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Abstract

In this article we study a class of time self-interacting “Markov” chain mod-
els. We propose a novel theoretical basis based on measure valued processes and
semigroup technics to analyze their asymptotic behavior as the time parameter
tends to infinity. We exhibit different types of decays to equilibrium depending
on the level of interaction. We illustrate these results in a variety of examples
including Gaussian or Poisson self-interacting models. We analyze the long time
behavior of a new class of evolutionary self-interacting chain models. These ge-
netic type algorithms can also be regarded as reinforced stochastic explorations
of an environment with obstacles related to a potential function.

1 Introduction

A (time) self-interacting Markov chain model (abbreviate SIMC) is a collec-
tion of random variables with a countable time index. In contrast to traditional
Markov chains their evolution in time may depend on the occupation measure
of the past values.
This form of interaction can be interpretated in various ways. In biology this
structure is used to model some population dynamical structures [3, 12, 14, 21]
as well as polymers and tree evolutions [13, 18]. This interaction structure can
also express the reinforcement degree of edges or vertices in a graph visited by
a random walk [15]. The question of recurrence and transience of the latter
has been initiated in [3, 15]. During the last two decades this subject has been
investigated in various articles [1, 10, 16, 17, 19, 22]. This is still an active
research area, to our knowledge we don’t know for instance if the reinforced
random walk on the integer lattice Z2 is recurrent or not.

The SIMC models presented in this article can also be related to the continuous
time self-interacting diffusions analyzed in [2]. In this work the authors discuss
a gradient type diffusion on a compact Riemannian manifold with linear self-
interactions. They connect the shape properties of the drift function with the
nature of the long time behavior of the occupation measure of the diffusion. The
strategy consists in proving that the set of all possible limiting measures is the
attractor free set of a deterministic dynamical semi-flow in the set of bounded
measures on the manifold.
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Although our investigations have been partly influenced by the latter refer-
enced papers this article is not concerned with the same class of self-interacting
processes and it doesn’t discuss the same stability questions. To our knowledge
the questions of the rates of convergence and their precise connections with the
strength of interaction has not be covered in the literature on self-interacting
processes. The approach we have taken here rather comes from a different
background. In previous works [4, 5, 6] we proposed an interacting particle
technique for solving an abstract class of measure valued processes associated
to a given abstract mapping Φ on distribution space. Under appropriate regu-
larity conditions we proved that the empirical measures of the particle systems
converge as the size and time parameters tend to infinity to the fixed point
of Φ (whenever it exists). In the context of Feynman-Kac type distribution
evolutions these limiting distributions can be used to analyze the limiting be-
havior of a killed particle evolving in an environment with obstacles related to
a potential function. In this situation the numerical solving of these limiting
distributions allows to compute the Lyapunov exponent of a class of Feynman-
Kac-Schrödinger semigroup [8].
In this article we propose an alternative interpretation of these limiting distri-
butions. We associate to an abstract mapping Φ a class of SIMC models and
we propose a set of regularity conditions underwhich the resulting occupation
measures converge as the time tends to infinity to the desired equilibrium dis-
tribution. We analyze in this framework the evolutionary SIMC versions of the
genetic type particle models studied in [5, 6, 8, 9]. We also discuss other types
of interactions including the SIMC versions of Gaussian and Poisson mean field
particle interactions. Together with the modeling of these SIMC we provide a
precise analysis of the asymptotic behavior of their occupation measures. We
exhibit different types of decays to equilibrium in terms of the level of interac-
tion in the models. We will also discuss the long time behavior of a model of
ε-interacting random variables for which these different decays are sharp. Unless
we make some supplementary hypothesis on the regularity of Φ this example
indicates that the estimates we obtained cannot be improved.

To our knowledge the abstract class of SIMC models presented in this arti-
cle has not been covered in the literature. The precise connections between the
interaction structure and the decays to equilibrium also seems to be the first
result of this kind. The evolutionary and genetic type SIMC models presented
in this article can also be regarded as novel reinforced stochastic exploration
model of an environment with obstacles related to a potential function.
The self-interacting versions of the Moran type particle models in continuous
time presented in [7, 8] will lead to a new class of models with self-interacting
jumps. The analysis of these self-interacting evolutionary processes is under
study and it will hopefully be discussed in a forthcoming article.

1.1 Description of the models and main results

Let X be a stochastic process with discrete time index n ∈ N and taking values
in some measurable space (E, E). We suppose it is defined on some probability
space (Ω, F, P) with a nondecreasing family of σ-field Fn, n ≥ 0. The adapted
process X is called an SIMC when the state Xn at time n depends on the
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occupation measure of the previous states X0, . . . ,Xn−1. For instance suppose
we are given a mapping Φ from the set of probability measures P(E) on E into
itself. We can associate to the latter the SIMC model defined by the transitions

P(Xn ∈ dx | Fn−1) = Φ



 1
n

n−1∑

p=0

δXp



 (dx) (1)

(to get rid of measurability problems, we will always implicitly assume that
Φ : P(E) → P(E) is measurable, where P(E) is endowed with the σ-algebra
generated by the evaluation mappings P(E) % m &→ m[f ], for f bounded and
measurable).
To illustrate this abstract class of SIMC model we already present an example
which was at the origin of our investigations. Let g be a positive and measurable
function and let K be a Markov transition on E. We associate to the pair (g,K)
a non-linear mapping Φ on P(E) defined for any m ∈ P(E) and for any bounded
measurable test function f on E as follows

Φ(m)(f) =
m(g (Kf))

m(g)
(2)

with the traditional notations

Kf(x) =
∫

E
K(x, dy) f(y) and m(f) =

∫

E
f(x) m(dx)

In this situation transition (1) reads

Φ



 1
n

n−1∑

p=0

δXp



 (dx) =
n−1∑

p=0

g(Xp)∑n−1
q=0 g(Xq)

K(Xp, dx) (3)

The resulting SIMC model can be regarded as a genetic type algorithm. More
precisely we readily see from (3) that the particle Xn first selects a site Xp,
0 ≤ p < n, with a probability proportional to its fitness g(Xp), 0 ≤ p < n.
Then it performs an elementary move according to the transition K.

This type of genetic self-interactions arise in many human endeavors. For in-
stance in visiting a city E some sites are more attractive than others. The
fitness or potential function g models the attraction level of the city’s areas.
The Markov transition K models the way the person explores randomly each
place. In exploring the city with the above two step selection/mutation mech-
anism the person also tends to be attracted by familiar places which have been
visited several times. This genetic SIMC model is close to the reinforced ran-
dom walk model proposed in [3] but the non-linear structure of interaction of
these models differ. In particular and to our knowledge none of the reinforced
random walk models presented in the literature are related to a (non-constant)
potential or fitness function but only keep track of the number of time an edge
or a vertex has been visited.

The long time behavior of traditional reinforced random walks is also gener-
ally studied on finite graphs or on the integer lattice using urn’s processes and
random environment techniques or Robbins-Monro’s type approximation anal-
ysis. As mentioned in the introduction we will not discuss the same stability
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questions and our strategy is rather based on measure valued processes and
semigroup techniques. We also make no restrictions on the state space and we
illustrate most of our results on a class of genetic type SIMC models. Other
examples including the SIMC versions of Gaussian and Poisson mean field in-
teractions will also be considered.

It is transparent from (1) that the sequence of occupation measures

Sn =
1

n + 1

n∑

p=0

δXp

forms a time inhomogeneous Markov process in distribution space. More pre-
cisely for any bounded measurable function G on P(E) we have

E(G((n + 1)Sn) | Sn−1) =
∫

E
G(n Sn−1 + δx) Φ(Sn−1)(dx)

When the mapping Φ is regular enough it is natural to expect that Sn F-weakly
converges as the time parameter n tends to infinity to the fixed point µ = Φ(µ)
(whenever it exists) of the mapping Φ.

A set F of E-measurable functions will be called a test functions collection
if for all f ∈ F , ‖f‖∞ ≤ 1 and if dF is a complete metric on P(E), where by
definition

∀ p1, p2,∈ P(E), dF (p1, p2) = sup
f∈F

|p1(f) − p2(f)|

The first example of a test functions collection one think about is the largest
possible choice

F = {f E − measurable : ‖f‖∞ ≤ 1}

Then the distance dF is complete, since it is given by twice the total variation
norm.
One also recover the latter by considering

F = {f/‖f‖∞ : f ∈ Cb(E) \ {0}}

where Cb(E) is the set of bounded continuous functions, if E is a Polish topo-
logical space (endowed with its Borelian σ-field E). But in this context, one can
also end up with a distance dF metrizing the weak convergence, by considering
for instance

F = {fn/(Mn ‖fn‖∞) : n ∈ N}

where (fn)n∈N is weak convergence determining sequence of Cb(E) (recall that
this means that a sequence of probability measures (mp)p∈N is weakly conver-
gent if and only if for all n ∈ N, (mp(fn))p∈N is Cauchy in R) and where (Mn)n∈N
is a sequence of positive real numbers diverging to infinity.
We will use the following regularity condition.

(HΦ) There exists a test functions collection F such that for any (f, µ) ∈
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F × P(E) we can associate a subset H(f, µ) ⊂ F and a collection of numbers
bf,µ(h) ∈ [0, 1), h ∈ H(f, µ), satisfying the following inequality

|Φ(µ)(f) − Φ(ν)(f)| ≤
∑

h∈H(f,µ)

bf,µ(h) |µ(h) − ν(h)|

for any ν ∈ P(E) with βF (Φ) = sup{
∑

h∈H(f,µ) bf,µ(h) ; f ∈ F , µ ∈ P(E)} ∈
[0, 1).

If we denote by β(K) the contraction coefficient of the total variation distance
of distributions induced by the integral Markov operator K then we will check
that the genetic type self interacting chain (3) satisfies this condition with the
class of functions f , ‖f‖∞ ≤ 1, with oscillations osc(f) ≤ 1 and

βF (Φ) =
1

gmin
(osc(g) + ‖g‖∞) β(K) < 1 (4)

as soon as gmin = infE g > 0 and

sup
x,y

g(x)
g(y)

<
1
2

(
1

β(K)
+ 1

)

The case g = 1 correspond to linear interaction mappings Φ(m) = mK. In this
situation the contraction parameter βF (Φ) = β(K) coincide with the contrac-
tion coefficient of K. In this special case the chain is not attracted by sites
with high g-fitness but it has simply more chance to visit sites which have been
visited several times. Our first main result can be stated as follows.

Theorem 1.1 Suppose the mapping Φ satisfies condition (HΦ) for some set
of functions F . Then there exists a unique fixed point µ = Φ(µ) ∈ P(E) and
the occupation measure Sn F-weakly converges to µ in probability.. In addition
for any f ∈ F we have three different types of L2-mean error decays:

βF (Φ) > 1/2 ⇒ n2(1−βF (Φ)) E((Sn(f) − µ(f))2) ≤ c

βF (Φ) < 1/2 ⇒ (1 − 2βF (Φ)) n E((Sn(f) − µ(f))2) ≤ c

βF (Φ) = 1/2 ⇒ n/log(n) E((Sn(f) − µ(f))2) ≤ c

for some finite constant c < ∞ which doesn’t depend on the function f nor on
the time parameter.

When the Markov transition K is given by

K(x, dy) = ε δx(dy) + (1 − ε) µ(dy)

for some ε ∈ (0, 1] and some measure µ ∈ P(E) the SIMC model produces with
probability (1 − ε) independent and identically distributed random variables
with distribution µ and with a probability ε it tends to repeat the previous sites
with a probability proportional to the number of times they have been visited.
For this particular model with linear interactions most of the calculations can be
done explicitly. For instance we have that βF (Φ) = β(K) = ε. In section 2.1.1
we propose a detailed analysis of this sequence of ε-interacting variables. We
will show that in this situation the above three different behaviors are sharp.
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So at least under the assumptions of theorem 1.1, the SIMC algorithm fulfills
the goal for which it was introduced, namely to find the invariant probability
µ for Φ. But in some cases, we can consider another type of SIMC to reach
this objective. This will also enable us to come a little closer to usual simple
reinforced walk, where the next step of the chain also depends specifically on
its previous state.
We now suppose the mapping Φ can be written in the following form

Φ(m) = mKm (5)

for some collection of Markov transitions Km indexed by m ∈ P(E) (more
precisely, a natural measurability property of Km in m will always be implicitly
assumed). In this situation an alternative model is defined by replacing (1) by
the elementary transitions

P(Xn ∈ dx | Fn−1) = K 1
n

∑n−1
p=0 δXp

(Xn−1, dx) (6)

The study of this class of SIMC models is a little more involved than the previous
one. Note that in this situation the pair (Xn, Sn) forms a Markov chain. For
any bounded measurable functions G on the product space (E×P(E)) we have

E(G(Xn, (n + 1)Sn) | (Xn−1, Sn−1)) =
∫

E
G(x, n Sn−1 + δx) KSn−1(Xn−1, dx)

To illustrate this new class of SIMC models let us present a couple of examples
connected to the genetic search algorithm (2).
When the potential function g is strictly greater than 1 we can rewrite the
genetic mapping Φ defined in (2) in the form (5). As noticed in [6] the choice
of Km is not unique. We can choose for instance

Km(x, dz) =
∫

E
Lm(x, dy) K(y, dz) (7)

where Lm(x, dy) denotes the Markov transition defined by

Lm(x, dy) = 1/m(g) δx(dy) + (1 − 1/m(g)) Ψ′(m)(dy)

with
Ψ′(m)(f) = m(f g′)/m(g′) and g′ = g − 1

To have an intuitive feel of the corresponding SIMC model we notice that the
former transition is again decomposed in a two step selection/mutation evolu-
tion. The mutation mechanism of the two models coincide but in the former
selection the particle Xn+1 has a probability 1/Sn(g) for staying in the same
place and a probability 1 − 1/Sn(g) for selecting randomly a site Xp, p ≤ n,
with distribution

Ψ′(Sn) =
n∑

p=0

g′(Xp)∑n
p=0 g′(Xq)

δXp

Using the same notations as above suppose now the Markov transitions Km are
defined as follows

Km(x, dy) = a K(x, dy) + b Ψ(m)(dy) with Ψ(m)(f) = m(fg)/m(g) (8)

for some a, b ∈ (0, 1) such that a+b = 1. Here the particle Xn decides randomly
to perform a selection or a mutation transition. With a probability a it evolves
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according to the mutation transition K and with a probability b it selects a site
Xp, 0 ≤ p < n, according to the discrete distribution

Ψ(
1
n

n−1∑

p=0

δXp) =
n−1∑

p=0

g(Xp)∑n−1
q=0 g(Xq)

δXp

Here again, when the transitions Km are sufficiently regular, it is natural to
expect that the occupation measures Sn again converge to the fixed point
µ = Φ(µ) = µKµ.

The asymptotic behavior of the SIMC model (6) will be studied with the
stronger hypothesis:

(HK) For each m ∈ P(E) there exists a unique invariant measure π(m) =
π(m)Km ∈ P(E). There also exists a test functions collection F such that for
any (f, µ) ∈ (F×P(E)) we can associate a subset H(f, µ) ⊂ F and a collection
of numbers bf,µ(h) ∈ [0, 1), h ∈ H(f, µ), satisfying the following inequality

|π(µ)(f) − π(ν)(f)| ≤
∑

h∈H(f,µ)

bf,µ(h) |µ(h) − ν(h)| (9)

for any ν ∈ P(E) with βF (π) = sup{
∑

h∈H(f,µ) bf,µ(h) ; f ∈ F} ∈ (0, 1). In
addition, for each pair of measures (m1,m2) ∈ P(E) × P(E) and any pair of
functions (f1, f2) ∈ F × F with π(m1)(f1) = 0 = π(m2)(f2) we have

‖Kn
m1

(f1)−Kn
m2

(f2)‖∞ ≤ ε(n) [ ‖f1−f2‖∞ + ‖m1−m2‖tv ] , with
∑

n≥1

ε(n) < ∞

(10)

Theorem 1.2 Suppose condition (HK) is met for some set of functions F .
Then for each f ∈ F and p > 1 we have that

sup
n≥1

√
n E(|Sn(f) − Sπ

n(f)|p)1/p < ∞ with Sπ
n =

1
n + 1

n∑

q=0

π(Sq)

In addition the mapping π has a unique fixed point µ and for any f ∈ F we
have three different types of L2-mean error decays:

βF (π) > 3/4 ⇒ n2(1−βF (π)) E((Sπ
n(f) − µ(f))2) ≤ c

βF (π) < 3/4 ⇒
√

n E((Sπ
n(f) − µ(f))2) ≤ c

βF (π) = 3/4 ⇒
√

n/log(n) E((Sπ
n(f) − µ(f))2) ≤ c

for some finite constant c < ∞ which doesn’t depend on the function f nor on
the time parameter.

We readily observe that

Km(x, dy) = Φ(m)(dy) =⇒ π(m) = Φ(m) and ((HK) ⇐⇒ (HΦ))

In such a situation we also have that βF (π) = βF (Φ) and theorem 1.1 gives
when βF (Φ) ≤ 3/4 better rates of decays to equilibrium than theorem 1.2. We
believe that the latter can be improved and we conjecture that the rates pre-
sented in theorem 1.1 also hold for the SIMC model (6).
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An apparent difficulty with the SIMC model (6) is that the state of the chain
Xn at time n not only depends on the occupation measure Sn−1 but also on the
previous visited site Xn−1. To deal with this difficulty we have added an aux-
iliary regularity condition on the composite mappings Kn

m. This new condition
is more difficult to check in practice. In the further development of section 3.2
we illustrate the regularity condition (HK) with several examples with a re-
spective constant, linear and non-linear mapping π : P(E) → P(E).

We already mention that the two evolutionary SIMC models (7) and (8) sat-
isfy condition (HK) with the class of functions f , ‖f‖∞ ≤ 1, with oscillations
osc(f) ≤ 1. For instance in the second case we have

π(m) = Ψ(m)Ka and βF (π) =
osc(g) + ‖g‖∞

gmin

b

1 − β(K)a
(11)

with the resolvent kernel Ka = b
∑

n≥0 anKn. Note that βF (π) < 1 as soon as
the pair (g,K) is chosen such that gmin > 0 and

sup
x,y

g(x)
g(y)

< 1 +
a

2b
(1 − β(K))

1.2 Some terminology and preliminary results

We let (E, E) be a general measurable space and we denote by P(E) the set of
all probability measures on (E, E) with the total variation norm

‖m1 − m2‖tv := sup
A∈E

|m1(A) − m2(A)|

We recall that a Markov transition K(x, dz) on E generates two integral oper-
ations from the left and from the right. The first one acting on the set Bb(E) of
bounded E-measurable functions f : E → R and the second one on probability
measures m ∈ P(E)

Kf(x) =
∫

E
K(x, dy) f(y) mK(A) =

∫

E
m(dx) K(x,A)

We also define inductively the step Markov transitions Kn(x, dy)

Kn(x,A) =
∫

K(x, dy) Kn−1(y,A)

for each (x,A) ∈ E × E and n ≥ 0. For n = 0 we use the convention
K0(x, dy) = δx(dy).
Given a function f ∈ Bb(E) we denote ‖f‖∞ and fmin respectively the supre-
mum norm and the infimum

‖f‖∞ = sup
x∈E

|f(x)| and fmin = inf
x∈E

f(x)

Next we list some class of functions that will be of use in the article. We denote
Osc1(E) the convex set of E-measurable functions f with oscillations less than
one, that is

osc(f) = sup {|f(x) − f(y)| ; x, y ∈ E} ≤ 1
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We also introduce the subset

Bosc1(E) = {f ∈ Osc1(E) ; ‖f‖∞ ≤ 1}

When the state space is a metric space (E, d) we denote by Lip1(E) the convex
set of all bounded measurable functions f on E such that

‖f‖∞,L = ‖f‖∞ ∨ ‖f‖L ≤ 1

where

‖f‖L = sup{|f(x) − f(y)|/d(x, y) , x, y ∈ E : d(x, y) 2= 0}

To clarify the presentation we will slight abuse notations and unless otherwise
stated c denotes a constant whose values may vary from line to line but it does
not depend on the time parameter nor on the test function we will consider.

The degree of contraction of the total variation distance of probability mea-
sures induced by K is defined by

β(K) = sup
m1,m2∈P(E)

‖m1K − m2K‖tv

‖m1 − m2‖tv
= sup

x,y∈E
‖K(x, .) − K(y, .)‖tv (12)

It can also be defined in terms of the Dobrushin’s ergodic coefficient

α(K) = 1 − β(K) = inf
m∑

i=1

min (K(x,Ai),K(z,Ai)) (13)

where the infimum is taken over all x, z ∈ E and all resolutions of E into par-
titions {Ai ; 1 ≤ i ≤ m} and m ≥ 1 (see for instance [11]).

To study the asymptotic behavior of SIMC it is convenient to describe β(K) as
the contraction of oscillations of functions induced by K.

Lemma 1.3 For any pair of probability measures (m1,m2) on E we have

‖m1 − m2‖tv = sup {|m1(f) − m2(f)| ; f ∈ Osc1(E)}

For any Markov transition K on E the contraction coefficient β(K) can alter-
natively be defined by

β(K) = sup {osc(Kf) ; f ∈ Osc1(E)} (14)

Proof: To prove the first assertion we recall that the total variation distance
between two probability measures m1 and m2 can alternatively be defined in
terms of a Hahn-Jordan decomposition m1 − m2 = m+ − m− with

‖m1 − m2‖tv = m+(E) = m−(E)

From this observation we have for any f ∈ Osc1(E)

|m1(f) − m2(f)| = |
∫

f(x) m+(dx) −
∫

f(y) m−(dy)|

= ‖m1 − m2‖tv |
∫

(f(x) − f(y))
m+(dx)
m+(E)

m−(dy)
m−(E)

|

≤ ‖m1 − m2‖tv
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By taking the supremum over all f ∈ Osc1(E) we find that

sup {|m1(f) − m2(f)| ; f ∈ Osc1(E)} ≤ ‖m1 − m2‖tv

The reverse inequality can be check easily by noting that the indicator functions
1A of measurable sets A ∈ E , belong to Osc1(E). Using this representation we
obtain

β(K) = sup
x,y∈E

‖K(x, .) − K(y, .)‖tv

= sup
x,y∈E

sup {|Kf(x) − K(f)(y)| ; f ∈ Osc1(E)}

= sup {sup
x,y

|Kf(x) − K(f)(y)| ; f ∈ Osc1(E)}

and therefore

β(K) = sup {osc(K(f)) ; f ∈ Osc1(E)}

and the proof of (14) is now completed.

For any δ 2= 0 and n ≥ 1 we define

dδ(n) =
nδ − 1

δ
≥ 0 and d0(n) = log(n)(= lim

δ→0
dδ(n))

For δ > 0, respectively δ < 0, we notice that

dδ(n) ≤ nδ/δ , resp. dδ(n) ≤ 1/|δ|

Because of the central importance in this article of the next technical lemma
we have included a detailed proof. However its proof is somewhat technical and
may be skipped at a first reading.

Lemma 1.4 For any 1 ≤ p ≤ n we have

log
(

n + 1
p + 1

)
≤

n∑

q=p+1

1
q
≤ log

(
n

p

)
(15)

If ε ≥ 0 and if we put s =
∑

p≥1 1/p2(< ∞) then we have that

e−sε2
(

n + 1
p + 1

)ε

≤
n∏

q=p+1

(
1 +

ε

q

)
≤

(
n

p

)ε

(16)

For 0 ≤ ε ≤ 1 we have that

1
e

( p

n

)ε
≤

n∏

q=p+1

(
1 − ε

q

)
≤

(
p + 1
n + 1

)ε

(17)

and for −1 ≤ ε ≤ 1

1
2

dε(n)
nε

≤
n∑

p=1

1
p1+ε

≤ 1 +
dε(n)
nε

(18)
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Proof: The proof of (15) is simply based on the two integral estimates

log
(

n + 1
p + 1

)
=

n∑

q=p+1

∫ q+1

q

dt

t
≤

n∑

q=p+1

1
q
≤

n∑

q=p+1

∫ q

q−1

dt

t
= log

(
n

p

)

To prove (16) we recall that for any x ≥ 0

log x ≤ x − 1 (19)

This yields for any ε ≥ 0
n∏

q=p+1

(
1 +

ε

q

)
= exp

n∑

q=p+1

log
(

1 +
ε

q

)
≤ exp

n∑

q=p+1

ε

q
≤

(
n

p

)ε

To prove the reverse estimate we use the fact that

x log x ≥ x − 1 (20)

for any x ≥ 0. From this inequality we also obtain for x > 0

log (x + 1)
x

≥ 1 − x

x + 1

If we take x = ε/q we conclude that

log
(

1 +
ε

q

)
≥ ε

q
− ε2

q (q + ε)
≥ ε

q
− ε2

q2

Therefore using (15) we conclude that
n∏

q=p+1

(
1 +

ε

q

)
= exp

n∑

q=p+1

log
(

1 +
ε

q

)
≥ exp

n∑

q=p+1

[
ε

q
− ε2

q2
]

≥ exp [−sε2 +
n∑

q=p+1

ε

q
] ≥ e−sε2

(
p + 1
n + 1

)ε

To prove (17) we use again (20) to check first that for any 0 ≤ x < 1

(1 − x) log (1 − x) ≥ −x

If we take x = ε/q then for any q ≥ 2 we have that

log (1 − ε/q) ≥ − ε

q

q

q − ε
= − ε

q − ε
≥ − ε

q − 1

This together with (15) imply that for any 1 ≤ p ≤ n

n∏

q=p+1

(
1 − ε

q

)
= exp

n∑

q=p+1

log
(

1 − ε

q

)
≥ exp [−ε

n∑

q=p+1

1
q − 1

]

≥ exp [− ε

p
−

n−1∑

q=p+1

ε

q
] ≥ exp [−ε −

n∑

q=p+1

ε

q
] ≥ e−1

( p

n

)ε

To prove the reverse estimation we again use (19) to check by (15) that
n∏

q=p+1

(
1 − ε

q

)
= exp

n∑

q=p+1

log
(

1 − ε

q

)
≤ exp [−ε

n∑

q=p+1

1
q
] ≤

(
p + 1
n + 1

)ε

11



To prove (18) we first suppose that 0 < ε ≤ 1. In this case we have the estimates

n∑

p=1

ε

p1+ε
≤ ε (1 +

n∑

p=2

∫ p

p−1

dt

t1+ε
) = ε − (n−ε − 1) = 1 + ε − n−ε

and
n∑

p=1

ε

p1+ε
≥ ε

n∑

p=1

∫ p+1

p

dt

t1+ε
= 1 − (n + 1)−ε

We end the proof in this situation by noting that

1
ε

(1 + ε − n−ε) = 1 +
1 − n−ε

ε
= 1 +

nε − 1
εnε

= 1 +
dε(n)
nε

and

1
ε

(1 − (n + 1)−ε) =
dε(n + 1)
(n + 1)ε

≥ dε(n)
(n + 1)ε

≥ dε(n)
nε

(
n

n + 1

)ε

≥ 1
2ε

dε(n)
nε

≥ 1
2

dε(n)
nε

In much the same way we have that for 0 < ε ≤ 1,

n∑

p=1

ε

p1−ε
≤ ε (1 +

n∑

p=2

∫ p

p−1

dt

t1−ε
) = ε + (nε − 1)

and
n∑

p=1

ε

p1−ε
≥ ε

n∑

p=1

∫ p+1

p

dt

t1−ε
= (n + 1)ε − 1

This implies that

dε(n) ≤ dε(n + 1) ≤
n∑

p=1

1
p1−ε

≤ 1 + dε(n)

On the other hand we note that

dε(n) =
1 − n−ε

εn−ε
=

n−ε − 1
(−ε)n−ε

=
d−ε(n)
n−ε

Therefore
d−ε(n)
n−ε

≤
n∑

p=1

1
p1−ε

≤ 1 +
d−ε(n)
n−ε

and the proof of (18) is complete for any ε ∈ [−1, 1] − {0}. For ε = 0 we can
take the limits ε → 0 in the above estimates or simply check directly that

1
2

log n ≤ log (n + 1) ≤
n∑

p=1

1
p
≤ 1 + log n

This ends the proof of the lemma.
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2 Asymptotic behavior

This section is mainly concerned with the proof of theorem 1.1 and theorem 1.2.
We have chosen to separate the analysis in two parts. In a first subsection 2.1
we examine SIMC models with linear interactions. We begin with a model of
ε-interacting random variables in which most of all calculations can be done
explicitly. As we mentioned earlier in this example the decays to equilibrium
presented in theorem 1.1 are sharp. The general linear SIMC model is treated
in subsection 2.1.2. The proof of the estimates is essentially identical to the one
of the ε-interacting sequence. Section 2.2 discusses the long time behavior of the
two classes of non-linear SIMC models (1) and (6). Applications are presented
in the further development of section 3.

2.1 Linear self-interacting models

We consider SIMC models (1) associated to a linear mapping of the form

Φ(m) = mK

where K is a Markov transition on E. These models have a linear structure
which makes it easy to analyze in details their asymptotic behavior in terms
of the contraction coefficient β(K) of the underlying transition K. Under the
assumption that β(K) < 1 the limiting distribution is the unique invariant
measure µ of the Markov transition K. If now we let

E(Sn(f)) = Sn(f)

denote the expected occupation measure associated to the SIMC model (1) with
initial distribution η then we will check that

‖Sn − µ‖tv ≤ 2
n1−β(K)

‖η − µ‖tv

Note that it is not plausible to obtain useful convergence results when β(K) = 1.
For instance if K(x, dy) = δx(dy) then the whole chain is stuck in the initial
point and Sn = δX0 .

This section is organized as follows. In a first subsection we analyze the linear
SIMC model associated to the Markov transition

K(x, dy) = ε δx(dy) + (1 − ε) µ(dy)

The resulting SIMC model simply consists in a sequence of ε-interacting random
variables. The general linear SIMC model is treated in section 2.1.2. We also
provide examples of transitions K such that β(K) < 1.

2.1.1 A sequence of ε-interacting variables

Let (µ, η) be a pair of probability measures on E and let ε ∈ [0, 1]. In this section
we consider the SIMC model Xn with initial distribution η and elementary
transitions

P(Xn+1 ∈ dx |Fn ) = ε Sn(dx) + (1 − ε) µ(dx)

With a probability ε the particle Xn+1 returns randomly and uniformly to one
of the previous states Xp, 0 ≤ p ≤ n and with a probability (1 − ε) it chooses

13



a new independent site according to the distribution µ. This model correspond
to the situation (1) with

Φ(m) = mKε and Kε(x, dy) = ε δx(dy) + (1 − ε) µ(dy)

We also notice that the measure µ is the unique fixed point of the mapping Φ.
When the parameter ε is null and η = µ the chain reduces to a sequence of
independent and identically distributed random variables with distribution µ.
In this special case and by the law of large numbers the occupation measure Sn

converges to µ as the time parameter tends to infinity. For instance we have
that

E((Sn(f) − µ(f))2) =
1

n + 1
σ2

µ(f) with σµ(f) = µ((f − µ(f))2)1/2

When the interaction parameter ε ∈ (0, 1) it is natural to expect that the
occupation measure Sn still converges to the fixed point µ but with a rate
which depends on ε. It is convenient at this point to make a couple of remarks:
First of all we notice that at each time the chain has a probability (1 − ε) to
visit a new random site according to µ and with a probability ε it chooses an
occupied site with a probability proportional to the number of time the latter
has been visited. In this sense the chain is attracted by sites which have been
visited several times. We also notice that if ε ≤ 1/2 then the chain has more
chance to visit independent random sites with probability µ. In the opposite
it tends to return randomly to the previous ones. In this sense ε measures the
degree of interaction in the SIMC model.
The second remark is that the parameter ε also characterizes the contraction
of the mapping Φ and the Dobrushin’s coefficient of the Markov transition Kε.
More precisely for any m1,m2 ∈ P(E) we have that

Φ(m1) − Φ(m2) = ε (m1 − m2) and β(Kε) = ε

Proposition 2.1 For any n ≥ 1 we have

Sn − µ = a(n) (η − µ)

with

a(n) =
n∏

p=1

p + ε

p + 1
and 1/(2e) ≤ n1−ε a(n) ≤ 2 (21)

Assume that η = µ and put δ = 2ε− 1(∈ [−1, 1]). In this case there exists some
finite constant c ≥ 1 such that

1
c

dδ(n) ≤ n E((Sn(f) − Sn(f))2) ≤ c (dδ(n) + nδ) (22)

for any measurable function f such that σµ(f) = 1.

This proposition shows that there exits three types of behavior depending if ε
is greater or lower or equal to 1/2.

δ > 0 ⇒ E((Sn(f) − Sn(f))2) ≤ c/n1−δ

δ < 0 ⇒ E((Sn(f) − Sn(f))2) ≤ c/(|δ|n)
δ = 0 ⇒ E((Sn(f) − Sn(f))2) ≤ c log (n)/n

14



Proof: To prove (21) we first assume that µ(f) = 0. In this case we have

Sn(f) =
n

n + 1
Sn−1(f) +

ε

n + 1
Sn−1(f) =

n + ε

n + 1
Sn−1(f) = a(n) η(f)

Consequently for all bounded measurable functions f

Sn(f) − µ(f) = Sn(f − µ(f)) = a(n) (η(f) − µ(f))

To prove (22) we introduce the decomposition

Sn(f) − Sn(f) =
n

n + 1
(Sn−1(f) − Sn−1(f)) +

1
n + 1

(f(Xn) − Sn−1Kε(f))

By definition of Kε we have for any m1,m2 ∈ P(E)

(m1Kε − m2Kε) = ε (m1 − m2)

Consequently

E ( [Sn−1(f) − Sn−1(f)] [f(Xn) − Sn−1Kε(f)] )
= E( [Sn−1(f) − Sn−1(f)] [Sn−1Kε(f) − Sn−1Kε(f)] ) = ε E((Sn−1(f) − Sn−1(f))2)

Therefore if we put

In(f) = (n + 1)2 E((Sn(f) − Sn(f))2)

then we have

In(f) = (1 + 2ε/n) In−1(f) + E( [f(Xn) − Sn−1Kε(f)]2)

Now we notice that

E( [f(Xn) − Sn−1Kε(f)]2) = Sn−1Kε(f2) − (Sn−1Kε(f))2

Using (21) we find that

SnKε(f2) = ε Sn(f2) + (1 − ε) µ(f2)
= ε a(n) η(f2) + ε (1 − a(n)) µ(f2) + (1 − ε) µ(f2)
= εa(n) η(f2) + (1 − εa(n)) µ(f2)

and

[SnKε(f)]2 = [εa(n) η(f) + (1 − εa(n)) µ(f)]2

If we combine these two expressions we obtain

E( [f(Xn+1) − SnKε(f)]2)

= εa(n)ση(f) + (1 − εa(n))σµ(f) + εa(n)(1 − εa(n)) (η(f) − µ(f))2

If we take η = µ we readily obtain

E( [f(Xn+1) − SnKε(f)]2) = σµ(f)

If we choose f such that osc(f) ≤ 1 we immediately obtain

In(f) ≤ (1 + 2ε/n) In−1(f) + 1 =
n∑

p=0

Ip,n(f)
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with

Ip,n(f) =
n∏

q=p+1

(1 + 2ε/q)

To end the proof of the proposition we use the following technical lemma 1.4.
By (17) we have for any n ≥ 1

a(n) =
n∏

p=1

(
1 − (1 − ε)

p + 1

)
=

n+1∏

p=2

(
1 − (1 − ε)

p

)
≤

(
2

n + 2

)1−ε

≤ 21−ε

(
n

n + 2

)1−ε 1
n1−ε

≤ 2
n1−ε

and

a(n) =
n+1∏

p=2

(
1 − (1 − ε)

p

)
≥ e−(1−ε)

(
1

n + 1

)1−ε

≥ 1
e

(
n

n + 1

)1−ε 1
n1−ε

≥ 1
21−εe

1
n1−ε

≥ 1
2e

1
n1−ε

This ends the proof of (21). By (16) we have for any 1 ≤ p ≤ n

e−4s ((n + 1)/(p + 1))2ε ≤ Ip,n(f) ≤ (n/p)2ε

For p = 0 we use the fact that

e−4s

4
(n + 1)2ε ≤ e−4s

22ε
(n + 1)2ε ≤ I0,n(f) = I1,n(f) (1 + 2ε) ≤ 3 n2ε

If we put δ = 2ε − 1 then by (18) we obtain

In(f)/(n + 1)2 ≤ 1
n1−δ



3 +
n∑

p=1

1
p1+δ





≤ 1
n1−δ

(
4 +

dδ(n)
nδ

)
=

1
n

(
4nδ + dδ(n)

)

and

In(f)/(n + 1)2 ≥ e−4s

4
1

(n + 1)1−δ



1 +
n+1∑

p=2

1
p1+δ





≥ e−4s

4
1

n1−δ

(
n

n + 1

)1−δ n∑

p=1

1
p1+δ

≥ e−4s

421−δ

1
n1−δ

1
2

dδ(n)
nδ

≥ e−4s

25

dδ(n)
n
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2.1.2 General linear models

In this section we analyze the asymptotic behavior of an abstract SIMC model
associated to a linear mapping Φ. We suppose this mapping is defined as follows

Φ(m) = mK (23)

for some Markov transition K on E such that β(K) < 1. Again we recall that
this condition guarantees the existence and the uniqueness of a fixed point

µ = µK ∈ P(E)

Using the alternative representation (14) of the contraction coefficient β(K)
stated in lemma 1.3 it is easily verified that the linear mapping (23) satisfies
condition (HΦ) with

F = Bosc1(E)
H(f, µ) = { [K(f) − µK(f)]/β(K) } and βF (Φ) = β(K)

The contraction coefficient β(K) is tied to mixing properties of the Markov
transition K. For instance suppose there exists a probability measure ν ∈ P(E)
and a positive number ε ∈ (0, 1] such that for any (x,A) ∈ (E × E)

K(x,A) ≥ (1 − ε) ν(A) (24)

Then, by (13) we have that β(K) ≤ ε. Next we present two examples which
indicate that this condition is more connected to mixing properties of K rather
than compactness properties of the state space.

Example 1 Let E = R and let a : R → R be a bounded Borel function. One
can check that the bi-Laplace transition

K(x, dy) =
c

2
e−c|y−a(x)| dy

with 0 < c < ∞ satisfies (24) with

ν(dy) =
c

2
e−c|y| dy and ε = 1 − e−c‖a‖∞

Example 2 Let E = {xi ; i ∈ I} be a collection of states indexed by a countable
set I. Let K be the Markov transition defined by

K(x, dy) =
∑

i∈I

ai(x) δxi

for some positive functions {ai ; i ∈ I} on the set E such that
∑

i∈I ai = 1.
Recalling that

‖K(x,.) − K(y,.)‖tv =
1
2

∑

i∈I

|K(x, xi) − K(y, xi)|

by (12) we find that β(K) < 1 as soon as
∑

i∈I osc(ai) < 2.
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Proposition 2.2 For any n ≥ 1 we have the estimate

‖Sn − µ‖tv ≤ 2
n1−β(K)

‖η − µ‖

In addition for any f ∈ Osc1(E) we have

n E((Sn(f) − Sn(f))2) ≤ c (dδ(K)(n) + nδ(K)) with δ(K) = 2β(K) − 1

As observed in section 2.1.1 the above estimates induce three different types of
decays

β(K) > 1/2 ⇒ E((Sn(f) − Sn(f))2) ≤ c/n2(1−β(K))

β(K) < 1/2 ⇒ E((Sn(f) − Sn(f))2) ≤ c/(|1 − 2β(K)|n)
β(K) = 1/2 ⇒ E((Sn(f) − Sn(f))2) ≤ c log (n)/n

From proposition 2.1 we recall that these estimates cannot be improved without
adding some some additional regularity condition on the Markov transition K.
Proof: We use the fact that Sn can be represented in the form

Sn =
n

n + 1
Sn−1 +

1
n + 1

Sn−1K = Sn−1Kn

with
Kn(x, dy) =

n

n + 1
δx(dy) +

1
n + 1

K(x, dy)

It is also easy to check that µ = µKn. It follows that

Sn = ηK1 . . . Kn and µ = µK1 . . . Kn

By definition of Dobrushin’s contraction coefficient we see that

‖Sn − µ‖tv ≤
n∏

p=1

β(Kp) ‖η − µ‖tv

Since we have for each n ≥ 1

β(Kn) ≤ n + β(K)
n + 1

we conclude that

‖Sn − µ‖tv ≤
n∏

p=1

p + β(K)
p + 1

‖η − µ‖tv

The first statement is now easily proved by applying lemma 1.4. More precisely
using (17) we have that

n∏

p=1

p + β(K)
p + 1

=
n+1∏

p=2

(
1 − 1 − β(K)

p

)
≤

(
2

n + 2

)1−β(K)

≤ 2
n1−β(K)

To prove the second assertion we choose f ∈ Osc1(E) and we note

In(f) = (n + 1)2 E((Sn(f) − Sn(f))2)
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By definition of the SIMC we have

In(f) = In−1(f) + E( [f(Xn) − Sn−1Kε(f)]2) + 2n Jn−1(f,Kf) (25)

with
Jn(f, g) = E([Sn(f) − Sn(f)][Sn(g) − Sn(g)])

We observe that for any x, y ∈ E and m ∈ P(E)

|f(x) − m(f)| ≤
∫

|f(x) − f(y)| m(dy) ≤ 1

and

|K(f)(x) − K(f)(y)| ≤ sup {|K(g)(x) − K(g)(y)| ; g ∈ Osc1(E)}
= ‖K(x, .) − K(y, .)‖tv ≤ β(K)

From these observations it follows that

E( [f(Xn) − Sn−1Kε(f)]2) ≤ 1

and
f ∈ Osc1(E) =⇒ 1

β(K)
K(f) ∈ Osc1(E)

On the other hand, by Cauchy-Schwartz’s inequality

(n + 1)2 Jn(f,Kf) ≤ β(K) In(f)1/2 In(Kf/β(K))1/2

Therefore if we write

In = sup {In(f) ; f ∈ Osc1(E)}

we conclude from (25) that

In ≤ (1 + 2β(K)/n) In−1 + 1

We complete the proof using the same arguments as the end of the proof of
proposition 2.1.

2.2 Non-linear self-interacting models

In this section we analyze the long time behavior of the SIMC models (1) and
(6) associated respectively to an abstract mapping Φ : P(E) → P(E) and to a
collection of Markov transition {Km ; m ∈ P(E)}.
First we note that taking suprema over F in (HΦ), we obtain that

∀ µ, ν ∈ P(E), dF (Φ(µ),Φ(ν)) ≤ βF (Φ)d(µ, ν)

so that an usual fixed point theorem shows there exists a unique µ ∈ P(E)
verifying µ = Φ(µ).
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2.2.1 Proof of theorem 1.1

The aim of this section is to prove theorem (1.1). We suppose condition (HΦ) is
met for some class of functions F and we denote by Sn the occupation measure
at time n associated to the SIMC model (1). For each f ∈ F we write

In(f) = (n + 1)2 E((Sn(f) − µ(f))2) and In = sup {In(f) ; f ∈ F}

where µ = Φ(µ) stands for the unique fixed point of the mapping Φ. Using the
decomposition

Sn(f) − µ(f) =
n

n + 1
[Sn−1(f) − µ(f)] +

1
n + 1

[f(Xn) − Φ(µ)(f)]

we first show that

In(f) = In−1(f) + E( [f(Xn) − Φ(µ)(f)]2) + 2n Cn−1(f) (26)

with
Cn(f) = E([Sn(f) − µ(f)] [Φ(Sn)(f) − Φ(µ)(f)])

Under our assumptions we have that

|Φ(Sn)(f) − Φ(µ)(f)| ≤
∑

h∈H(f,µ)

bf,µ(h) |Sn(h) − µ(h)|

This implies that

|Cn(f)| ≤
∑

h∈H(f,µ)

bf,µ(h) E(|Sn(f) − µ(f)| |Sn(h) − µ(h)|)

By Cauchy-Schwartz’s inequality and taking the supremum over all f ∈ F in
the right hand side we obtain

(n + 1) |Cn(f)| ≤ βF (Φ) In

Finally by (26) we conclude that

In ≤ (1 + 2βF (Φ)/n) In−1(f) + 2

≤
n∏

p=1

(
1 +

2βF (Φ)
p

)
η[(f − µ(f))2] + 2

n∑

p=1

n∏

q=p+1

(
1 +

2βF (Φ)
q

)

The end of the proof now follows the same lines of arguments as the end of
proof of proposition 2.1.

2.2.2 Proof of theorem 1.2

In this section we suppose condition (HK) is met for some class of functions F
and we denote by Sn the occupation measure at time n associated to the SIMC
model (6). Under (HK) there exists for each m a Km-invariant measure

π(m) = π(m)Km ∈ P(E)

We associate to the mapping π : P(E) → P(E) and to the distribution flow Sn

the random measures

Sπ
n =

1
n + 1

n∑

q=0

π(Sq)

Furthermore, in quite the same way as in the beginning of subsection 2.2, we
see there exists a unique fixed point µ = π(µ).
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Proposition 2.3 For each f ∈ F and p > 1 we have that

sup
n≥1

√
n E(|Sn(f) − Sπ

n(f)|p)1/p < ∞

Proof: Given a function f ∈ F and a distribution m on E we have a solution
gm of the Poisson’s equation

f − π(m)(f) = gm − Km(gm)

and it is given by
gm =

∑

n≥0

Kn
m(f − π(m)(f))

Furthermore under our assumptions we have that

‖gm‖∞ ≤ 2
∑

n≥0

ε(n)

For any n ≥ 0 we notice that
n∑

p=0

[f(Xp) − π(Sp)(f)] =
n∑

p=0

[gSp(Xp) − KSp(gSp)(Xp)]

Using the decomposition

gSp(Xp) − KSp(gSp)(Xp) = [gSp(Xp) − gSp+1(Xp+1)]

+[gSp+1(Xp+1) − gSp(Xp+1)]

+[gSp(Xp+1) − KSp(gSp)(Xp)]

we obtain
∑n

p=0[f(Xp) − π(Sp)(f)]

= −(gSn+1(Xn+1) − gS0(X0)) +
∑n

p=0(gSp+1 − gSp)(Xp+1) + Mn(f)

with the F -martingale

Mn(f) =
n∑

p=0

[gSp(Xp+1) − KSp(gSp)(Xp)]

Note that the quadratic variation of the latter is given by

[M(f)]n =
n∑

p=0

[gSp(Xp+1) − KSp(gSp)(Xp)]2 ≤ c (n + 1)

Using Burkholder’s inequality (cf. for instance (27), p.499 in [20]) we have for
any p > 1

E(|Mn(f)|p)1/p ≤ c(p)
√

n + 1

for some finite constant c(p) < ∞ which depends on the parameter p. In view
of (9) and (10) we have for any pair (m1,m2) of distributions

‖gm1 − gm2‖∞ ≤
∑

n≥0

ε(n) [|π(m1)(f) − π(m2)(f)| + ‖m1 − m2‖tv ]

≤ c ‖m1 − m2‖tv
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with c = (1 + 2βF (π))
∑

n≥0 ε(n) < ∞. Since ‖Sp+1 − Sp‖ ≤ 2/(p + 2) we
conclude that

‖gSp+1 − gSp‖∞ ≤ 2c/(p + 2)

and therefore

|
n∑

p=0

(gSp+1 − gSp)(Xp+1)| ≤ c log (n + 1)

If we combine the above estimates we obtain for sufficiently large values of the
time parameter

E(|
n∑

p=0

[f(Xp) − π(Sp)(f)]|p)1/p ≤ c′(p)
√

n + 1

for some finite constant c′(p) < ∞ which depends on the parameter p. This
ends the proof of the proposition.

Under our assumptions the mapping π : P(E) → P(E) has a unique fixed point

µ = π(µ) ∈ P(E)

In the next proposition we estimate the convergence decays of the flow Sπ
n

towards this equilibrium measure.

Proposition 2.4 For any f ∈ F we have three different types of L2-mean error
decays:

βF (π) > 3/4 ⇒ n2(1−βF (π)) E((Sπ
n(f) − µ(f))2) ≤ c

βF (π) < 3/4 ⇒
√

n E((Sπ
n(f) − µ(f))2) ≤ c

βF (π) = 3/4 ⇒
√

n

log(n)
E((Sπ

n(f) − µ(f))2) ≤ c

Proof: Let f ∈ F be given. For each n ≥ 0 we define

In(f) = Sπ
n(f)−µ(f) =

1
n + 1

n∑

p=0

[π(Sp)(f)−π(µ)(f)] and Jn = sup
f∈F

E(In(f)2)

We also introduce the decomposition

In(f) =
n

n + 1
In−1(f) +

1
n + 1

[π(Sn)(f) − π(µ)(f)] (27)

Using (9) we have

|π(Sn)(f) − π(µ)(f)| ≤
∑

h∈H(f,µ)

bf,µ(h) |Sn(h) − µ(h)| (28)

for some subset H(f, µ) ⊂ F and some collection of numbers bf,µ(h) ∈ [0, 1),
h ∈ H(f, µ) such that

βF (π) = sup{
∑

h∈H(f,µ)

bf,µ(h) ; f ∈ F} ∈ (0, 1)
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Using the decompositions

Sn − µ = [Sn − Sπ
n ] + [Sπ

n − µ]

Sπ
n − µ =

n

n + 1
[Sπ

n−1 − µ] +
1

n + 1
[π(Sn) − π(µ)]

=
n

n + 1
In−1 +

1
n + 1

[π(Sn) − π(µ)]

and from the inequality (28) we obtain

|π(Sn)(f) − π(µ)(f)| ≤
∑

h∈H(f,µ)

bf,µ(h) |Sn(h) − Sπ
n(h)|

+
n

n + 1

∑

h∈H(f,µ)

bf,µ(h) |In−1(h)|

+
1

n + 1

∑

h∈H(f,µ)

bf,µ(h) |π(Sn)(h) − π(µ)(h)|

≤ c

n + 1
+

∑

h∈H(f,µ)

bf,µ(h) [|Sn(h) − Sπ
n(h)| + |In−1(h)|]

Using proposition 2.3 and Cauchy-Schwartz’s inequality we note that for suffi-
ciently large n

E(|In−1(f)| |Sn(h) − Sπ
n(h)|) ≤ c/

√
n + 1

In much the same way we also check that for each f, h ∈ F

E(|In−1(f)| |In−1(h)|) ≤ E(|In−1(f)|2)1/2E(|In−1(h)|2)1/2

and
∑

h∈H(f,µ)

bf,µ(h) E(|In−1(f)| |In−1(h)|) ≤ βF (π) Jn−1

Using the decomposition (27) it is now easy to show that

Jn ≤ (
n

n + 1
)2 (1 +

2βF (π)
n

) Jn−1 +
c

(n + 1)2
√

n + 1

Thus we have

Jn ≤ c

(n + 1)2

n∑

p=0

[
n∏

q=p+1

(1 +
2βF (π)

q
)]

√
p + 1

Finally we use lemma 1.4 to demonstrate that

Jn ≤ c

n2(1−βF (π))
(1 +

n∑

p=1

p
1
2−2βF (π))

When βF (π) ∈ (3/4, 1] we have 2βF (π)− 1
2 > 1 and therefore n2(1−βF (π)) Jn ≤ c.

If βF (π) ∈ [0, 3/4) then we have 2βF (π) − 1
2 < 1 and

n∑

p=1

p
1
2−2βF (π) ≤ c n1−(2βF (π)− 1

2 )

In this situation we conclude that
√

n Jn ≤ c. Finally if βF (π) = 3/4 then we
have 2βF (π)− 1

2 = 1 and 2(1−βF (π)) = 1/2. This yields that
√

n Jn ≤ c log n
and the proof of the proposition is now completed.
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3 Applications

In this section we illustrate the verification of the regularity conditions (HΦ)
and (HK) for some specific examples.

In a first subsection 3.1 we consider the SIMC model (1) associated to a map-
ping Φ : P(E) → P(E). We first examine the genetic SIMC model (2). We
propose a sufficient condition on the fitness function and the mutation kernel
underwhich condition (HΦ) is met. We also illustrate this regularity condition
for Gaussian and Poisson SIMC models.

In section 3.2 we consider the SIMC model (6) associated to a collection of
Markov transitions {Km ; m ∈ P(E)}. Condition (HK) guarantees for each m
the existence of a Km-invariant measure π(m) = π(m)Km ∈ P(E). We exam-
ine situations in which the mapping π : P(E) → P(E) is respectively constant,
linear and non-linear. In the final subsection 3.2.3 we analyze the genetic SIMC
model (8) with random selection and mutation transitions. We propose a suffi-
cient condition on the triplet (a, g,K) underwhich condition (HK) is met. We
also initiate a comparison between this genetic model and the genetic model
(2).

3.1 Φ-interacting Markov chains

3.1.1 Genetic self-interactions

Consider the genetic SIMC model (3) associated to the mapping

Φ(m)(f) =
m(g (Kf))

m(g)

which we presented in the introductive section. Then we have the following
proposition.

Proposition 3.1 Suppose the potential function g and the mutation transition
K are chosen so that

gmin = 1 and sup
x∈E

g(x) <
1
2

(
1

β(K)
+ 1

)

Then the mapping Φ satisfies condition (HΦ) with

F = Bosc1(E) and βF (Φ) = (1 + 2osc(g)) β(K)

Remark 3.2: The first condition on the potential function is not really restric-
tive. When the infimum gmin > 0 we can replace in (2) the fitness function g
by g/gmin . More precisely let Φ(h) denotes the mapping from P(E) into itself
defined as in (2) by replacing the function g by h. We notice that

(1 + 2osc(h/hmin )) = (2osc(h) + hmin)/hmin

= (osc(h) + ‖h‖∞)/hmin

From this observation we find that the mapping Φ(h) satisfies (HΦ) with

βF (Φ(h)) = (osc(h) + ‖h‖∞)β(K)/hmin (29)
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In addition we have

sup
x,y

h(x)
h(y)

<
1
2

(
1

β(K)
+ 1

)
=⇒ βF (Φ(h)) < 1

The above condition relates the oscillations of the potential function h with the
mixing properties of the Markov mutation transition. The more K is mixing the
more the potential is allowed to oscillate. Note that if K(x, dy) = δx(dy) then
β(K) = 1 and this condition is never met. In fact in this degenerate situation
the SIMC reduces to Xn = X0 and the occupation measure Sn = δX0 which
just trivially converges to δX0 !

Proof of proposition 3.1: To prove that the mapping Φ satisfies (HΦ) we
use the decomposition

Φ(η)(f) − Φ(µ)(f) =
1

η(g)
(η(g [K(f) − Φ(µ)(f)]) − µ(g [K(f) − Φ(µ)(f)]))

Then we notice that

K(f)(x) − Φ(µ)(f) =
∫

(Kf(x) − Kf(y))
g(y)
µ(g)

µ(dy)

and
osc(K(f)) ≤ β(K) osc(f)

According to this observation if we set fµ(x) = f(x) − Φ(µ)(f) then we find
that

|g(x)K(fµ)(x) − g(y)K(fµ)(y)| ≤ |g(x) − g(y)| |K(fµ)(x)|
+g(y) |K(f)(x) − K(f)(y)|

≤ β(K) ( osc(g) + ‖g‖∞ ) osc(f)

Since ‖g‖∞ = osc(g) + 1 one gets for any f ∈ F

osc(gK(fµ)) ≤ βF (Φ) and ‖gK(fµ)‖ ≤ (osc(g) + 1) β(K) ≤ βF (Φ)

We conclude that condition (HΦ) is met with

H(f, µ) = { g [K(f) − Φ(µ)(f)]/βF (Φ) }

This end the proof of the proposition.

3.1.2 Gaussian and Poisson self-interactions

In this short section we illustrate condition (HΦ) in the context of Gaussian
and Poisson mean field interactions. Before presenting these two examples let
us start with a generic and abstract situation. Suppose (E, d) is a metric space
and let (E′, E ′) be an auxiliary measurable space and γ ∈ P(E′). Also suppose
θ : E′ ×P(E) → E is a measurable mapping satisfying the following condition.

|θ(x′,m1) − θ(x′,m2)| ≤
∑

h∈H

b(h) |m1(h) − m2(h)|

25



for some subset H ⊂ Lip1(E) and some collection of numbers {b(h) ; h ∈ H}
with β =

∑
h∈H b(h) < 1. We now associate to the pair (θ, γ) the non-linear

mapping Φ defined as

Φ(m)(f) =
∫

E′
f(θ(x′,m)) γ(dx′)

By the regularity condition on the mapping θ for any f ∈ Lip1(E) we have that

|Φ(m1)(f) − Φ(m2)(f)| ≤
∑

h∈H

b(h) |m1(h) − m2(h)|

Therefore condition (HΦ) holds with

F = Lip1(E) , H(f, µ) = H and βF (Φ) = β

Gaussian interactions

Let E = R and let Φ be the Gaussian type non-linear mapping

Φ(m)(dx) =
1√
2π

e−
1
2 (x−m(a))2 dx

for some a ∈ Lip1(E) with ‖a‖∞,L < 1. Arguing as above we check that
condition (HΦ) is satisfied with

F = Lip1(E) H(f, µ) = {a/‖a‖∞,L} and βF (Φ) = ‖a‖∞,L (30)

Poisson interactions

Let E = R and let Φ be the Poisson type non-linear mapping

Φ(m)(dx) = 1R+(x)
1

m(a)
e−x/m(a) dx

for some positive intensity function a ∈ Lip1(E) with ‖a‖∞,L < 1. For any
f ∈ Lip1(E) we have that

|φ(m1)(f) − φ(m2)(f)| ≤
∫

u |m1(a) − m2(a)| e−u du = |m1(a) − m2(a)|

Here again it is easily check that condition (HΦ) is satisfied with the same class
of functions and parameters (30).

3.2 Km-interacting Markov chains

3.2.1 Constant π-mapping

Suppose K(x, dy) is a Markov transition on E with β(K) < 1 and let a, b be
two measurable mappings from E into [0, 1] such that a + b = 1. We associate
to the pair (a, b) the collection of Markov transitions

Km(x, dy) = m(a) δx(dy) + m(b) K(x, dy) (31)
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Proposition 3.3 Suppose the triplet (a, b,K) satisfies the following condition

‖a‖∞ + ‖b‖∞ β(K) < 1

Then the Markov transition K has a unique invariant measure µ ∈ P(E) and
for each m ∈ P(E) and n ≥ 0 we have

π(m) = µ and Kn
m =

n∑

p=0

Cp
n m(a)n−p m(b)p Kp (32)

In addition Km satisfies (HK) for the class of functions

F = {f ∈ Bb(E) ; ‖f‖∞ ≤ 1} and βF (π) = 0

Remark 3.4: Let Sn be the occupation measure associated to the SIMC model
(6) with transitions (31). This proposition in conjunction with proposition 2.3
tells us that for each f ∈ Bb(E) and p > 1

sup
n≥1

√
n E(|Sn(f) − µ(f)|p)1/p < ∞

Proof of proposition 3.3: Under our assumptions we observe that β(K) < 1.
Thus, there exists a unique invariant measure µ = µK and for each m ∈ P(E)
we clearly have that π(m) = µ. From these observations condition (9) is trivially
satisfied with for any class of functions F with βF (π) = 0. The expression (32) is
proved by a simple induction on the time parameter n. Using the decomposition

Km(f)(x) − Km(f)(y) = m(a) (f(x) − f(y)) + m(b) (K(f)(x) − K(f)(y))

we see that

osc(Km(f)) ≤ [m(a) + m(b)β(K)] osc(f) ≤ βa,b(K) osc(f)

where
βa,b(K) = ‖a‖∞ + ‖b‖∞ β(K)

This yields that
sup

m∈P(E)
β(Km) ≤ βa,b(K)

From (32) we have immediately for any pair of measures (m1,m2) ∈ P(E) ×
P(E) and for any function f with ‖f‖∞ ≤ 1,

‖Kn
m1

(f) − Kn
m2

(f)‖∞

≤ 2
∑

p+q=n Cq
n ‖a‖p

∞ ‖b‖q
∞ β(K)q |m1(a)p m1(b)q − m2(a)p m2(b)q|

(33)
where

a = a/‖a‖∞ and b = b/‖b‖∞
It is now straightforward to check that

|m1(a)p − m2(a)p| = |m1(a) − m2(a)| |
p−1∑

k=0

m1(a)k m2(a)(p−1)−k|

≤ 2p ‖m1 − m2‖tv
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and similarly
|m1(b)q − m2(b)q| ≤ 2q ‖m1 − m2‖tv

Using the decomposition

m1(a)p m1(b)q − m2(a)p m2(b)q

= (m1(a)p − m2(a)p) m1(b)q + m2(a)p (m1(b)q − m2(b)q)

the above estimates give

|m1(a)p m1(b)q − m2(a)p m2(b)q| ≤ 2n ‖m1 − m2‖tv

for each p + q = n. From (33) this yields that

‖Kn
m1

(f) − Kn
m2

(f)‖∞ ≤ 4n βa,b(K)n ‖m1 − m2‖tv

Finally we notice that for any bounded measurable functions f1, f2 such that
µ(f1) = 0 = µ(f2), and for any m ∈ P(E)

‖Kn
m(f1) − Kn

m(f2)‖∞ = ‖Kn
m([f1 − f2] − µ([f1 − f2]))‖∞

≤ osc(Kn
m(f1 − f2)) ≤ β(Kn

m) osc(f1 − f2)
≤ 2βa,b(K)n ‖f1 − f2‖∞

This implies that

‖Kn
m1

(f1) − Kn
m2

(f2)‖∞ ≤ ‖Kn
m1

(f1) − Kn
m2

(f1)‖∞ + ‖Kn
m2

(f1 − f2)‖∞
≤ 4n βa,b(K)n ‖m1 − m2‖tv + 2βa,b(K)n ‖f1 − f2‖∞
≤ 4n βa,b(K)n [‖m1 − m2‖tv + ‖f1 − f2‖∞]

for any f1, f2 such that µ(f1) = 0 = µ(f2) and ‖f1‖∞, ‖f2‖∞ ≤ 1. We conclude
that (10) is satisfied with ε(n) = 4n βa,b(K)n.

3.2.2 Non-linear π-mapping

Consider next an abstract class of Markov transitions given by

Km(x, dy) = θ(m) δx(dy) + (1 − θ(m)) Φ(m)(dy)

where θ denotes a mapping from P(E) into [0, 1] and Φ a mapping from P(E)
into itself. Assume that

sup
P(E)

θ = ‖θ‖∞ < 1 and |θ(m1) − θ(m2)| ≤ k(θ) ‖m1 − m2‖tv

for some finite constant k(θ) < ∞ and for any m1,m2 ∈ P(E). Since we have
that

Km(f)(x) − Km(f)(y) = θ(m) (f(x) − f(y))

we readily observe that for any distribution m on E

β(Km) = θ(m) ≤ ‖θ‖∞ < 1
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We also notice that π(m) = Φ(m) and

Φ satisfies (HΦ) =⇒ Km satisfies (9)

By induction on the time parameter n it is also easily verified that

Kn
m(x, dy) = θ(m)n δx(dy) + (1 − θ(m)n) Φ(m)

Furthermore if f1 and f2 are chosen such that Φ(m1)(f1) = 0 = Φ(m2)(f2) then
we have that

Kn
m1

(f1) − Kn
m2

(f2) = θ(m1)n f1 − θ(m2)n f2

= θ(m1)n (f1 − f2) + f2 (θ(m1)n − θ(m2)n)

Under our assumptions we also have

|θ(m1)n − θ(m2)n| ≤ n (θ(m1) ∨ θ(m2))n−1 |θ(m1) − θ(m2)|
≤ n ‖θ‖n−1

∞ |θ(m1) − θ(m2)|
≤ n ‖θ‖n−1

∞ k(θ) ‖m1 − m2‖tv

from which we conclude that

‖Kn
m1

(f1) − Kn
m2

(f2)‖∞ ≤ ‖θ‖n
∞ ‖f1 − f2‖∞ + n ‖θ‖n−1

∞ k(θ) ‖m1 − m2‖tv

≤ n ‖θ‖n−1
∞ (1 ∨ k(θ)) [‖f1 − f2‖∞ + ‖m1 − m2‖tv ]

for any f1 and f2 such that Φ(m1)(f1) = 0 = Φ(m2)(f2) and ‖f1‖∞, ‖f2‖∞ ≤ 1.
This implies that condition (10) is satisfied for any class of uniformly bounded
functions F with ε(n) = n ‖θ‖n−1

∞ (1 ∨ k(θ)).
To illustrate this class of models we examine two situations. Consider the
Markov transitions

Km(x, dy) = ε δx(dy) + (1 − ε) mK(dy)

where ε ∈ [0, 1) is a fixed parameter and K a given Markov transition on E.
This model clearly belongs to the previous class with θ(m) = ε and a linear
mapping Φ(m) = mK. Now we return to the genetic type SIMC model (2) but
we suppose the mutation transition depend on the measure m. More precisely
we consider the mapping

Φ′(m)(f) =
m(gK ′

m(f))
m(g)

with
K ′

m(x, dy) = θ(m) m(dy) + (1 − θ(m)) K(x, dy)

where θ denotes a mapping from P(E) into [0, 1]. In this situation we can
rewrite Φ′(m) in the following form

Φ′(m) = mKm

with
Km(x, dy) = θ(m) δx(dy) + (1 − θ(m)) Φ(m)(dy)

where Φ(m) is the distribution defined in (2).
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3.2.3 Genetic self-interactions

In this final section we discuss two different classes of genetic SIMC models as-
sociated to a collection of transitions Km. The first one is the genetic algorithm
associated to (7). We suppose that the potential function g is chosen such that
gmin > 1 and Km is given by

Km(x, dy) = 1/m(g) K(x, dy) + (1 − 1/m(g)) Φ′(m)(dy) (34)

with
Φ′(m)(f) =

m(g′ K(f))
m(g′)

and g′ = g − 1

Our objective is to find conditions on the pair (g,K) underwhich the collection
of Markov transitions Km satisfies (HK).

The strategy we are going to present is not restricted to this particular genetic
model. Next we suppose the transition Km has the following form

Km(x, dy) = θ(m) K(x, dy) + (1 − θ(m)) Φ′(m)(dy) (35)

where θ : P(E) → (0, 1) is a given measurable mapping such that ‖θ‖∞ < 1.
This condition ensures that

β(Km) = θ(m)β(K) and sup
m

β(Km) = ‖θ‖∞β(K) < 1

This clearly implies that the mapping π is well defined on P(E). We also assume
that for each µ ∈ P(E) we can find a subset Hθ(µ) ⊂ Bosc1(E) such that

∣∣∣∣
1

1 − θ(µ)
− 1

1 − θ(ν)

∣∣∣∣ ≤
∑

h∈Hθ(µ)

bµ(h) |µ(h) − ν(h)| (36)

for each ν ∈ P(E) with

k(θ) =
∑

h∈Hθ(µ)

bµ(h) ∈ (0, 1)

We finally suppose that Φ′ : P(E) → P(E) is a given measurable mapping
which satisfies (HΦ) for the class of function F = Bosc1(E). By a simple
induction argument on the time parameter we prove the following lemma.

Lemma 3.5 For any n ≥ 1 and m ∈ P(E) we have

Kn
m = θ(m)nKn + (1 − θ(m))

n−1∑

p=0

θ(m)p Φ′(m)Kp

with the convention K0(x, dy) = δx(dy) and π(m) = Φ′(m)Rm where Rm is the
θ-geometric resolvent Markov transition associated to K and defined by

Rm = (1 − θ(m))
∑

n≥0

θ(m)n Kn

Then we have the following proposition.
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Proposition 3.6 The collection of transitions Km defined in (35) satisfies
condition (HK) for the class of functions F = Bosc1(E). For any (f, µ) ∈
(F ×P(E)) we can associate a subset H(f, µ) ⊂ F and a collection of numbers
bf,µ(h) ∈ [0, 1), h ∈ H(f, µ), such that (9) is met with

βF (π) = 2k(θ) + βF (Φ′)/(1 − ‖θ‖∞β(K)) (37)

In particular the genetic SIMC model (34) satisfies (HK) for the same class of
functions F and

βF (π) =
2osc(g)

(gmin − 1)2
+ β(K)

gmin (2osc(g) + (gmin − 1))
(gmin − β(K)) (gmin − 1)

and βF (π) < 1 as soon as the pair (g,K) satisfies

β(K) <
1

gmin

(gmin − 1)2 − 2osc(g)
(gmin − 1) + 2osc(g)

(38)

Proof: To prove that π has the desired regularity properties we use the de-
composition

π(m1) − π(m2) = Φ′(m1)(Rm1 − Rm2) + (Φ′(m1) − Φ′(m2))Rm2 (39)

For each f ∈ F we have

(Φ′(m1) − Φ′(m2))Rm2(f)

= (1 − θ(m2))
∑

n≥0

θ(m2)n (Φ′(m1) − Φ′(m2))Kn(f)

= (1 − θ(m2))
∑

n≥0

θ(m2)n β(K)n (Φ′(m1)(f (n)
m2

) − Φ′(m2)(f (n)
m2

))

with
f (n)

m2
= [Kn(f) − Φ′(m2)Kn(f)]/β(K)n (∈ F)

Under our assumptions for each n ≥ 0, f ∈ F and m2 ∈ P(E) we can find a
subset H(n)(m2, f) ⊂ F and a collection of numbers b(n)

m2,f (h), h ∈ H(n)(m2, f)
such that

|Φ′(m1)(f (n)
m2

) − Φ′(m2)(f (n)
m2

)| ≤
∑

h∈H(n)(m2,f)

b(n)
m2,f (h) |m1(h) − m2(h)|

It follows that

|Φ′(m1) − Φ′(m2))Rm2(f)|

≤
∑

n≥0

∑
h∈H(n)(m2,f)(‖θ‖∞β(K))n b(n)

m2,f (h) |m1(h) − m2(h)|
(40)

Before we continue we notice that

sup
f∈F ,m2∈P(E)

∑

n≥0

∑

h∈H(m2,f)

(‖θ‖∞β(K))n bm2,f (h) =
βF (Φ′)

1 − ‖θ‖∞β(K)
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To treat the first term in (39) we use the formula

Φ′(m1)(Rm1 − Rm2)(f)

=
∑

n≥0

[(1 − θ(m1))θ(m1)n − (1 − θ(m2))θ(m2)n] Φ′(m1)Kn(f)

=
∑

n≥0

[(θ(m1)n − θ(m2)n) + (θ(m2)n+1 − θ(m1)n+1)] Φ′(m1)Kn(f)

According to this representation we find that

|Φ′(m1)(Rm1 −Rm2)(f)| ≤
∑

n≥0

|θ(m1)n − θ(m2)n|+
∑

n≥0

|θ(m2)n+1 − θ(m1)n+1|

If we define

θ1 = θ(m1) ∨ θ(m2) and θ2 = θ(m1) ∧ θ(m2)

we check that

|Φ′(m1)(Rm1 − Rm2)(f)| ≤ 1
1 − θ1

− 1
1 − θ2

+
θ1

1 − θ1
− θ2

1 − θ2

= 2
(

1
1 − θ1

− 1
1 − θ2

)

Under our assumptions this implies that

|Φ′(m1)(Rm1 − Rm2)(f)| ≤ 2
∑

h∈Hθ(m2)

bm2(h) |m1(h) − m2(h)| (41)

If we combine (40) and (41) we find that the mapping π has the desired regu-
larity. Ne now come to the proof of (10). We start by noting that

π(m)(f) = 0 ⇒
n−1∑

p=0

θ(m)p Φ′(m)Kp(f) = −
∑

p≥n

θ(m)p Φ′(m)Kp(f)

Let (m1,m2) ∈ (P(E) × P(E)) and let (f1, f2) ∈ F be a pair of functions such
that π(m1)(f1) = 0 = π(m2)(f2). From the above observation we have

Kn
m1

(f1) − Kn
m2

(f2)

= θ(m1)nKn(f1) − θ(m2)nKn(f2)

+(1 − θ(m2))
∑

p≥n

θ(m2)p Φ′(m2)Kp(f2) − (1 − θ(m1))
∑

p≥n

θ(m1)p Φ′(m1)Kp(f1)

To estimate this difference we introduce the decomposition

Kn
m1

(f1) − Kn
m2

(f2) = I1 + I2 + I3 + I4 + I5

with

I1 = [θ(m1)n − θ(m2)n] Kn(f1)
I2 = θ(m2)n [Kn(f1) − Kn(f2)]
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I3 = (1 − θ(m2))
∑

p≥n

θ(m2)p [Φ′(m2) − Φ′(m1)]Kp(f2)

I4 = (1 − θ(m2))
∑

p≥n

θ(m2)p Φ′(m1)[Kp(f2) − Kp(f1)]

I5 =
∑

p≥n

[(1 − θ(m2))θ(m2)p − (1 − θ(m1))θ(m1)p] Φ′(m1)Kp(f1)

Under our assumptions we have

|I1| ≤ |θ(m1)n − θ(m2)n| ≤ n ‖θ‖n−1
∞

∑

h∈Hθ(m2)

bm2(h) |m1(h) − m2(h)|

≤ n ‖θ‖n−1
∞ k(θ) ‖m1 − m2‖tv

and |I2| ≤ ‖θ‖n
∞‖f1 − f2‖∞. Since the mapping Φ′ satisfies (HΦ) for the class

of functions f such that osc(f) ∨ ‖f‖∞ ≤ 1 we have that

‖Φ′(m1) − Φ′(m2)‖tv ≤ c ‖m1 − m2‖tv

for some finite constant c < ∞. This yields that

|I3| ≤ c(1 − θ(m2))
∑

p≥n

θ(m2)p ‖m1 − m2‖tv ≤ c ‖θ‖n
∞ ‖m1 − m2‖tv

We also notice that
|I4| ≤

‖θ‖n
∞

1 − ‖θ‖∞
‖f1 − f2‖∞

We now evaluate the term I5. For each pair of numbers a1, a2 ∈ (0, 1), a1 < a2,
we have

Un(a) = |
∑

p≥n

(1 − a1)ap
1 −

∑

p≥n

(1 − a2)ap
2| = |an

1 − an
2 | ≤ nan−1

2 (a2 − a1) (42)

Then we note that

a2 − a1 = (1 − a1)(1 − a2) [
1

1 − a2
− 1

1 − a1
]

This yields

Un(a) ≤ nan−1
2 [

1
1 − a2

− 1
1 − a1

]

and the end of the proof of (42) is clear. Using this estimate and under our
assumptions on the mapping θ we find that

|I5| ≤ 2 (n + 1) k(θ) ‖θ‖n−1
∞ ‖m1 − m2‖tv

The end of the proof of (10) is now a simple combination of the above estimates.
Now we examine the genetic type Markov transition (34). If we take θ(m) =
1/m(g) we clearly have ‖θ‖∞ = 1/gmin . Furthermore we notice that

∣∣∣∣
1

1 − θ(µ)
− 1

1 − θ(ν)

∣∣∣∣ =
∣∣∣∣

µ(g)
µ(g − 1)

− ν(g)
ν(g − 1)

∣∣∣∣

=
1

µ(g − 1)ν(g − 1)
|µ(g) − ν(g)|

≤ osc(g)
(gmin − 1)2

∣∣∣∣ν
(

1
osc(g)

(g − µ(g))
)∣∣∣∣
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It follows that (36) is met with

Hθ(µ) =
{

1
osc(g)

(g − µ(g))
}

and k(θ) =
osc(g)

(gmin − 1)2

Note that 2k(θ) < 1 as soon as ‖g‖∞ ≤ (1 + g2
min )/2. From (29) we also notice

that Φ′ satisfies (HΦ) for the class of functions F = Bosc1(E)

βF (Φ′) =
β(K)

gmin − 1
(osc(g) + ‖g − 1‖∞)

We also note that βF (Φ′) < 1 as soon as

sup
x,y

g(x) − 1
g(y) − 1

<
1
2

(
1

β(K)
+ 1

)

If follows from (37) that

βF (π) =
2osc(g)

(gmin − 1)2
+ β(K)

gmin(osc(g) + ‖g − 1‖∞)
(gmin − β(K))(gmin − 1)

Since ‖g− 1‖∞ = osc(g) + (gmin − 1) and (gmin −β(K)) ≥ (gmin − 1) we obtain

βF (π) ≤ 1
(gmin − 1)2

[2osc(g) + β(K) gmin (2osc(g) + (gmin − 1))]

The right hand side is strictly less than one as soon as

β(K) <
1

gmin

[
(gmin − 1)2 − 2osc(g)
(gmin − 1) + 2osc(g)

]

This completes the proof of the proposition.

We end this section with the genetic type SIMC model (8). We recall that the
Markov transitions are defined by

Km(x, dy) = a K(x, dy) + b Ψ(m)(dy) with Ψ(m)(f) = m(fg)/m(g)

for some a, b ∈ [0, 1], a + b = 1, a positive fitness function g and a Markov
transition K.

Proposition 3.7 Suppose the triplet (a, g,K) satisfies the following condition

a β(K) < 1 , gmin = 1 and osc(g) <
a

2b
(1 − β(K))

For any m ∈ P(E) and n ≥ 1 we have

Kn
m = an Kn + b

n−1∑

p=0

ap Ψ(m)Kp (43)

π(m) = Ψ(m)Ka with Ka = b
∑

n≥0

anKn (44)

Furthermore the Markov transitions Km satisfy (HK) with

F = Bosc1(E) and βF (π) = (1 + 2osc(g))
b

1 − β(K)a
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Proof: Proceeding inductively on the time parameter we prove (43). Since

Km(f)(x) − Km(f)(y) = a (K(f)(x) − K(f)(y))

we clearly have that
β(Km) = a β(K) (< 1)

Thus, the mapping π is well defined and it is easily checked that it is given by
(44). Now we observe that for each f ∈ Bosc1(E) and any pair of distributions
(m1,m2) ∈ P(E) × P(E)

π(m1)(f) − π(m2)(f) = b
∑

n≥0

an [Ψ(m1)Kn(f) − Ψ(m2)Kn(f)]

= b
∑

n≥0

an 1
m1(g)

[m1(f (n)
m2

) − m2(f (n)
m2

)]

with
f (n)

m2
= g Kn(f − Ψ(m2)Kn(f))

Arguing as in section 3.1 we can check that

|f (n)
m2

(x) − f (n)
m2

(y)| ≤ β(K)n (1 + 2osc(g)) osc(f)

and
‖f (n)

m2
‖∞ ≤ β(K)n (1 + osc(g)) osc(f)

If we write
f

(n)
µ (x) =

1
β(K)n (1 + 2osc(g))

f (n)
µ (x)

then we conclude that (9) is satisfied with

F = {f ∈ Osc1(E) ; ‖f‖∞ ≤ 1}

H(f, µ) = { f
(n)
µ , n ≥ 0 }

bf,µ(h(n)
µ ) = b (1 + 2osc(g)) (a β(K))n

Summing bf,µ(h(n)
µ ) from n = 0 to ∞ gives

βF (π) = (1 + 2osc(g))
b

1 − β(K)a
(< 1)

Let us check (10). First we note that if π(m)(f) = 0 then

b
n−1∑

p=0

ap Ψ(m)Kp(f) = −b
∑

p≥n

ap Ψ(m)Kp(f)

From this observation and for any pair of functions f1, f2 such that

π(m1)(f1) = 0 = π(m2)(f2)

using classical arguments we have that there exists a constant c ≥ 0 such that

‖Kn
m1

(f1) − Kn
m2

(f2)‖∞ ≤ an ‖Kn(f1) − Kn(f2)‖∞
+

∑

p≥n

bap |Ψ(m2)Kp(f2) − Ψ(m1)Kp(f2)|
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+
∑

p≥n

bap |Ψ(m1)Kp(f2 − f1)|

≤ an ‖f1 − f2‖∞ + c
∑

p≥n

bap ‖m1 − m2‖tv

+
∑

p≥n

bap ‖f2 − f1‖∞

The above estimate implies that

‖Kn
m1

(f1) − Kn
m2

(f2)‖∞ ≤ an(2 ∨ c) [‖f2 − f1‖∞ + ‖m1 − m2‖tv ]

and (10) clearly holds with ε(n) = (2 ∨ c) an.

Remark 3.8: Let h : E → (0,∞) be a potential function such that hmin > 0
and let K(h)

m be the Markov transition defined as above by replacing g by h.
More precisely K(h)

m is given by

K(h)
m (x, dy) = a K(x, dy) + b Ψ(h)(m)(dy) with Ψ(h)(m)(f) = m(fh)/m(h)

Also denote by π(h)(m) the mapping defined as π by replacing in (44) Ψ by
Ψ(h). Arguing as above we find that K(h)

m satisfies (HK) with the same class
of function F and

βF (π(h)) =
b

hmin

(osc(h) + ‖h‖∞)
1 − β(K)a

Furthermore we have βF (π(h)) < 1 as soon as

sup
x,y

h(x)
h(y)

< 1 +
a

2b
(1 − β(K))

We now consider the SIMC model (1) associated to the mapping

Φ(m) = π(m) = Ψ(m)Ka

Observe that the resulting genetic SIMC model coincide with the genetic model
(2) with mutation transition Ka. We also notice that Ka is the a-geometric
resolvent kernel of the Markov transition K and

β(Ka) ≤ b/(1 − aβ(K))

Probabilistically Ka is the Markov kernel of a chain “sampled” at geometric time
points. More precisely the mutation is decomposed in two step. First we select a
time parameter p ∈ N with probability b ap. Then the particle evolves according
to the transition Kp. Roughly speaking for large values of the parameter a this
mutation mechanism is more mixing than K. More interestingly we can initiate
a comparison of the decays to equilibrium of the two genetic SIMC models (2)
and (8). We start by noting that the corresponding coefficients βF (Φ) and
βF (π) given in (4) and (11) are related by the formula

βF (Φ)
βF (π)

=
1
b

β(K) (1 − aβ(K))

When 2a ≤ 1 the mapping β ∈ [0, 1] → u(β) = β (1 − aβ)/b is increasing from
u(0) = 0 to u(1) = 1 and we always have that βF (Φ) ≤ βF (π).
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When 2a > 1 the mapping u increases on [0, 1/(2a)] from u(0) = 0 to u(1/2a) =
1/(4ab) and it decreases on [1/(2a), 1] from u(1/2a) = 1/(4ab) to u(1) = 1.
Noting that u(b/a) = 1 we also have that

βF (π) ≤ βF (Φ) ⇐⇒ β(K) ≥ b/a

It is also a simple exercise to check for instance that if ab ≤ 1/7 then

u(β) = 7/4 ⇐⇒ β =
7
12

(1 − 1/
√

7) or β =
7
12

(1 + 1/
√

7)

For instance if we take a = 6/7 and β(K) = 7/12 (1+1/
√

7) then we have that

βF (Φ) =
7
4

βF (π)

When the fitness function is chosen accordingly we may have that

βF (π) = 1/2 < βF (Φ) = 7/8

In this situation the decays to equilibrium for the SIMC model (8) and (2) are
respectively n1/2 and n1/4. In other words if we use more mutations in the
SIMC model (8) theorem 1.2 leads to faster convergence.
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