The context of Younes is
more complex than those considered here, and the speed of convergence cannot be
obtained by a mere application of the iterated logarithm law as before. But Younes
also noticed that if the convergence is fast enough (in a negative power in time), then
one can couple the estimation procedure to a simulated annealing algorithm (with the
classical reversibility conditions) to get the global minima of a function depending on
the parameter to be estimated. To do this, Younes uses the Dobrushin coefficients,
but the entropy approach enables one to get more precise results on the admissible
logarithmic schedules of temperature (the constant c given below).

Let us fix some terminology.

• Let (Ω(Z), P (Z), F
(Z)
t , Zt) be the canonical process associated with the gener-

ator L.
• For a given probability measure m on E, β, γ ∈ C1(R+,R+) and given the

Markov process Z we note (Ω(Z), P(Z), F(Z),t, Xt) the canonical process as-
sociated with the family of generators (Lγt,βt)t≥0 = (Qγt,βt − I)t≥0 whose
initial condition is m0 = m, and we note mt the distribution of Xt, where

Qγ,β(x, y) = q(x, y) e−β Vγ(x,y) with q irreducible.

• To capture all randomness we note Ω = Ω(Z)×Ω(Z), Ft = F
(Z)
t ×F(Z),t, and

we define P as follows:

∀A ∈ F(Z),t ∈ ∀B ∈ F (Z)
t P (A×B) =

∫
B

P(Z)(A) dP (Z).

The above lemma and Corollary 4 lead us to the following proposition.
Proposition 5. Let us set c = lim supγ→+∞ c(γ) < +∞ P.a.e., where c(γ) is

the critical height associated with the communication cost Vγ .
When the inverse-freezing schedule has parametric form βt = K−1 log t, for t

sufficiently large and K > c, we have

lim
t→+∞Entπβt (mt) = 0 P.a.e. and lim

t→+∞P (Xt ∈ V ?) = 1,(38)
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1250 P. DEL MORAL AND L. MICLO

where πβ is the unique invariant probability of Lβ = Qβ − I with

Qβ(x, y) = q(x, y) e−βV (x,y).

In many practical situations we also want a quantitative measure of the conver-
gence (38). Unfortunately our method of proof is not suitable for estimating such
quantitative behavior. In our settings a natural alternative approach is to look at
the convergence of the mean value of the process t→ Entπβt (mt) with respect to the
random media (given by Z). In view of the inequality (20) we immediately observe
that the speed of convergence of the mean value is related to the speed of convergence
of the mean values of Entπγt,βt (mt) and |Vγt(x, y)−V (x, y)|. The first term, linked to
the critical height c(γt) and to the derivative of γt, depends in a complicated way on
the constant A, but we know that it is a nondecreasing function of the parameter A.
On the other hand, the second term is a nonincreasing function of the parameter A.
If we know how these quantities are linked to A a good adjustment of this parameter
is then related to a classical minimization problem. We will examine this quantitative
behavior in a forthcoming paper.
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