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Abstract

For any a > 0, consider the hypocoercive generators yo, + aﬁg —y0y and Y0, — axdy + 82 — Y0y,
respectively for (z,y) € R/(27Z) x R and (z,y) € R x R. The goal of the paper is to obtain exactly
the L2 (j,)-operator norms of the corresponding Markov semi-group at any time, where p, is the
associated invariant measure. The computations are based on the spectral decomposition of the
generator and especially on the scalar products of the eigenvectors. The motivation comes from an

attempt to find an alternative approach to classical ones developed to obtain hypocoercive bounds
for kinetic models.
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1 Introduction

Convergence to equilibrium of Markovian semi-groups has been investigated a lot under various
coercive assumptions on the generator, such as spectral gap or logarithmic Sobolev inequalities,
especially in a reversible framework. Nevertheless, asymptotical exponential convergence to equi-
librium is also encountered when the generator satisfies some hypoelliptic type conditions. This
phenomenon has been called hypocoercivity (see the book of Villani [21] for the history) and has
recently attracted more and more attention, with e.g. the works of Desvillettes and Villani [2],
Eckmann and Hairer [5], Rey-Bellet and Thomas [18], Hérau and Nier [11], Hérau [10], Villani [21],
Dolbeault, Mouhot and Schmeiser [4], Ottobre, Pavliotis and Pravda-Starov [17] and the references
therein. Typically, a hypocoercivity result bounds the convergence to equilibrium (for instance in
IL? or entropy sense) by a term such as Cexp(—ct), where ¢t > 0 is the time and C,c > 0 are two
constants depending on the problem at hand. But these constants are not easy to describe and
generally not optimal in the literature mentioned above. Furthermore, the previous bound gives no
information about the behavior of the underlying semi-group at small times, namely how it begins
to go toward equilibrium. To try to clarify the situation, we will study in details in this paper two
simple models of hypocoercivity, by computing exactly the corresponding distance to equilibrium
in the L2-sense. Despite the scope may seem limited, some features will be intriguing, such as the
appearance of discrete binomial and Poisson laws.

The state space of our first toy model is T x R, where T := R/(27Z) stands for the usual
circle. The coordinates of a generical element of T x R are denoted (z,y), where x and y are often
interpreted respectively as a position and a speed (i.e. T x R is seen as the tangent bundle of T).
For any given a > 0, we are interested in the differential operator

L, = yo,+ a@i — YOy-

and in the generated Markovian semi-group (Pt(a))tzo. Consider the product probability measure
g = A® Yq, where A is the normalized Lebesgue measure on T and where 7, is the normal
distribution of mean 0 and of variance a. It is easy to check that p, is invariant for L,: for any
smooth function f on T x R with bounded derivatives, pq[Ly[f]] = 0. It follows that for any ¢ > 0,

Pt(a) can be extended into a continuous operator on L?(u,) with operator norm equal to 1. It is

furthermore known that pu, is ergodic for the semi-group, in the sense that Pt(a) converges toward
fq in L2 (p,) for t large:

Vel lim [P plfl] = o,

t—+00

where |-| designates the LL?(p,)-norm.
Our goal is to recover and to quantify this convergence given by the next result.

Theorem 1 For any a >0 and t > 0, we have

1P =gl = max (exp(-0)exp | ~a (12 7220 | )

1+ exp(—t)
where || - || stands for the operator norm in L2(u,).

It is interesting to look at the behaviours of this operator norm for small and large times. As
t goes to 04,

I (|2 = pal) = —55t°(1+o(1). (1)



This shows that initially, the operator norm decreases quite slowly as a function of time, the power
3 should be seen as an order of the hypocoercivity of the operator L,. On the other side, as t goes
to +00,

—n (1P = pall)

at—2+0(™?) ,ifa<1
t ,ifa > 1,

which reflects the exponential convergence to equilibrium of the semi-group (Pt(a))tzo.

This kind of informations cannot be deduced from the bounds obtained in the literature. Indeed,
note that the mapping ¢ : Ry 3¢+t — 2(1 + exp(—t)) (1 — exp(—t)) is strictly convex, so that
the bound of Theorem 1 is equivalent to the family of inequalities, parametrized by s > 0,

Ve=0, P —pa < max(exp(—t),Csexp(—cst)),

where for all s > 0, Cs = exp(—a(p(s) — s¢'(s))) > 1 and ¢ = ay/(s) > 0.
Up to scalings in time and in the speed variable and to a change of direction in position, we
deduce immediately from Theorem 1:

Corollary 2 For any a,c > 0 and b € R\{0}, consider the operator

Lope = bydy + a&i — cy0y,

which admits jiq). as invariant probability. We have for the corresponding semi-goup (E(a’b’c))t>0,

2
(a,b,c) B ab 1 —exp(—ct)
Vit=0, Il P, — :“a/cmﬂﬂ(ua/c)@ = max <exp(—ct), exp [_—03 (ct — 271 T oxp(—ct) .

In particular the associated asymptotical exponential rate is

. 1 (a,b,c) . ab?
Jim —=In <|||Pt - Na/cm]L?(ua/c)‘Q) = min (C, = )

It is instructive to draw a comparison with the heat semi-group (an))t>0 on T generated by the
operator K, := ad?, which injects the same amount a of randomness per unit of time as any one of
the generators L, ., where b € R and ¢ > 0 are free parameters. Since K, is self-adjoint in L2(\)
and admits a as spectral gap, we get

Viz0, O ~ Moo = exp(—at).

Thus it appears that if we had to choose between the Monte Carlo procedures (Qﬁa))tzo and
(Pt(a’b’c))t;o to sample according to A, it would be better to use, with a tuning ¢ > a and b/c > 1,
the first coordinate for the latter Markov process, namely the primitive integral of an Ornstein-
Ulhenbeck process. Of course both procedures require the sampling of the trajectory of a Brownian
motion, which is more difficult to get than the sampling of a uniform variable on the circle,
nevertheless this is another illustration of the paradigm that to go fast to equilibrium, it is better
to resort to non-reversible Markov processes (see for instance [3], where this question was studied
in the framework of second order finite Markov chains).

Our second toy model has R x R as state space and also depends on a parameter a > 0: we are
now interested in the differential operator

Lo = yd, —axd, + 02— yd,. (2)

It is easy to check that the probability measure fiq = 7/, ® 71 is invariant for Za and we consider

the associated semi-group (]%(a))tzo of Markov operators on L2(fi,). As it will be seen in the next
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section, in the first model, for all a > 0, the operator L, is diagonalizable in I.?(y,) and its spectrum
is real. For the second model, the value 1/4 is critical with this respect: for a € (0,1/4), L, is
diagonalizable in L2(fi,) and its spectrum is real, while for a € (1/4, +0), L is still diagonalizable
in L2(fi,) (complexified) but most of its eigenvalues are not real. In the critical case a = 1/4, L,
is not diagonalizable in L2(fi,) and contains Jordan blocks of all orders. Nevertheless fi, is always
ergodic and the next result quantifies the convergence:

Theorem 3 For any a >0 and t > 0, we have

IBO Zjiall = Co(t)esp |-,
2

where ||-|| stands for the operator norm in IL2(fiq) and where the factor C,(t) is described as follows:

ifa€ (0,1/4), let 0 == /1 — 4a and define

1— 62 ) 1—e20t 1 et —1\2
— —ot _ 0t z -2 _
Co(t) e+ =0 (1 —e )"+ 5 1+6\/1+(6 1)<e9t+1> .

Ifa € (1/4,4o), let 0 == v/4a — 1i and define

eft — 1
Co(t) = \/1+ | e | (|69t—1|+\/\eet—1|2+4\9|2>.

If a = 1/4, define

2 )
Co(t) = 1+§+t 1+<§>.

Again, let us look more precisely at the behaviors of this operator norm for small and large
times.
When ¢ > 0 goes to zero, we obtain as above a decrease of order t3: for a € (0,1/4], we have

a 1—4a

ﬁ(a)_" = 1—(=
1P — 7l (5+5

(1-+v1- 4a)> 3+ o(t?), (3)
and for a € [1/4, +0),
1P il = 1- %8+ o(t). @

When ¢ goes to infinity, the behavior is different according to the position of a with respect to 1/4
(with an asymptotic exponential rate varying for a € (0,1/4]): if a € (0,1/4), we have

o 1 |- Vi—4a
I gl ~ e (-5 7).

The factor in front of the exponential explodes with time if a = 1/4:

N N t
I =l ~ von(-3)-

If a > 1/4, since the mapping

Rysv — 1+ 1/2~|—4(4a—1)),

m(y%-
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is increasing, it appears that the factor Ry 3 ¢t — C,(t) is oscillating between the values 1 and
A/1+2(1 +2y/a)(4a — 1)~1 with period T}, := 27/+/4a — 1. These oscillations are sufficiently mod-
erate so that R, 3t — C,(t) exp(—t/2) is non-increasing, as it is always the case for the L2(u)-
operator norms of a Markovian semi-group admitting p as invariant probability. The above peri-
odicity admits a peculiar consequence: it follows from (4) that %Ca(t) exp(—t/2)|t=0 = 0 and in
conjunction with

VkeZi, V=0, Co(kTy + t)exp(—(kT, + 1)) = exp(—kTy,)Cq(t) exp(—t),

we get that the time derivative of |||13t(a) — [ig|| vanishes at all times of the form ¢ = kT,, with
keZ,.

On the state space R x R, we can play with scalings in time, speed and position to deduce from
Theorem 3:

Corollary 4 For any ¢,d > 0 and a,b € R with ab > 0, consider the operator

Zmb’c,d = bydy —axdy + caj — dyoy
which admits fioped = Voc/(ad) @ Ve/d s tnvariant probability. We have for the corresponding
semi-group (ﬁt(a’b’c’d))t>o, with the notation of Theorem 3,
~Sabed) ~ 1 —+/(1 —4abd—2
Vi=0, mﬂwc)—ﬂw@NM@mwm>: QWﬁWﬂﬂp<— <2 )+ﬁ .
It follows that the asymptotic exponential rate of (ﬁt(a’b’c’d))t)o is (1 —+4/(1 —4abd=2)1)/2. We
are led to make a comparison with the semi-group (@Ea’b’c’d))go on R generated by f(a,b,qd =

c@% — d—élxax, whose amount of injected randomness is the same as L, .q and whose reversible
probability is Y./(aq), the first marginal law of [isp 4. Up to scalings of space and time, Ko pcd
is an Ornstein-Ulhenbeck generator whose spectral gap is da/b. It follows that the asymptotical

exponential rate of <@§a,b,c7d))t20 is da/b. So if

a 1 ab
4 1y (1-4Z
b 2< ( d2>+>’

(for instance if 42% > 1 and 24 < %), it is more efficient to use the first coordinate of <ﬁt(a,b,c,d))t20

than (NE“’b’C’d))t>0 to sample accordingly to ypc/(aq)- Hence the remarks for the first model are still
valid.

Instead of scaling position and speed variables as in Corollary 4, we could have considered
appropriate linear transformations of R? and end up with operators associated to certain quadratic
symbols. Hypocoercivity of general differential operators with quadratic symbols have been recently
investigated by Ottobre, Pavliotis and Pravda-Starov [17], who obtained bounds on LL?-convergence
which are relatively precise at the level of the exponential rate (showing that all rates strictly below
those obtained above are admissible). But they provide no clue about the behavior of the operator
norm for small times, while it would be very interesting to relate the order of hypercoercivity (the
power 3 in (1), (3) or (4)) to the number of times one needs to take Lie brackets in order to get the
full tangent space in Hérmander’s condition [12], even only in the framework of quadratic symbols.
One first step in this direction would be to investigate finite chains of nearest-neighbor interacting
harmonic oscillators coupled to one heat bath (see e.g. Eckmann and Hairer [6] or Ottobre, Pavliotis
and Pravda-Starov [17], despite that these authors were not primarily interested in this situation).

Our approach is completely different from the pseudo-differential techniques of Ottobre, Pavli-
otis and Pravda-Starov [17]. We begin by studying in details the spectral decomposition of the
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operators at hand. For the second model, it was already done by Risken [19] (see also the book of
Helffer and Nier [9] or an unpublished paper of Kavian [15]). But we don’t stop with the knowledge
of the eigenvalues and of the eigenvectors, instead we investigate the scalar product of the eigen-
vectors: due to the fact that the above generators are not reversible, the eigenvectors cannot be all
orthogonals. It appears that their geometric structure can be nicely described by LL? scalar prod-
ucts with respect to classical discrete laws such as Poisson or binomial distributions. This leads
to the construction of certain functions which well-behave under the action of the semi-groups
and turn out to be the optimal functions for the computation of the operator norms. It should
be noted that these optimal functions change with the time at which are computed the operator
norm, explaining why the latter cannot have a simple exponential form.

Of course, one can hope for precise spectral decompositions only in a restricted framework of
quadratic symbols (but see also Eckmann and Hairer [6], where the spectrum of certain hypoelliptic
generators is proven to be contained in a cusp). Nevertheless, our analysis put forward a simple
Lie algebra structure associated to the above models which is “almost” shared by kinetic models
corresponding to operators of the form yd,—U’(z)0, ~|—0§ —y0y, say on T xR, where the potential U :
T — R is a smooth function. We believed the revealed structure could lead to a third order linear
ordinary differential equation satisfied by the evolution of the L?-norm of the semi-group (applied
to a generical function of mean zero with respect to the invariant measure), which is sufficiently
coercive to imply hypocoercive bounds. Unfortunately this is not true and an idea is still missing
with this respect. It was our initial motivation: to find at each time instantaneous informations
on the evolution of L2-norm of the semi-group which locally describe the trend to equilibrium and
globally imply hypocoercive bounds. This approach would be very convenient to deal with the
time-inhomogeneous evolutions we have in mind (sampling and optimizing hypocoercive random
algorithms) and it explains our interest in the small time behavior. The point of view is different
from the traditional analytical approach to hypocoercivity, consisting in replacing the natural L>-
norm by a more coercive norm, typically a norm which is comparable to an appropriately weighted
H'-norm. The additional terms are chosen so that when differentiating with respect to time the
evolution semi-group, one gets a first order differential inequality for this new norm (see for instance
Villani [21]). The kind of estimates we are looking for are not more provided by the probabilistic
approach to hypocoercivity through Liapounov functions (see for instance Bakry, Cattiaux and
Guillin [1] and the references therein).

The paper is constructed on the following plan: in the next section (respectively Section 4)
we investigate the spectral decomposition of the first model (resp. second model), which is used
in Section 3 (resp. Section 5) to compute the corresponding operator norms. The last section is
devoted to some observations about simple kinetic models and to the motivations sketched in the
preceding paragraph.

2 Spectral decomposition of the first model

We compute here the spectral decomposition of a kinetic generator associated to the null potential
on T. Despite it is among the simplest case of hypocoercivity, we did not find its detailed treatment
in the literature. The manipulations we are to consider will be encountered again in Section 4,
under a slightly modified form. Furthermore, a very helpful Poisson distribution will make a
mysterious appearance in this continuous setting!

So, for a > 0, which is fixed for the whole section, we are interested in the operator

Lo = Y0y +ads —ydy.



2.1 Decomposition of the generator on stable subspaces

A priori it can be seen as an endomorphism on smooth functions defined on T x R, but for our
purposes, it is better to consider its closure in IL?(j,), where the invariant measure f1, = A®7, was
presented in the introduction. Here we will mainly consider real Hilbert spaces, since a posteriori
all the eigenvalues of L, will be real.

If we were in a totally Gaussian setting, namely if T was replaced by R and yd, by y0, — bxdy,
for some constant b > 0, it would be natural to observe the action of the above operator on tensor
products of appropriately normalized Hermite polynomials, as it was done by Risken [19] (see also
Section 4 below). In the present situation, it is rather tempting to replace the Hermite polynomials
in the first variable (position x) by the usual trigonometric functions. For p € Z,, denote

. 2P p!
op(x) = o - cos(px),
VaxeT, 2i I:)' .
Pp(x) = \/& sin(pz).

The factors are such that (¢p,1¥p+1)pez, is an orthonormal basis of L*(\) and they are obtained
via Wallis’ integrals. For the second variable y, it is natural to use the Hermite polynomials since
they can be conveniently associated to the standard Gaussian distribution ;. Recall that they are
defined by
_ (=) 2 /oy @7 2
v qu-‘ra v yGR, hq<y) = \/a exp<y /2)d—ylep(_y /2)7 (5)
(see for instance the book of Szegé [20], as well as for their basic properties used below). To get

the orthonormal polynomials (hg.q)gez . associated to v,, for any fixed a > 0, we use the similitude
of scale 1/ /a:

VgeZy,VyeR, hq,a(y) = hq(y/\/a)

The family (hq,q)4ez, is then an orthonormal basis of L?(7,) and then (o, ®hq.q, Vp+1 ®hg.a)p.eez,
is an orthonormal basis of I.?(j1,). We compute that:

Lemma 5 For all p,q € Z., we have

La[‘;pp ® hq,a] = —qPp ® hq,a - \/EP\/WJp ® hq—l,a - \/ap Y& + hpp ® hq+1,a7
La[wp ® hq,a] _qu ® hq,a + \/EP\/@,Op ® hq—l,a + \/ap V q + 190p ® hq+1,a-

Proof

From the relations satisfied by the usual Hermite polynomials, we get that for any ¢ € Z, and
yeR,

ahg o(y) = yhe,q(y) —qhg,a(y),
\/a\/ q+ 1hq+1,a(y) = th,a(y) - \/E\/ahq—l,a<y)'

We deduce that for all p,q € Z; and all (z,y) € T x R,

Lalpp ® hgal(z,y) = &p(x)yhga(y) — qop(x)hga(y)

= —pVa,(2)(Va + Ther1.a(Y) + V@hg-1,0(y)) — aqpp(2)hga(y)
= —(qp ® hga + Vap/qp ® hg—1,0 + Vap\/q + 19 @ hgr1,0) (2, y).

The computation of Lg[t¢p ® hy 4] is similar.



From these computations we get, on one hand that for ¢ € Z,, 9 ® hy, is an eigenfunction of
L, associated to the eigenvalue —¢ and on the other hand that for p € N, the following vector
subspaces V, and W, are stable by L,:

Vp = Cl(veCt“Dp@hq,a:wp@hq-i-l S qE 2Z+))7
W, = Cl(Vect(vp ® hg, 0p @ hgt1,a : q € 2Z4)),

where for any A < L%(u,), CI(A) and Vect(A) stand respectively for the closure of A in L% ()
and for the vector space generated by A.

2.2 Spectral analysis of L, on V),

Since each V,, and W, are stable subspaces of L, we must now study the spectral decomposition of
the restriction of L, to the Hilbert subspace V, (the same conclusions will also hold for 1V,)) , where
p € N is fixed. Consider the orthonormal basis (eq)gez, given by eg = ¢p ® hoq, €1 = V¥p @ hiq,
ez = pp ® ho, etc. This basis enables us to identify V, with 1(Z.y), Z+ being endowed with the
counting measure. From Lemma 5, the (infinite) tridiagonal matrix M associated to the restriction
of L, to V, described with the basis (eq)qez L s

0 Jap 0 0
—Vap =1 —v2yap 0

M = 0 V2ap =2 ByJap .| (6)
0 0 —BJap -3

It appears that this object is only parametrized by ¢ := y/ap. Let us write M = D+ ¢S —c¢S*, where
D and ¢S are respectively the diagonal and upper-diagonal part of M, so that —¢S* corresponds
to the lower-diagonal of M. Note that if S is interpreted as an (unbounded) operator of I(Z. ),
then S* is (the infinite matrix associated to) its adjoint operator in I2(Z ). In the sequel, we won’t
make much difference between such matrices and their corresponding operators on 1%(Z), but
some preliminaries are needed in order to precisely define their domains. A priori the operators M,
D, S and S* are well-defined on D, the subspace of real sequences (2(q))4ez, from [*(Z.) which
admit only a finite number of non-zero coefficients. It is immediate to check that they are in fact
closable and that the domains of their closures are given by

D(S) = D(5*) = D(D) = D(M) = {(2(a))gez. € *(Z+) = D} az°(a) < +o0}.

qeZy

It is natural to identify the operators M, D, S and S* with their respective closures. In particular
the spectral decomposition of the restriction of L, to V), is then equivalent to the one of M.
Nevertheless, it is more fruitful to look at the operators M, D, S and S* as endomorphisms of S, the
subspace of sequences (z(¢))4ez, from (*(Z.) which are such that for any r > 0, Yz, q"2%(q) <
+00. The advantage of this point of view is that we can compose the above operators without

having to take care about their domains.



We can now state the main result of this paragraph wich describes the spectral analysis of M.
Theorem 6 Let & = ({0(q))qez, be the element of S given by

VaeZi o) = (DU en(-c2)

Consider the elements of S defined by
VneZy, &n = (CI—S*)TL507

where I is the identity operator. Then for any n € Z., &, is an eigenvector of M associated to the
eigenvalue —c* — n. Furthermore (&,)nez, is a (Hilbert) basis of 1*(Z.).

The proof will be based on the Lie algebra generated by the operators D, S and S*, whose structure
is determined by the following computation:

Lemma 7 We have that

[SvS*] = I,
[DvS] = Sa
[D,S*] = —S*.

Proof

Recall that we interpret the operators as endomorphism of S, so the above brackets are well-defined.
For any q € Z., we have that

SS*(eq) = S((—1)%\/q+ leg41)

Similarly, we get that S*S(e,) = geq, so that

[5,5%](eq) = (557 —5%5)(eq)

namely [S,S*] = 1.
For any q € Z,, we also compute, with the convention e_; = 0, that

DS(eq) = (=1)7\/gD(eg-1) = (-1)%/alg — )eg-1,
SD(eq) = —qS(eq) = (_1)[1(]\/5@1*1-

It follows that

[D,S] (DS — SD)(eq)

DT e
= S(eq),

hence [D, S] = S. The last relation is an immediate consequence of the previous one, since D* = D:

[D,5%] = =[D*,(S")*]" = —[D,5]" = =57



Let us denote by V the vector subspace of endomorphisms of & generated by D, S, S* and
I. Since the latter operators are clearly independent, V' is 4-dimensional. Furthermore, taking
into account that [I,D] = [I,S] = [I,S*] = 0, the bracket [-,-] endows V with a Lie algebra
structure. This property of V suggests that to get informations about the spectral decomposition
of M = D + ¢S — ¢S*, it is interesting to first investigate the spectral decomposition of the adjoint
operator of M (in the Lie algebra sense, see for instance the book of Hall [8]), which is defined by

adpys : VaX — [M,X]eW
This is the object of the next result:

Lemma 8 The kernel of the operator ady; is 2-dimensional and is generated by I and M. There
are two other eigenvalues, 1 and —1, whose corresponding eigenspaces are respectively generated
by Jy =cl + 8 and J_ = cl — S*.

Proof

Indeed, with the help of Lemma 7 we compute that the matrix associated to adp; in the basis
(I,D,S,S*) is given by

0 0 ¢ c
0O 0 0 O
0 —c 1 0
0 — 0 -1

This matrix is not difficult to diagonalize, its characteristic polynomial is X?(X? — 1), and the

announced results easily follow.
[

The interest of the operators J. and J_ is summarized as follows: if z € CS is an eigenvector
of M associated to the eigenvalue [ € C, then either J,(z) = 0 or J,(z) is an eigenvector of M
associated to the eigenvalue [ + 1. Indeed, the relation [M, J;] = J; implies that

M(Ji(2) = Jo(M(2) + J4(2)
— (I+1)J.(2).

Similarly, either J_(z) = 0 or J_(2) is an eigenvector of M associated to the eigenvalue [ — 1.
This observation will be the key to the spectral decomposition of M, but let us first notice that
any eigenvalue [ € C of M has a non-positive real part. To show this assertion, let z = (2(q))4ez, €
12(Z.4,C)\{0} be an associated eigenvector. It is sufficient to write, with ¢-,-) standing for the usual
Hermitian scalar product of 1?(Z, ,C), that

2R (z,2) = Mz,z)+{z,M=z)
= (Dz,zy+{z,Dz)

= -2 q[x(q))?

qeN
0

N

This argument can be extended to the eigenvalues of any Markovian generator £ in L?(u), where
p is an invariant probability for £, and in particular to the eigenvalues of L, in L2(p,).

Thus if there exists an eigenvalue [ € C of M associated to an eigenvector z € CS\{0}, then
necessary we can find n € Z, such that J}(z) = 0. Because otherwise, we would conclude that for
any n € Z., [ +n is an eigenvalue of M and thus its real part is non-positive, which is not possible.
This is a hint on how we can find some eigenvectors of M: by looking at the kernel of .J, , whose
computation is our next task.
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Lemma 9 The kernel of J, : D(S) — [*(Z,) is generated by the vector & appearing in Theorem
6. The kernel of J_ : D(S) — 1?(Z,) is reduced to {0}.

Proof

More generally, let z = (2(q))qez, be any sequence from RZ+, J, (z) can be defined as the sequence
(J(2)(@)) ez, with

VageZy,  Ji(2)(q) = cz(q) + (-1)/q+1z(q + 1),
So the equation J(z) = 0 is equivalent to

(1) ezg)

Vg+1

VQEZ+7 Z(q+1) =

It appears that such a sequence z is determined by z(0):

(¢+1)q
VgeZs, z(q = %2(0)-

(g+1)g g+1
2

Remarking that for all ¢ € Z, (—1) = (—1)LTJ, we deduce that z is proportional to &. The
first announced result then follows from the fact that &, € D(S).
The kernel of J_ is obtained in a similar way, noting that J_ can also be extended to R%+ via

Vz=(2(q))gez, € RZ+, VgeZ,, J_(2)(q) = ecz(q) — (—1)q+1\/§z(q —1).

Thus, starting with J_(2)(0) = ¢z(0), if z is such that J_(z) = 0, we get that z(0) = 0 and by
iteration we end up with z = 0.
|

More precisely, we have £ € S and for any function f : Z, — R, we observe that

D F@& @) = E[f(No)] (7)

g€+

where N is a Poisson distribution of parameter ¢2. This is why we have chosen the normalization
€0(0) = exp(—c?/2), which implies that & has norm 1 in [?(Z,). It follows another important
computational property of & with respect to the operator algebra generated by S*. As a by-
product, we check that &y is an eigenvector of M, as this was suggested by the observations made
before Lemma 9 (note that this is also a qualitative consequence of the facts that J (M (&)) =
M(J4 (&) — J+(&) = 0 and that ker(J; ) is one-dimensional).

Lemma 10 We compute that for any n € Z.,

(S (&) = (D +1)(D+2)+ (D +n—1)(&) (5)

It follows from the particular case n = 1 that

M(&) = —c*.

11



Proof

By the usual convention that a void product is equal to 1 or I, for n = 0, (8) reduces to & = &p.
Let us check it for n = 1, namely that S*(§p) = %D(&O). For any ¢ € Z ., we have

S*(&)@) = (=D)"g&(g—1)
_ (_1)q+1+[%J\/acq71exp(—cz/Q)

(¢ =1t
= —gﬁo(Q)
- D)),
where we have used that (—1)7t1+13] = —(—1)L%J. Since J; (&) = 0, we deduce directly that
S(&) = —c&p. Recalling that M = D + ¢S — ¢S*, it follows that
M(&) = D(&) — & — D(&) = —c*&.

Next we prove (8) by induction over n. So let us assume it for a given n € N, we write

(S*)nJrl(f(]) _ (S*)n§(£0)
= ([(5)" D (&) + D(S*)'(&)).

Lemma 7 enables to compute the above bracket:

[(5")", D] =

(S*)nfl[s*’D] + (S*)"*z[S*,D]S* 4ot [S*’D](S*)nfl
(S*)nfls* + (S*)nf25*s* 4. _I_S*(S*)nfl
= n(S*)".

Putting together these computations, we get
1
(5" (&) = —(n(S)"(&) + D(8*)" (%))

= —(D+n)(5)"(%)

QO

= DD+ (D +2)- (D +n— (D +n)(&).

as wanted.
[ |

Starting with the eigenvector {y € S, we construct the sequence of eigenvectors (&,)nez, =
(J"(&0))nez, which are associated to the eigenvalues (—c® — n)nez ., according to the discussion
following the proof of Lemma 8. Indeed, none of the vectors J" (), for n € N, vanishes, because
we have seen in Lemma 9 that the kernel of J_ is trivial.

Since the elements of the sequence (&,,)nez . are non-zero and associated to different eigenvalues,
it is easy to see that any finite family of them is independent in [?(Z ). It is more involved to check
that the whole sequence (&, )nez, is independent in [*(Z4). To go in this direction, we present an
isometry which will also play an important role in the next section. It gives a convenient way to
deal with the fact that the vectors of the sequence (&,)nez . are non-orthogonal.

Let Q be the subspace of V, consisting of vectors z which can be written as a linear combinaison
of a finite number of elements of (£, )nez,

z = Z fn)&n, 9)

TLGZ+

12



where only a finite number of the real coefficients f(n) are non-zero. Due to the above observation,
these coefficients are uniquely determined for z € Q. So we associate to such an element z € Q the
polynomial

> fm)Xm. (10)

n€Z+

We also consider the function G defined on Z, by
VneZs, G(n) = <1+——> F(X)‘ , (11)

(where the power n corresponds to the composition of differential operators).

Proposition 11 The mapping Q 3 z — G is an isometry with respect to the norms 1*(Z) and
L2(P(c?)), where P(c?) stands for the Poisson distribution of parameter .

Proof

By definition and Lemma 10, we have for any n € Z,

& = (cI—S%)"¢

B le[[On]]<>
Rbe ¢ >
%

n) 721 (=D —1)--- (=D — 1 + 1)&. (12)

)

le[[O nJ ¢

We deduce that for any n,m e Z.,
&ns Emy
= ntm Z (n) (m) c20+k) {(=D)(=D —1)--- (=D — 1+ 1)&,
le[0,n], ke[0,m] ¢ k
(=D)(=D —=1)--- (=D =k + 1))
_ o Y (7;) (’Z) 2R S (g 1)+ (g — 1+ Dalg 1)+ (g — b + 1)€d(a)

le[0,n], ke[0,m] qEZ+

_ ntm V) e REIN(N 1) (N =1+ )N(N —1) -+ (N — k + 1)],
lef0 n]]zke[[o m] (l> (k>

where N is a Poisson random variable of parameter c? (recall (7)). It follows that if z =
Ynez, f(n)&, belongs to Q, then

(zzy = >, F(n)f(m) & ém)

n,meZ 4
_ Z f(n)f(m)anrm Z <7> (;:’) 0*2(l+k)
n,meZy le[0,n],ke[0,m]

E[N(N —1)--- (N =1+ 1)N(N —1)--- (N — k + 1)],

13



where only a finite number of terms are non-zero. Note that we have for any [ € Z, , we have

dl

WF(X)’ = Z f)n(n—1)--- (n—1+ 1),

X=c TLGZ+

Henw rewritting terms (})N(N —1)--- (N — 1 + 1) under the form (]y)n(n —1)---(n—=1+1), we
get
d! d* N\ (N
_ e —(l+k)
<Z’Z> Z XmF(X)’X—c kaF(X)’X—cc E[<l><k>:|

1,keZ,

IE[[ gz +]c1di(>N F(X)|X:c (1 - cldiX>N F(X)
= E[G*(N)],

which is the wanted isometry relation.
|

In order to prove the independence of the family (&, )nez, , we need to control the mapping asso-
ciating F' to G, this is the goal of next result.

Lemma 12 Using the notations introduced in (9), (10) and (11), we have
VneZs, |f(n)] < c"exp ((4c® + 2+ ¢ ?)/2) VE[G2(N2)],

where N2 is a Poisson random variable of parameter c2.

Proof

By definition, we have for any n € Z,

n (m) (¢
Gn) = > <m> L Cm< ) (13)
me[0,n]
= Z n(n—l)---(n—m%—l)FniTlEf).

m€Z+

For any real x > ¢, denote by H, the density of a Poisson distribution of parameter (z — c¢)c with
respect to a Poisson distribution of parameter ¢?:

(@ ;2c)c> exp(—(z — ¢)c + ) (14)

n
(x C> exp(—cz + 2¢%).

Vnely, Hy(n) = (

Cc

Its interest is that for any m € Z,, we have

E[Nz2(Ngz —1) -+ (N2 —m + 1)Hy(Nz2)] = E[Nc(mfc)(Nc(gcfc) —1)-- (Nc(mfc) —m+1)]

= (x—0o)"c™

)

where N, stands for a Poisson random variable of parameter r, for any r > 0.
Putting together the above relations, we get that

™ (e
ECNL (V) = Y Doy
meZ ’
= F(x).

14



By analytic extension, this identity holds for any x € C, since both sides are easily seen to be

holomorphic functions of . In particular for any 6 € [0,27) and n € Z, we get

<L>HF<M> = E[G(N2)(2/c)" exp(—ind) H, exp(igy/2(Ne2)]-

cexp(if) 2

An integration with respect to 1o on) (€)df/(27) yields

o () (557) 5

E[G(Nc2)Jn(N02)]7

fn)

where for any m € Z., we have

n . db
Jn(m) = £02ﬂ)(2/6) exp(_ZnH)Hcexp(iG)ﬂ(m)%
1 d
= — on(m)‘
n! dX X—0
exp(2c¢?) d"
= ——F ——(X — )" exp(—cX)
cmn!  dX X0
B exp(2c?) n\ dP o, AP
= o 2 )X 9" o ep(—eX)
pe[[O,n]] X=0
exp(2c?) n mp np
= o 2 ) mlm =1 m = DX = 0P (=) exp(—eX)
- pefon]
exp(2c?) n mtn—2p
= o 2, )mm =1 = p 1))
cmn)l P
pe0,n]
_1\m+n,n 2
_ &y (;'exp(2c) Z <Z>m(m—1)...(m—p+1)c_2p.

pe[0,n]

Using Cauchy-Schwarz inequality, we obtain for any n € Z,

[f(n)] < VE[R(Ne2)WE[GA(Ne2)].

To bound the first factor, we write that for any m € Z,,

exp(—2¢%) [Jn(m)| = :l—n!p§+ (;>m(m — 1) (m—p+1)c

N
o
3
/™
SEE
~
o
§
I
o
3
—
_|_
o
=
3

Thus we get as announced that

(15)

1\ 2Ne2 1\2
E[J3(Np2)] < c*exp(4c®)E <1~|—c—2> = exp(4c?) exp | 2 <1+C—2> —c2.

15



The independence in [*(Z..) of the family (&,)nez, now follows without difficulty: it is equivalent
to the fact that if 3}, ., f(n)&, = 0, where the sum in Lh.s. is converging in 12(Zy), then f(n) =0
for all n € Z,. But for n € Z, consider z, = Zme[[o,n] f(m)&n € Q, vector to which we associate

the function G, as in (11). The convergence of the sequence (2, )nez, to zero in (%(Z;.) is equivalent
to

lim E[G?(Np2)] = 0.

n—o0

According to Lemma 12, we have for any m < n,
|f(m)] < ™exp ((4(:2 +2+ 6_2)/2) E[G2(N.2)],

so letting n going to infinity, we get f(m) = 0, for any given m € Z ., as required.

Remark 13 Denote by ¢ the map that associates to any G € L?(P,2) the formal series F/(X) :=
Yinez, f(n)X", where

Vn,meZy,  f(n) = E[G(Ne2)Jn(Ne)]
(—1)m e exp(2¢?) n _9
In(m) = m(m —1)---(m —p+1c .
n! pe%nﬂ <p> !

The previous proof shows that the bound of Lemma 12 is valid in this context, so the convergence
radius of F'is at least 1. But the above arguments can be improved to get that F' define in fact a
holomorphic function in the whole plane. More precisely, in (16), we can rather use the bound

nn—1)---(n—p+1) 1

n! (n —p)!
1

(n —m)!

<

)

with the convention that (n —m)! = 1 if m > n. Consequently we have

Vn,meZ,, |Jn(m)] < exp(202)(nf7nm)! (1 + ci2> .
It follows that, for n € N,
E[2(N2)] < ¢ exp(dP)E | — <1 n i>2N62]
o ((n = Ne2)!)? c?
< Pexp(4c®)E b <1 + i>2NC1
(n— N.2)! 2
g (1 2)"]
n!

We conclude that

exp(2¢? 2
VneN, lf(n)] < C”%exp<<<c+%> n—02> /2) VE[G?(N_.)],

and this bound is sufficient to insure that F' € H(C). Note that for n = 0, the above computations
have to be slightly modified, starting with Jo(m) = (—1)™exp(2¢?) and ending with |f(0)| <

16



exp(2c?)A/E[GZ(N,2)].
One can go further and check that (13) holds for any G € L?(P.). Indeed, first consider the
holomorphic function R defined by

VaxeC, R(z) = E[G(N.2)Hy(Nz2)|— F(z).
By definition of F, see also (15), we have

1

M Z —
nete 27 Je(o,e/2)

x "R(z)dx = 0,

where C(0, ¢/2) is the circle of radius ¢/2 centered at 0. By holomorphy, this implies that
VzeC, F(z) = E[G(N.2)H.(N.2)]. (17)

Next we compute that for any n,n’ € Z, (recall (14)),

1 m
S () g tete)
m)cm dr™
me[0,n]

i) ¥ (52 () E ()]

me[0,n] pe0,m]

— ) exp(@ Y] (Z)ﬁ(:,)m(_c)mn'

me[0,n]

= L) exp()e ™ )

me[n’/,n]

o R e D Y (e [

le[0,n—n']

Tr=c

dmr

e pr— exp(—c(x — ¢))

r=cC

nn—1)---(n—m+1)

(m —n')! (=)™

= Su(n))nle ™ exp(c?)

= (P(A)[n]) " du(n).
Thus (13) is obtained by applying the operator Zme[[O,n]] (:;2) % dci—mm oee b0 (17).

Remark 14 Due to the independence of (£,)nez, in [*(Z.), the linear morphism Q 5 z — G
can be extended to the closure C1(Q) of Q in [?(Z, ), let us call ¢ this mapping. It is an isometry
between C1(Q) and the closure of ¥(Q) in L2(P(c?)). We deduce from (13) that the image of Q by
1) is the space of the restrictions to Z, of polynomial mappings, which is well-known to be dense
in L2(P(c?)). Thus 1 is an isometry between C1(Q) and L?(P(c?)). It appears that the inverse of
1 is p o ¢, where ¢ is defined at the beginning of Remark 13 and where ¢ associates to any series

Yinez, f(n)X™" from H(L2(P(c?))) the element Ynez, ()& of CI(Q).

It is time to check that C1(Q) = I3(Z. ), this will end the

Proof of Theorem 6

Indeed, by the above results, the density of Q in (*(Z;) will enable us to conclude that (&,)nez,
is a Hilbert basis of [?(Z,). Thus it remains to show that if z € I2(Zy) is such that {(z,&,)> = 0
for all n € Zy, then z = 0. So let z = (2(¢))gez, be such an element. Since &, = J"(&) and
J_ = cl — S*, this vector z also satisfies

VTLEZ_H <Z7S*n<§0)> = 07

17



and according to Lemma 10, this is also equivalent to
VTLEZ-H <Z7Dn<§0)> = 07

or

Vnez,, Y q"z(q)(—l)Lq;lJ\(/:—;eXp(—czﬂ) _ 0 (18)

qeZy
Let us denote m = (m(q))4ez, the signed measure on Z, with

ﬂj c

VageZy, mlg) = 2(q)(-1" \/—aexp(—f?ﬁ)-

Let my and m_ stand respectively for the non-negative and non-positive parts of m, so that
m =m4 —m_. From (7) and for all » > 0, we have

> exp(rq) m(q)] Y, epra)a), | Y] #(q

9L+ qE€Ly q€Ly
= exp((exp(2r) — 1)/2)1/{(z,2) < +wx

and thus m, and m_ are non-negative measures admitting exponential moments of all order.
Furthermore (18) shows that all the usual moments of m, and m_ coincide, so we can apply
the moment characterizing theorem (see for instance the section XV4 of the book of Feller [7]) to

get that m, = m_, namely m = 0. It follows that z = 0 as wanted.
|

2.3 Eigenvectors properties

Let us now compute more explicitely the eigenvectors &,, for n € Z,

Proposition 15 For any n € Z., the mapping &, defined in Theorem 6 is given, as a function of
(z,y) € T x R, almost everywhere by

nlnry) = 2:2?;) ViR < "y (75 - 2ic> explip(z + y))>

= \/QE Z ( > (26)" V1 o ()R (3 exp(ip(z + y))).
le[0,n]

Thus &,(z,y) is an appropriate linear combination of terms of the types y™ cos(p(x + y)) and
y"sin(p(x +y)) for m e [0,n].

Proof

For any given n € Z, let us write

D7 &al@)eq,

qeZy
with

VaeZy, &g = ((cI=5%)"%)(q)

18



Taking into account (12) and the definition of &y given in Theorem 6, we get that for any q € Z,

Gl = @ X (})eHEDED - (D=1 Daa
le[0,n]
= " ") 2g(q - — — L%Jc—qex —?/2).
le%nﬂ() = 1) = U+ DD ep(-2)

Denoting k), = j%, it is not difficult to check from the definition of the orthonormal basis
p)!

(€q)gez.. that

VqeZyi,V (z,y) e T xR, eq(z,y) = kp%((—l)[%Jiq exp(ipz)hgq(y))- (19)

Rigorously speaking, such equalities have to be understood almost everywhere in (z,y) € T x R,
since we are dealing with functions from IL?(y,). Putting these expansions together, it appears
that

&n(@,y) (20)
a
ek | 3Y ( )c” aa—1) -+ (g — 1+ 1)~=i exp(ipz)hg.a(y)
q€Z+ le[0,n] \/q—
Interpreting again the term and W, ¢(¢ —1)--- (¢ — 1 + 1)c?=2 as ¢! diél Xq’ , we have
Z <7>c2lq(q—l)~-(q—l+l)cq = (1—#1 diX> X1 ;
le[0,n] ¢ X=c
so that
n> o c? 1 d\" X9
5% ()t -t 0t = (14 225) S S
P (l Vd cix) 2 Vi ch

To go further, recall that Hermite polynomials satisfy

VreC,VyeR, Z rqh%y') = exp(ry —r?/2). (21)

g€y

Thus we deduce that
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Recalling the definition (5) of the Hermite polynomials, the previous formulation leads to

> 2 <>2l (¢g—1)- (q—l+1)j—aiqhq,a(y)

q€Z+ 1€[0,n]]

- (1 + é%)nexp (—% (z‘X— %)2 + g—z>

2 2
") g d < 1 ( y ) Y
= E i'c —7exp | —5 X - —F=| +5-
o] (l d(iX) 2 va 2a .

[l
7N
N~

|
i
—_
~—
-
/N
~
~
|
SE

le[0,n]

)
le[{;nﬂ <l> (i (Zc B 76) exp (% * ;)
= (ci)"Vnlhy, <2ic — \%) exp <Z\% N §> |

where we have used another property of Hermite polynomials:

VneZy,¥VrseC, Vilhy(r+5) = Z <7>s"l\/l_!hl(r).

le[0,n]

This relation, parity properties of the Hermite polynomials and equation (20) lead immediately to
the announced expressions.

Remark 16 A posteriori, the last assertion of Proposition 15, as well as the spectrum of the
restriction of L, to V,, could have been obtained in the following way. Consider the change of
variables T x R 3 (z,y) — (z,y) € T x R with z =  + y (in T). Acting on functions of the form
g(z,y), the generator L, can be rewritten under the form

Ly = ad®+2ad.0, + ad? — yd,.
Consider next functions g of product type g1 ® go, with
1: Tz — exp(az)eT,

where « € iZ. The relation 0,¢1(z) = agi(z) implies that Ea[gl ®g] =g ® Z}aa[gg], where Ea,a
is the Sturm-Liouville differential operator acting on functions A of the real variable y through

~

Laolh](y) = ah"(y) — (y — 2a0)h/ (y) + ac”h(y).

It is not difficult to check that this operator admits a family (pq)qu . of polynomials with complex
coefficients such that: for any g € Z,, p, is of degree ¢ and Laa[pq] = (aa® — q)pg (the factor

aa? — ¢ is imposed by the coefficient of highest degree of L, alpql)-

Thus we easily recover all the spectal information contained in Theorem 6 and Proposition 15.
But relations such as those described in Lemma 7 will be encountered again in Sections 4 and 6,
indeed, they are the starting point of all our developments.
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2.4 Spectral analysis of L, on W,

The spectral decomposition of the restriction of L, to W), for fixed p € N, is similar. This is due to
the fact that the restriction of L, to W, is conjugate to the restriction of L, to V,. More precisely,
consider the basis (e} )4ez, of W, given by

66 = wp ® hO,a ) 6/17 = —%p ® hl,a7
6/2 = wp ® h2,a ) egu = —%p ® h3,a7

Then the matrix of the restriction of L, to W, in the basis (e )4ez, is also given by (6). Thus
Theorem 6 and Proposition 15 are still valid, after obvious modifications (note for instance that
(19) remains true is we replace e, by e; and the real part R by the imaginary part ):

Proposition 17 For n € Z,, consider &, = (cI — S* )¢}, where S*' and & have the same
coefficients as S* and &y, introduced in Theorem 6, but in the basis (eg)qez, instead of (eq)qez, -
Then (&n)nez, is a Hilbert basis of W, consisting of eigenvectors associated respectively to the
eigenvalues (—c? — n)pen of the restriction of Ly to W,. Coming back to functional notations, we
have for alln € N,

V(z,y) eTxR, & (z,y) = \/2%\/53 (z‘"hn (% - 2ic> exp(ip(z + y))) :

This result completes the spectral decomposition of L, in L%(p,). This operator is diagonaliz-
able, the set of its eigenvalues is

Ae = {——n:pnelZi},

and the multiplicity of any [ € A, is 17, (I) +2card({(p,n) e NxZ, : | = —(c*+n)}) (in particular
if a is not rational, the multiplicity of [ € A, is 1 or 2, according to [ € Z, or not).

Remark 18 The above conclusions do not extend to the Gaussian framework, where one is rather
interested in the (closure in L2(vy,-1 ® 7,) of the) operator

Lop = yoy —bxdy + ad? —yo,,

where a,b > 0. As it will be seen in Section 4 (considering the scalings = — x/4/a and y — y/+/a),
Ea,b is diagonalizable only if b = 1/4 (for b = 1/4, Jordan blocks of all orders appear), while for
b > 1/4, some of the eigenvalues are not real. In some sense, the appearance of complex eigenvalues
facilitates the convergence to equilibrium (see the end of Section 5) and here we are far from this
situation, if we look at L, as an ersatz of f/l,b asb— 0.

2.5 Link with hypocoercivity

The above spectral decomposition of L, is not sufficient to deduce its hypocoercivity. More pre-
cisely, let (Pt(a))t>0 be the Markovian semi-group associated to L in L2(j4), according to Hille-

Yosida’s theory [23]. Formally, we have for all ¢ > 0, Pt(a) = exp(tL,), which corresponds to the
evolution equation

aP?(f) = PL(),
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valid at least for all f in the domain D(L,) of L, in IL?(y,). Probability theory provides a regular
version of this semi-group. Consider the stochastic differential equation in T x R

{dXt = Y,dt (22)

dY, = —Y,dt+~/2dB;,

where (By);>0 is a standard real Brownian motion. Assume that initially (Xo,Yp) takes the de-
terministic value (z,y) € T x R. It is well-known that the above stochastic differential equation
admits a solution (which is almost surely (a.s.) unique with respect to the law of the Brownian
motion, see for instance the book of Ikeda and Watanabe [13]). Then for any ¢ > 0 and f € L2(u,),
we have pg-a.s. in (z,y) € T x R,

PEO(f)@,y) = Eay[f(X, Y0,

where the subscript x,y of the expectation indicates that we started with (Xo,Yp) = (x,y).

As already alluded to, hypocoercivity concerns the exponentially fast convergence of (Pt(a )t=0
toward its equilibrium g, here in L?(u,). It was proven that given f € L2(yu,), one can find two
numbers C(f) = 0 and « > 0 such that

viz0. PO —pl)] < CU)exp(-ab) (23)

where ||-| stands for the ?(p,) norm. The constant o depends on a but not on f, see for instance
Villani [21] or Dolbeault, Mouhot and Schmeiser [4] for this kind of hypocoercive bounds.

A straightforward consequence of the spectral analysis of our simple model is that it is sufficient
to study hypocoercivity on V), for p € Z .. Indeed, for ¢ € Z, denote U, the line in L2 (1) generated
by vo ® hgq. The subspaces Uy, V,, Wy, for ¢ € Z, and p,p’ € N are mutually orthogonal and
their Hilbert sum is equal to whole space LL?(p,). If A is one of these subspaces, let I be the
orthogonal projection on A and remark that IIY) commutes with the elements of the semi-group.

Denote by (Pt(a7A))t20 the semi-group generated by the restriction of L, on A, we have for all
t =0, Pt(a’A) = Pt(a)H(A) = H(A)Pt(a)H(A). It follows that for any ¢ > 0 and for any f € L2(uq)
with :ua(f) =0,

o) = S A Sl - 3[R0l
qeZ + peN p’eN

Since j14(f) = 0, we have II#0)(f) = 0. The other terms of the first sum are also easy to estimate:
VEz0.¥geN, P = exp(—gtI®(f). (24)

We deduce that for all ¢t > 0,

% [ ] < e 3 ]

Qe+ qeN

2
If we were able to estimate HP(CL’V” )( Il » for p € N, then a similar bound would also be valid for

a,Wp) . (a,Vp)

. Thus to

a,Wp) 2 (a
HP ») (f)| , because the action of P,

is isometrically conjugate to that of P,

2
deduce bounds such as (23), it is enough to know how to deal with the quantity HP( Vr) (f)
peNandt > 0.
This is not obvious, because the eigenvectors (&,)nez, of Pt(a’v” ) (described in Theorem 6 and

, for
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Proposition 15) are not orthogonal. Indeed, we computed their scalar products in the proof of
Proposition 11: for any m,n € Z,,

n m _
Gty = 5 () () e [NONG] > o (25)
le[0,n], ke[0,m]

where we recall that ¢ = y/ap, that N, is a Poisson variable of parameter ¢ and where we used
the notation

VneZi,¥YmeZs, n™ = pn—1)--(n—m+1). (26)

To any function f € V,, we can associate a sequence of coefficients (f(n))nez, so that f =
2nez, [(n)&n in L2(p4). Their interest is that for all ¢ > 0,

PYI(f) = exp(=ct) Y. exp(—nt)f(n)én,

n€Z+

and computations similar to those of the proof of Proposition 11 lead to

Hpt(a,vp)(f)Hz exp( —2c2 t) Z f(n)f(m)exp(—(n+ m)t) (&, Emd

m,neZ

= exp(—262t)E[G? (Nc2 )]7

where

D)

Vt>0,neZy, Gi(n) = (1+ )
cexp(t ez,

X=cexp(—t)

Unfortunately we have not been able to directly relate this quantity and the same expression at
time ¢ = 0. This is why we develop another approach in the next section, where the important
role will rather be played by “Poisson distributions with negative parameters”.

3 Computation of L*-operator norms

Our purpose here is to prove Theorem 1. From the considerations of the end of last section, this
requires to compute the operator norm of Pt(a’Vp ) in L2(uq), for any given a > 0, pe N and ¢ = 0.

Indeed, remark that

Lemma 19 For any a > 0 and t = 0, we have

1P = pa]l = max <exp<—t>,max |||Pé“v"f’>|||).
peN

Proof
From the orthogonality of the subspaces Uy, V,, Wy, for ¢ € Z, and p,p’ € N, and from their
stability by the operators Pt(a)7 for all t > 0, we get

a a a,U
1P = pall = [P — P

W/
C ax <sup P4, sup 1P, sup | |||>

qeN peN p'eN
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_ Pt(a,lxlo)

where we also used that p, = [I¢0) where 1, is seen as an endomorphism of L2(u,).

From (24), we deduce that
V0, ¥geN, [P = exp(—qt),
and by conjugacy we have

a,V, a, WV
Vi=0,VpeN, [P = ).

3.1 Lower bound of |\|Pt(a’v”)|\|

So let @ > 0 and p € N be fixed and denote again ¢ := y/ap. By isometry, for any ¢ > 0, the operator

norm of Pt(a’v”) in IL2(114) coincides with that of exp(tM) in 1(Z, ), where M is defined in (6). We
have seen in Theorem 6 that the spectrum of M consists of the sequence (—62 — N )nez, and that
a corresponding Hilbert basis of eigenvectors is (&,)nez, , where

q
VneZiVqeZs, fulg) = & D <">c2’q<”<—1)l%c—,exp(—c2/2>,
le[0,n] : \/q_

(see (12)). We have already computed their scalar product in (25), but let us give another expression
which will be more convenient.

Lemma 20 We have for all n,m e Z.,
sy = (20" exp((4c) " E[nMrveaet) I Mivaer)) ]

where Ny ey is a Poisson random variable of parameter 1/(4¢?).

Proof

We have seen in (25) that for all n,m € Z,

. n m c2(1+k)+2p
I O 10 L o

peZ+ le[0,n], ke[0,m]

To go further, let us introduce two free variables X and Y and interpret in the above formula, for
b, l7 ke Z+7

1
o0 = 4y

W _ 4
X and D Y

Nt ~dYk

P

Y=1
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We are thus lead to compute at X =1 =Y the expression

dl+k 2P
"M exp(—c?) Z <n> (m)cz(Hk) lk Z xryrCr
1€[0,n], ke[0,m] L) \k axtdy o P!
I+k
= " exp(—c? n\ (M 20tk G 2xy
c exp(—c )le[[o nﬂ%:e[[o . <l> <k>c XTIV E exp(c )
1 m

— vtm 2 ny -~ d_ 1d 2
= ¢ exp(—c )le%:nﬂ <l>c 7x1 (1 + 2 dY> exp(c“XY)
= tm exp(— (7) -2l % 1+X) eXp(C2XY)

le[[O nJ

n d4 dl—q )

= "M exp(— z[[ }]<l> <><qu(1+X) ><Xmlep(c XY)>

efo,n
= ntm exp (7) < > (q)(l+X)m_q(C2Y)l_qexp(c2XY)_

le[[ ]

For X =1=Y, we get
(Enr€my crtm Z ( > Z <l>m(q)2ch2(lq)
1e[0,n] gefo] 4
= Mty ( )<> )~ (@,

l qu+

Interpreting again m(@ as qu X m| _q» We have

2

g€+

(o

so that

(&ns Em)

om ntm Z

leZy

e (24

(2¢)"+™ <1 +

(2C)n+m Z

l€Z+

(2C)n+m Z

l€Z+

21
2o S nOm (4e) ™

2,

2 (é) (2¢2) 1 ——
!
<1 + > XM N

(1) (v i) >

1 n
ix) ¥
X=1

2¢2 dX
x) ¥
X=1

1 d
4c2 dX
n 1 d!
— X
<l> (4c2)l dX?

()

ey

1 da
2¢2 dX

L 4
22 dX

X=1

m

@

!

l€Z+
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This expression can be written under the form given in the above lemma.
|

This formulation enables to compute quite efficiently the norm of exp(tM)z for z in a dense
subspace of 1?(Z,). It is based on the remark that E[N(] = p" if n € Z, and N is a Poisson
distribution of parameter p > 0. In fact we will also use the underlying computation with negative
p:

~

Lemma 21 Let p,p € R be given and consider Z = 3, f(n)é, and z =3}, 5 f(n)gn, where
forallneZ,,

2oy P R O
f(n) = o and  f(n) = o
Then we have
(Z,zZ) = exp(pp+2¢c(p+p))-

Proof
To justify the absolute convergence in the following computations, they should be first considered
with p and p replaced by |p| and |p].
According to Lemma 20, we have
2 = ), fm)f(m) & &m)
n,meL+

= D, T Fm)@e) ™ exp((4?) B[ e )]

n,meL4

= exp((4) NE | | Y @) FlnynPvee) | 1N @20 fm)ymNvaen) | |

TLGZ+ mEZ+

where N /(2) is still a Poisson random variable of parameter 1/ (4c?).
For any fixed N € Z., we have

S @ fan™ = ¥ <2c>nn<N>i_“f

TLEZ+ TLGZ+
~n

P

= ot

neZy n=N (’I’L o N)'
nsn

= 2V Z M

|
TLEZ+ n:

- ~ N ~
= (2¢0)" exp(2cp).

Thus it appears that

G2 = en((de) ) exp(2e(p + H)E | (4c2pp) Ve |

= exp(2c(p + p)) exp(pp)

In particular, if z € [?(Z, ) is given by z = ZneZ+ %Té’n, with p € R, we get
|2[> = exp (o +4cp) .
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The interest of this formula is that for such z, we have

Vit=0, exp(tM)z = exp(—c’t) Z exp(—nt)p—'fn, (27)
n€Z+ s
so that
Vi=0, lexp(tM)z|* = exp(—2¢%t)exp (exp(—2t)p* + dexp(—t)cp) .

We deduce a lower bound on the operator norm || exp(tM)|| in 1*(Z. ):

Lemma 22 For any t > 0, we have

lexp(tM)] > exp <—c2 <t—21_Lp(_t)>>.

1+ exp(—t)

Proof
Since by definition, for any t > 0,

exp(tM)z
JospM)] =  sup 1EPEM]
sezonoy 7]

we deduce from the above computations that

lexp(tM)[? = exp(—2¢*t) sup exp ((exp(=2t) = 1)p” + 4(exp(—t) — 1)ep) (28)

— exp(—2c¢%t) exp <suﬂ1§ ((exp(—2t) — 1)p* + 4(exp(—t) — 1)cp)>
pE
4(exp(—t) — 1)2¢?
= exp(—2c¢*t) exp <— exp(=20) — 1 )
4c2(1 — exp(—t))) '

exp(—t) + 1

—  exp(—2c’t) exp <

3.2 Upper bound of \HPt(a’Vp) I

To get a matching upper bound of || exp(tM)]|, consider the subspace Z of z € [?(Z, ) which are
finite linear combinaisons of vectors of the previous type, namely that can be written under the
form

z = > ZV:Z—Z;&” (29)

neZy lefr]
where r € N and v, p; are real numbers, for [ € [r].
Lemma 23 The subspace Z is dense in 1*(Z).

Proof

Consider z € I2(Z ) orthogonal to Z, we want to show that z = 0. The orthogonality of z to Z is
equivalent to the fact that for any p € R,

<z, > Z—Tfn = 0

TLGZ+ ’
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% p" vanishes for all real values of p and it is possible only if

This means that the series >’

TLEZ+

VneZLs, (z,&n) = 0.

But we have seen in Proposition 6 that this implies that z = 0.

The previous result suggests that any z € 1(Z, ) can be written under the form
pn
2= Y | B (30)
n€Z+

for an appropriate signed measure v on R. But we won’t push the investigation in this direction
(see also the last remark of this section), since what is interesting for us is that by density

tM
Vis0, Jexp(tM)] — sup LPEDZ] -
wezvoy 2l

and that the norm ||z| can be computed for z € Z:

Lemma 24 Let z € Z be given by (29). Then we have
l2I* = VAlp)v,

where v (respectively V') is the column (resp. line) vector of coordinates (v;)ic[,) and where A(p) is
the r x r-matrix given by

V k,le[r], Api(p) = exp(prpr + 2¢(pr + p1)) -

Proof

This is an immediate computation: let us denote for [ € [r],
- AL
Zl = Z n! §n7
TLEZ+
so that z = Zlem 12 and

(zzy = vvla )

L,ke[r]

= Z v ALk(p) v,

1,ke[r]

according to Lemma 21.
|

The advantage of the decomposition (29) is that it well-behaves under the action of the semi-group
under consideration:

neZy le[r]
The above lemma then implies that
(exp(tM)z,exp(tM)z) = exp(—2c*t) A(exp(—t)p)v. (32)

To treat the r.h.s., we need the following result.
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Lemma 25 For anyt >0, any r € N and any v = (Vi) per], P = (pk)ke[[r]] e R", we have

V' Alexp(=t)p)r < exp (—4021_Lp(_t)> V' A(p)v.

1 + exp(—t)
Proof
Fix the dimension r € N and the time ¢ > 0 (for ¢ = 0 the announced result is trivial), and consider
2c
= —— 33
PO 14et’ ( )

which is the maximizer in (28) (we omit the dependence on ¢ in the sequel). Define next the vector
h = (hi)ker) € R” by

Vke [[T]L hy = Pk — PO,

where p = (pr)re[r] € R” is a vector given as in the statement of the lemma. We compute that for
any k,l € [r],

B - L 24et 2¢ e
e prpr+2e elpr + ) = —Ace t(l P A

(hi + ) + e 2 hyhy,

and

42 1+ 2t n 2e~'c
(1+e?)?2 14et

prpl + 2¢(pr + p1) = (hi + hy) + hihy.

Note that the terms hj + h; have the same factor in the two last expressions. This leads us to
introduce the vector 1 whose coordinates are given by

V ke [r] = 2 ) 0
Tl Nk = €xp 1o et k| Vks

so that we can write

VAe tp)v Ttei2

142t
2m> n'B(h)n,

2 —t
exp <—4c2e_t e 2) n' B(e 'h)n

VA(p)y = exp <—4c
where B(h) is the r x r-matrix given by
Vi dle[r],  Bri(h) = exp(hih).
Since
24 et 1 —e!

1+ 2et
4R g2et 2T L 2
¢ (1+et)2 c (1+et)2 “1yet

it remains to prove that for any n = (1x)re) € R™ and any h = (hg) e € R,

n'B(e 'h)yn < 1/'B(h)n.
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To get this bound, it is sufficient to expand these expressions:

WB(e 'hy = > exp(e” > hghy)nim
k,le[r]
—2nt

= > en! (hicha)™ memy

k,le[r] n€Z+

2
—2nt

- Zel th??k

n:
nely ke[r]

< Yol X

neZy  \ke[r]

2

= 1/ B(h)n.

Coming back to (31) and (32), we get that for any t > 0,

Jexp(tM)] < exp (—c2 (t - 2%)) |

1+ exp(—t)

and in conjunction with Lemma 22, it follows that

Jexp(tM)] = exp (—8 (t - 2“71“‘”)) |

1 + exp(—t)

Coming back to the notations of the beginning of this section, we have that for any a > 0, any

peNand any ¢t > 0,
(@,Vp) 9 1 —exp(—t)
P = — t—2———F—=< ] |.
R I e

Injecting this quantity in Lemma 19, Theorem 1 is proved.

3.3 Final remarks

To finish this section, let us make explicit the functions for which the operator norms of the semi-
group are reached. It will appear a posteriori that there is a faster way to justify the introduction
of such functions of the form presented in Lemma 21.

From the above computations, it follows that if ¢ > 0 is such that \HPt(a) — gl = exp(—t), then
)

any element of ¢;\{0} is a maximizing function for the computation of |||Pt(a — Wqll, for instance

the mapping T x R 3 (z,y) — y.

This no longer true if ¢ > 0 is such that \HPt(a) — pal > exp(—t), in which case z; =3}, 7 %fn eV
is a maximizing function, where p; := —2+/a(1 + exp(—t))~! is the quantity defined in (33) when
p=1(let z; = Zne& %;;5; € Wi, where the £, are defined in Proposition 17, with p = 1, then
any non-null linear combination of z; and z; is also maximizing). So let us compute z; and more
generally:

Lemma 26 For any p € N and p € R, consider z = Znez+ %Tfn € Vp. Then we have, almost
everywhere in (x,y) € T x R,

Azyy) = 222)! exp <2\/5pp + p—22> Cos <% + p(z + y)> .
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Proof
Recall from Proposition 17, that almost everywhere in (z,y) € T x R, &,(x,y) is the real part of

2 <7>u<z ) ’}”J%J M) it epipte + ),

le[0,n]

where ¢ = y/ap. We deduce that z(x,y) is a.e. the real part of

2pp l hl a( )
exp(ip(z +y)
\% (2]9) n§+ le[[;n]] \/ﬁ
2pp! [ l a
= exp(ip(z + y)
(2p)! le; Vi ZZ
2Pp! . . ha(y)
= exp(ip(z +y)) ), (ip)’ exp(2cp)
(2p)! le% Vil
2Pp!

; 2
. Z y
= exp(ip(z + y)) exp(2cp) exp (L - %) :

§

where (21) was taken into account.

Thus, when |||Pt(a) — pa|| > exp(—t), functions proportional to

2ty

TXR9($,y) = exp (_HTP(—t)

+i(w+y)>,

(a)

are maximizers for the computation of || P,* — ji4]| in the complexified L2 (11,).
Lemma 26 leads us to consider for any p € N and for any p € R the mapping

F,p: TxR3(z,y) — explipy+ip(z+y)).
If Ry 3¢t~ p; € R is a smooth function, define
V=0,V (z,y) e T xR, Gi(z,y) = Fpp(x,y),
we compute that
0Gi(w,y) + LaGi(z,y) = (i(p} — pr)y — a(p + pi)*)Gi(, y).
Thus if we choose p; := exp(t)p for given p € R and all ¢ > 0, we get
aPO[G] = —a(p+exp(t)p)* PG,

whose integration leads to

vt>0, PG = exp(—a[p*(e* —1)/2 + 2pp(e — 1) + p*t])Go.
This formula can be rewritten under the form

Pt(a) [Fpo] = exp(—ap®t)exp(—a[p*(1 — e ?)/2 4 2pp(1 — e ) E, o),

and via Lemma 26, this corresponds to (27).
From here it is possible to follow our previous arguments (computing instead pq[F), ;F), 5] for
0, p € R, namely values of the characteristic function associated to p,) to get the same proof of
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Theorem 1. So the above manipulations of functions of the form F}, , are a short way to avoid the
spectral decomposition of L.

This approach could also be considered in our second model (or for some quadratic symbol oper-
ators), but it would be more tricky, because in the end the corresponding maximizing functions
for the computation of the operator norms will be linear and not of the form R x R 3 (z,y) —
exp(iax + ify), where a, § € R.

Remark 27 After some elementary manipulations, Lemma 26 enables to translate the question
asked around (30) into the following one: is there a set M of complex measures on R such that
the relation

VyeR,  f(y) = fReXp(iyp)V(dp),

induces a bijection between functions f € L?(p,) (complexified) and measures v € M? Whatever
it is, M contains all finite linear combinations of Dirac masses. Note that since L2(p,) is not
included in the space 8" of tempered distributions, the usual Fourier transform in &” does not give
the answer.

4 Spectral decomposition of the Gaussian case

We treat here the spectral decomposition of our second model. Despite it is already known (see
for instance Risken [19]), we will proceed differently, rather following an approach based on a
decomposition of the generator similar to our roadmap used in Section 2. Apart from underlying
the analogies and differences between our two models, this will put us in good position to compute
the operators norms.

4.1 Decomposition of the generator on stable subspaces

So for fixed a > 0, we are interested in the operator L, defined in (2). Since the coefficients of L,
are affine and the associated invariant measure fi, = 7/, ® is Gaussian, it is natural to check how

Ea acts on the Hermite polynomials, renormalized to be orthogonal in L2(fi,). The definition of
the orthogonal polynomials associated to v were recalled in (5). To simplify notations, we sightly
modify those adopted in Section 2 and rather consider

VpeN,VzeR, hpaly) = hy(vaz).

The family (hpq ® hq)pgen is then an orthogonal basis of L?(fi,). In analogy with Lemma 5, we
begin by

Lemma 28 For all p,q € N, we have

f/a[hp,a ® hq] = \/Ephp—l,a ® hq+1 - \/ath+1,a ® hq—l - th,a ® hq-

Proof

Taking into account the following classical relations, valid for all ¢ € N and y € R (with the
convention h_; = 0),

hg(y) —yhy(y) = —qhg(y)
ho(y) = qhg-1(y)
hgt1(y) = yhe(y) — qhg-1(y),
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we compute that for all p,q € N and z,y € R, we have

Za [72p,a ® D) (@, y)
= y\/aphp—l,a<x)hq(y) - athp,a<x)hq—1(y) - th,a<x)hq(y)
= Vaphy1,a(2)(hgs1 + qhg-1)(y) = Vaq(hpsr,a + php-1,0)(€)hg-1(y) = ¢hp.a(x)he(y)
= (Vaphp—1,a ® hgr1 — Vaghpi1,0 ® hg—1 — qhp,a ® hg) (2, y).

This formula leads us to introduce, for n € N, the subspace H, of L?(fi,) generated by hy o ® hp—p,
for p € [0,n]. Indeed, H,, is left invariant by L,. Let us consider the matrix M, associated to the
restriction of L, to Hy in the orthonormal basis (hp 4 ® hn—p)pefo,n]- It is the tridiagonal matrix
given by

M, = 0 a2(n — 1) (n—2) 0 (34)
0 0 —s/an 0

In order to diagonalize this matrix, it is fruitful to decompose it into its diagonal , above-diagonal
and below-diagonal parts, i.e. M, = Dy, + 1/aS, — /aS, with

~ . —(n—p) ,ifp=gq
V p,qe[0,n], Dy(p,q) = {0( ) otherwise.

Vpqe0.n],  Sulp,q) = {0(19 Jn—p) ,ifg=p

, otherwise.

and where S;¢ stands here for the transposed matrix associated to S,.
The next point is crucial to understand the spectral structure of M,,:

Lemma 29 For any n € N, the commutators of Sy, S; and D, are given by

[Sn.S%] = —2D, —nl,
[Snaﬁn] = Sn
(S5, Dn] = -85,

where I, is the n x n identity matriz.

Proof

The two first relations are just direct computations: for any p, g € [0, n], we have

[Sn: Spl(pa) = SnS5(p:q) — Sy Su(p,q)
Sn(p,p +1)Sn(q,q + 1)0g11=p+1 — Su(p — 1,0)Sn(q — 1,9)0g-1=p—1
((p+1)(n—p)—p(n—p+1))dg=p
= (n—2p)dg=p
= —2Dy,(p,q) — nlu(p. q).
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In a similar way, we have for any p, g € [0, n],

~

[SnaDn]<p7Q) = Snﬁn<p7Q)_l~)nSn(p7Q)

~ ~

= Su(p,p +1)Dy(q,9)0g=p+1 — Dn(p,;p)Sn(q — 1,q)0p=q—1
= —((n—p—D\/@+1)n—p)—(n—p(p+1)(n—p))og=p+1
= V(+1)(n—p)g=p-1

= Su(p,q).

The last equality is a consequence of the previous one:

[S*,Dn] =

no

Thus it appears that the vector space ‘7” generated by the four matrices I, lN?n, Sy and S}
is a real Lie subalgebra of gl(n + 1,R), stable by transposition and containing ]\7” It is not
difficult to check that for n € N\{0}, the four matrices I,,, D,, S, and S* are independent, so
that dim(V,,) = 4 (the case n = 0 is different: V5 = R and dim(Vp) = 1). To avoid trivialities, we
assume that n € N\{0} in the discussion that follows. It is possible to reduce the dimension to 3,
by considering the next slight modifications. Define

~ n

Dy = Dp+ 21,
3

M, = Mn—l—glm

and let V,, be the vector space generated by the three matrices D,, S, and S}¥. We deduce
immediately from the above lemma that

[Sn,Sk] = —2D,
[SnyDn] = Sn
[S:mDn] = _SZ

so Vj, is still a real Lie subalgebra of gl(n + 1,R) stable by transposition. We recognize the sl(2, R)
Lie algebra. Indeed, defining

e| = —Dn eg = Sn/\/§ ez = Sz/\/i,
these elements satisfy the same Lie bracket relations
[e1, e2] = €2 [e1,e3] = —e3 [e2; e3] = e1,

as the elements of usual basis of s[(2,R) given by

N A oL (01 e L (00
a2 lo -1 27200 0 TR 0 )

For n = 1, we even have equality between these elements and if we rather see the V,,, for n € N, as
complex vector spaces, then (V,)nen is the family of all irreducible representations of sl(2,C) (see
for instance Section 4.4 of the book of Hall [8]).
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4.2 Spectral analysis of L,

The Lie algebra structure of V,, suggests that to get informations about the spectral decomposition
of M,, = +/aS,, — +/aS}; + D, € V,, it is interesting to first investigate the spectral decomposition
of the adjoint operator at M,,, which is defined by

ady, : Vo3 X — [My,X]eV,.

This is the object of the next result, where V;, and adj;, are replaced by their natural complexifi-
cations.

Lemma 30 Let n € N\{1} be fized. The kernel of the operator adyy, is generated by M,. For
a = 1/4, there are two other eigenvalues, 6 and —6 where

0 = vV1—4a ,ifa€e[0,a/4)
o Vida—T1i ,ifa>1/4.

The corresponding eigenspaces are respectively generated by

Ji = 4vaD,+(1-0)S,— (1 +6)S} (35)
J_ = 4VaD, + (1+6)S, —(1—06)S;.
For a = 1/4, the operator adyy, is not diagonalizable and its matrixz is equal to the 3 x 3 Jordan
010
block | 0 0 1 | associated to the eigenvalue 0, in the basis (M, Dy, — 2+/aS};, —2+/aS}).
0 00
Proof

Due to the fact that [M,, M,,] = 0, we already know that M,, is an eigenvector associated to the
eigenvalue 0 of adys,. Using the above bracket relations, we compute that the matrix associated
to adyy, in the basis (D, Sy, S;) is given by

0 -20a -2Va
Ja -1 0
va 0 1

It characteristic polynomial is —X (X2 — 1+ 4a), so for a = 1/4, adyy, admits three distinct eigen-
values which are 0, # and —6, defined in the above statement. Computing associated eigenvectors,
we get the announced results, for @ = 1/4. For a = 1/4, since the characteristic polynomial is —X?3,
it appears that 0 is the only possible eigenvalue. Furthermore it is clear that the above matrix has
rank 2 (in fact for any a = 0), so adyy, is necessarily similar a 3 x 3 Jordan block associated to the
eigenvalue 0. Already knowing that M, is in the kernel of adjy, , it is not difficult to complete it
into a basis in which the matrix associated to adj;, has the required form, e.g. the basis given in
the lemma.

For the remaining of this section, the case a = 1/4 will often be excluded from our study. This
value is critical for the spectra of the M,,, n € N\{1}, to be real. More precisely, we will see that
for a € (0,1/4], the spectrum of M,, is real (so a posteriori complexification was not necessary),
while for a € (1/4,+0), it does contain non-real eigenvalues. First we present a simple but very
useful technical result.
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Lemma 31 Fora e (0,+0)\{1/4}, ker(J), the kernel of J, is of dimension 1.

Proof

From (35) we remark that J is a tridiagonal matrix, whose supdiagonal has only non-vanishing
entries (namely the values /a(p + 1)(n —p)(0 — 1), for p € [0,n]). So if f = (fp)pefo,n] 18 @
vector belonging to ker(J;) and if fy = 0, we deduce by iteration that f = 0: indeed the equation
J+(0,0) fo+J4(0,1)f1 = 0, implies fi = 0, next the equation J (1,0)fo+J+(1,1) f1+J4+(1,2)f2 =0
enables us to see that fo = 0, etc., in the end the nullity f,, is a consequence of the last but one
equation. It follows that ker(J,) is at most of dimension 1, otherwise we could find a non-zero
vector in ker(Jy) whose first coordinate is zero.

To see that ker(J, ) is not reduced to {0}, let be given A\ an eigenvalue of (the complexification
of) M,, and denote by ¢ = 0 a corresponding eigenvector. Since we have

MyJip = JyMpp+0p
= (A+0)e.

we get that either A 4 6 is an eigenvalue of M,, or J. ¢ = 0. If the latter condition is not satisfied,
we iterate this operation to see that either A + 26 is an eigenvalue of M, or J2p = 0. But \ + pf
cannot be an eigenvalue of M, for all p € N, so necessarily there exists p € N with JY¢ = 0 and
JP e =0, e JPp e ker(J;)\{0}.

[

By extending to Jordan-type subspaces the latter argument, we will prove the following important
result.

Proposition 32 For a = 1/4, the matriz M, is diagonalizable and all the eigenvalues have mul-
tiplicity 1. More precisely if X is an eigenvalue of M, such that X\ + 0 is not an eigenvalue of
M, then the spectrum of M, is the set {\ — kO : k € [0,n]}. Furthermore, for k € [1,n], J;
(respectively J_) transforms the spectral line associated to X — kO (resp. X\ — (k — 1)0) into the
spectral line associated to A — (k — 1)6 (resp. A\ — k6).

Proof

We define that a subspace V of C"*! is of type (I,d), with [ € C and d € N, if there exists a basis
(00, 15 -y q) of V such that

M,po = lpo,
Vpe[l,d], Moy = lpp + @p1.

The Jordan decomposition implies that M, is diagonalizable if and only if there is no (I, 1)-type
subspace for any [ € C (by taking into account that maximal (I, d)-type subspaces lead to Jordan
blocks, which contains (I, 1)-type subspaces if d > 1). We are to proceed by a contradictory
argument to show that M, is diagonalizable. First consider V a (I, 1)-type subspace endowed of a
basis (g, p1) as above. The relation M,,J, = J, M, + 6J, implies that

My Jipo = (I +0)J5p0,
MyJior = (1+0)Jrp1 + Jypo. (36)

Thus if ker(J;)nV = {0}, we get that J g and J4 1 must be independent, so J (V) isa (I+6,1)-
type subspace. In particular [ 4+ 6 is an eigenvalue of M,. Next let A be as in the statement of
the proposition and assume there exists a (A, 1)-type subspace V, endowed of a basis (¢g, ¢1) as

above. Necessarily ker(J;) < V, otherwise the above argument would lead to fact that A\ + 6 is an
eigenvalue of M,,. So let f € ker(J;)\{0} be given. The relation M, J, f = J. M, f + 0.J f implies
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that J4 M, f = 0, namely M, f € ker(J;). Lemma 31 then shows that M, f is proportional to f,
i.e. f is an eigenvector of M,. The only eigenvectors of M, belonging to V' are proportional to
©p, thus we deduce that Jypy = 0. But (36) (with [ replaced by A) implies that either A + 6 is
an eigenvalue of M,,, which is forbidden by our choice of A, either J;y; = 0, which is not more
possible, because it would lead to dim(ker(Jy)) > 2. It follows that a (A, 1)-type subspace does
not exist.

Nevertheless, a eigenvector ¢ = 0 associated to A exists and necessarily J1¢ = 0. A consequence
of this property and of Lemma 31 is that for any [ = A\ and any ([, 1)-subspace V, we have
ker(Jy) nV = {0}. As it was already shown, we then get that J (V) is a (I + 0, 1)-type subspace.
If [ + 6 = \, we reiterate this procedure. Necessarily we end up with a integer p € N\{0} such that
[+ pf = )\, otherwise we would construct an infinity of eigenvalues. But another contradiction
appears, because J (V) is in fact a (A, 1)-type subspace. In conclusion, there is no (I,1)-type
subspace: M, is diagonalizable.

The other assertions of the proposition are proven in a similar way: first ker(J, ) is necessarily
the eigenspace associated to A, which by consequence is of multiplicity 1. Next any non-zero
eigenvector ¢ associated to an eigenvalue [ = X\ of M, is such that J,p is a non-zero eigenvector
associated to [ + . Iterating again, we deduce there exists p € N\{0} such that [ + pf = X and
J% ¢ belongs to the line eigenspace associated to A. Another application of Lemma 31 shows that
the dimension of the eigenspace associated to [ was necessarily 1 (otherwise you could find ¢ =0
in this eigenspace and k € [1,p] such that J_lflgo belongs to ker(.J,) but not to the eigenspace
associated to A, which is not permitted). This is only possible if the spectrum of M,, coincides
with the set {\ — k6 : k € [0,n]} and if for k € [1,n], J4 transforms the spectral line associated
to A — k6 into the spectral line associated to A — (k — 1)#. Rather working with J_ instead of J4
leads to the corresponding statement for J_.

|

To end the determination of the spectrum of M,,, we point out another particular feature of this
matrix: M, is skew-centrosymmetric, i.e. T (M,,) = —M,,, where for any (n + 1) x (n + 1) matrix
M = (M 1)k 1c[o,n]> We define

Y k,l € [[O,n]], (T(M))k,l = Mnfk,nfl'
This transformation 7 also applies to vectors by

Vf=reon: T = (Ffak)refon]

and it is easily checked that for any matrix M and vector f,
T(Mf) = TM)T(f),

(for general references about (skew) centrosymmetric matrices, see for instance the papers of
Weaver [22] and Lee [16]). An important consequence of the skew-centrosymmetry of M, is that
its spectrum is symmetric with respect to 0. Indeed, if A\ is an eigenvalue of M,, and if ¢ is a
corresponding eigenvector, we get, by using that 7 is a linear involution, that

My T(p) = T(T(Mn)p)
_T(Mnﬁp)
= —AT(¥).

This shows that —\ is also an eigenvalue of M,,, an associated eigenvector being 7 (¢). In conjunc-
tion with Proposition 32, this observation leads to the determination of the spectrum of M,,.

Proposition 33 For a = 1/4, the spectrum of M, is {(k —n/2)0 : k € [0,n]}. For a =1/4, M,
is similar to the Jordan block of size n + 1 associated to the eigenvalue 0 (in particular M, is not
diagonalizable forn > 1).
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Proof

The first assertion is an immediate consequence of Proposition 32 and of the symmetry of the
spectrum of M,,. Note that as a = 1/4 goes to 1/4, § and the eigenvalues of M,, converge to zero.
A usual result on perturbation of spectrum (cf. for instance the chapter 2 of book of Kato [14])
then implies that the spectrum of M, for a = 1/4 is reduced to {0}. But the arguments of the
proof Lemma 31 also apply to the tridiagonal matrix M, to show that the dimension of ker(M,,)
is at most 1. By the Jordan decomposition, it follows that M, is necessarily similar to the Jordan

block of size n + 1 associated to the eigenvalue 0.
|

In view of this result it is natural to make the convention that # = 0 when a = 1/4. Recalling that
for all n € N, M,, = M,, — 51, is (the matrix associated to) the restriction of L, to H, and that
L%(fq) = @,,ey Hn, where the H,,, n € N are mutually orthogonal, we get

Corollary 34 For any a > 0, the spectrum of L, in L2 (Jig) is
{—g +(k—n/2)0 : neN, ke [[O,n]]}.

For a =1/4, Ea is diagonalizable in L%(Jiy), but E1/4 is not diagonalizable and it contains Jordan
blocks of all dimensions.

For a = 1/4 and n € N, we have seen that a family (£,),e0,n] Of eigenvectors associated to the
eigenvalues ((p —n/2)0)pefo,n) of My is given by

Vpe [[Oan]]a Sp = J£§07

where & is a normalized vector generating the kernel of J_.

Using this information, it is possible to make explicit the eigenvectors of T,a, which are polynomial.
But as seen in Section 3 for our first model, to obtain hypocoercive bounds, it is more crucial to
compute the scalar products of the eigenvectors than to known them exactly. This is the objective
of next section.

5 Norms of hypocoercive Gaussian semi-groups

We are going to prove Theorem 3, by following the approach of Section 3, namely by investigating
scalar products of underlying eigenvectors.
Let a > 0 be fixed. Since, on one hand the orthogonal decomposition L2(fiq) = &),y Hn,

introduced in the previous section, is left stable by all the elements of the semi-group (f’t(a))t>0,
and on the other hand ji, correspond to the orthogonal projection on Hy, the space containing the
constant functions, we have for all t > 0,

11 = falfayo = supllZ” N,
neN
By the isometries introduced at the beginning of Section 4, we have for any n € N and ¢ > 0,
\HPt(a) Iz, = ||exp(tM,)]|, where M, is the (n + 1) x (n + 1) matrix defined in (34) and where

Il - || stands for the operator norm with respect to the canonical Hermitian norm on C"*!. We are
thus brought back to the finite dimensional setting of Section 4, n € N being fixed.
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5.1 Identification of eigenvectors when a € (0,1/4)

For the first part of this section, we restrict ourself to the case a € (0,1/4), so that 6 is real and
belongs to (0,1). Recall that

-2 0 0 0 0 vn 0 0
~24+1 0 0 0 2(n —1) :
Dn =1 o0 0 -2+2 0 | and Sy 0 0 0 0 |
. 0 . W/n
0 0 0 3 0 0 0 0
and that
~ n
M, = Mn_§[n
M, = D,+ \/5(‘9% - S;Lk)
0 = +V1—4da
Jy = 4yaD, +(1-0)S,— (1+0)S}
J_ = 4yaD, + (1+0)S, — (1 —0)S*.

Furthermore, & is a normalized vector generating the kernel of J_ and for all p € [1,n], &, = J¥ &,
so that (§p)pefo,n] is @ family of eigenvectors of M,, associated to the eigenvalues ((p —n/2)0),e[0,n]-
We begin by checking that &§ = (£5(p))pe[o,n] is the binomial distribution of parameter (1 — 6)/2.

Lemma 35 We can take
n\ /1—=0\? /1+0\"?
e a0 = () (50 (59 )
Proof

Let £ be the vector whose coordinates are given by the r.h.s. of (37). It is sufficient to show that
J_& = 0. By definition, we have for any p € [0,n] (with the convention {(—1) = &(n + 1) = 0),

Dypé(p) = (—gﬂ))i(p%
Snép) = A+ Dn—-pkp+1)

_ W\/g
= (n—p) ;S(p),
Sxé(p) = \/m
- \/mm e
= p H—Hi(p)

It follows that

J &(p) = <4x/5<p—g)+(1+9)(n—p) %—(1—9)17 %)6(1))

= (2va@p—n)+m—p)V/I=0)1+0) —p/(1+0)(1-0)) &)

= 2Va(2p—n+n—p—p)p)
= 0.
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Following the same arguments of Section 3, we are now looking for a family (Qp)pe[o,n] of polyno-
mials, with @, of degree p for p € [0,n], such that

v pEe [[07 n]]) gp = Qp(Dn)é(] (38)
To do so, we will need two preliminary computations

Lemma 36 We have

and for any p € Z,

Proof
By definition, we see that

Ji+J- = 8/aD, +2S, —2S}
2
vaDn + o )

and the first equality follows at once.
The second equality is trivial for p = 0 since by convention J{ is the (n + 1) x (n + 1) identity
matrix I,,, so that [J_, J?r] = 0. For p = 1, we are going to show that

[J_,J.] = 8OM,. (39)

Let us first remark a priori from the actions of J_ and J. on the eigenspaces of M, that J_J,,
JiJ_ and [J_, Ji] are functions of M, at least for a = 1/4, when all the eigenvalues of M,, are
distinct. Indeed, recalling that [D,,, S, = —Sn, [Dn, S] = S} and [M,,, J_| = —0J_, we get

[J_,J.] = {J, %Dn + \%Mn - J]
- U DA+ M)
8a — 2 * 2
- 7 [4v/aD,, + (1 + 60)S, — (1 —0)S¥, D, ] + \/59!],
8a — 2 8a — 2 « 2
- 7 (14 0)[Sn, Dy] — 7(1 —0)[S:, Dy] + \/59']*
8a — 2 8a — 2 2
= - (1+6)S, + —a(l —-6)Sk + —aej_
= —é(l +0)S, — 2402\(?— 0)Sr + iHX(ALF\/ED +(140)S,—(1—-10)S})
- 3—95(—9«1 +0)Sy + (1— 0)S*) + 4v/aDy, + (1 + 0)Sy — (1 — 0)5%)
- ZLUVaD, + (1= 65, — (1= 67)5)
= \2/—96(4\/5Dn + 4aS, — 4aS})
= 80M,.

40



Hence, from (39) we deduce that for any p € N,

[J_,J2) = [Jo,J )2 dy [T, T 2 T2 T, T
— BO(MpJY ™ + Iy My PR TP M).
Applying this formula to the vector & and taking into account that JI&, is an eigenvector of

M,, associated to the eigenvalue (¢ — n/2)f for all ¢ € [0,n] (and that the relation M, J{& =
(¢ —n/2)0J1¢ is also true for ¢ > n, since then J?& = 0), we obtain for all p € N,

[T, J0J& = 80 ((p—1—n/2)+ (p—2—n/2) + + (—n/2)) ] &
dp(p—1— n)92Jﬁ_1§0,

as announced.

[ |
We can now find (Q,(X))p=0 such that (38) is satisfied.
Lemma 37 Consider the family of polynomials (Q,(X)) defined by the recurrence relation:
Qo(X) =1 and Qu(X) = — (202X + "¢
0 - 1 - \/* \/a 9
2 2p —
Ln—1 X) = [(——=0X+ 46° 1— _1(X).
pella-tl Quu(X) = (- X+ 220) Q) + 16%(n + 1 - 1)y ()

Then for any p € [0,n], Qp is of degree p and (38) is fulfilled.

Proof

Of course &y = Qo(Dp)& and if we assume that for some p € [0,n — 1], §; = Qq(Dy)&o for all
q € [[0,p], then we can write, using the first relation of Lemma 36, and that J_&, =0

1 = J+(JV&)
— (78(1_2Dn Mn J>J+§o

va
- 2 22D,QuD6 + = (v - )wiso [T, 2060 — T &
- (%D £ —0(r-7) )Qp [T, 7236,

If p =0, since [J_, J?] = 0, this gives & = Q1(Dy)& with Q; the polynomial described in the
lemma, recalling that §2 = 1 — 4a.

For p > 1, the second relation of Lemma 36 enables to replace [J_, J | by 4p(p—1 —n)HQJffl{o =
4p(p — 1 — n)0?Qp—1(Dy)&o, due to our iterative assumption. So we end up with the announced
recurrence relation for the family (Q,(X))pe[o,n], Which clearly implies that for any p € [0, 7], @,

is of degree p.
[

Remark 38 Let us define ,,.1 by extending the above recurrence:

Qnir(X) — (-%92)( + %o) Qn(X) + 46°1Qp_1(X).

The computations of the above proof show that @Q,+1(Dy)& = Jﬁﬂ&) = 0. It follows that for any
pE [[Oan]]a Qn+1(Dn)§p = Qn+l(Dn)Qp<Dn)§0 = Qp(Dn)Qn+1<Dn)§0 = 0. Thus Qn+1(Dn) = 07
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because (§p)p€[07nﬂ is a basis of the underlying vector space. The operator D, has n + 1 distinct
eigenvalues (given by the elements of its diagonal), so its minimal polynomial has degree n + 1 and
(-1 must be proportional to it. Indeed, an immediate analysis of the leading monomials proves
that

Qni1(X) = <_j§2>n+l H <X—|—E—p).

A similar observation leads to the uniqueness property of the family (Q,(X))peo,n: assume that
for some p € [0,n], & = ép(Dn)fo, where ij is a polynomial of degree p. Then necessarily we
have @p = @p. Indeed, @p =Qp — @p would be a polynomial of degree less than p such that
@p(Dn)fo = (0 and by the above arguments it appears that @p must be proportional to Q41 of
degree n + 1. This is only possible if @p = 0 as wanted.

Since it will be more convenient to work with polynomials whose leading term is 1 and to shift
the eigenvalues of D,, by n/2 (to end up with the set [0, n], which is the support of the binomial
law £2), we define

—202

el B = (S5) Qc-n)

In the sequel, we denote

1
= —-—1
YT
It is easy to see that the recurrence relation holds
PO (X) = 17
n 1 9
vpelon—1,  BaX) = (X-p+ (5 —p)v) Bp(X) + P10 +1=p)(v + 20) Pyt (X).

Note that the term P_; is not necessary to determine P;.
These modifications also prompt us to exchange the (&,)pefo,n] for the (¢y)pefo,n defined by

op2\ P
Ypelon], ¢ = <59> a

- B, <Dn + gln) . (40)

The family (¢p)pefo,n) still consists of a basis of eigenvectors of M, (associated to the family of
eigenvalues ((p —1/2)0),e[0,n]), its advantage is encapsulated in the next result.

Lemma 39 For any p,q € [0,n], we have

Sy = Ba-a)2lPpPyl;

where B1_gy/2 is the binomial distribution of parameter (1 —0)/2.

Proof
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This is a direct computation: for any p, g € [0, n], we have

Cp: G = Z Gp(m)Cq(m)

me[0,n]

— Z (Pp <Dn + gln) £0> (m) <Pq (Dn + gh) 50) (m)

me[0,n]

= Y Py(m)Py(m)(&(m))?

me[0,n]

= Ba-a)2[ PPy,

where we have used (40) and (37).
|

The recurrence relation satisfied by (F,(X))pe[o,n] may lead the reader to think that they are the
orthogonal polynomials associated to some law on [0,n]. This law cannot be B(1—0)/2, because
the family ((p)pefo,n) is not orthogonal: this is the heart of the subject and the motivation for the
computations of this section.

It is time now to provide an explicit formula for the polynomials P,(X), p € [0,n]. In analogy
with Section 3 again, it is more convenient to express them in the basis (Hp)pe[[()’nﬂ, where

Vpelon], TX) = [[] (X-k),
ke[0,p—1]

(slightly abusing notations, the r.h.s. could also be written X (p)).

Lemma 40 For any p € [0,n], we have

pP=F) (n — k)P=R) y\p—k
B(X) = MZOH oo (3) 0. (41)

Proof

After computing the first elements of the family (F,(X))ye[o,n], one guesses that they will be of
the form

Pp(X) = Z o 0PI (X)),
ke[0,p]

for some coefficients (v & )pefo,n],keo,p] independent of the parameter v. Putting such a form in the

recurrence relation, it appears that to be conserved for P, (assuming it is true for P, and P,_1),

one must have a,) = 2 (2?;_1;)” ) ap_1- Since necessarily ), = 1, this leads to the announced

formula. Once the latter is suspected, it is sufficient to check it by induction: assuming that (41)
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is true for P, and P,_; (this is immediate for Py and P;), we compute that

(X P+ <§ - p> ) Py(X) + ip(n +1—p) (2 + 20)Py_y(X)

Sy ’i; ;?“” G (s (3o me)

keZy

PR

k€Z+

(P=K) (p, — k\P=k) ,,\p—k
- N* (](a—k)!) (3) & -hm)

B (e (50) ) (5) e

(P=k) (n — k) (p—F)

)(—1- k)( — k)p—1-k)
—1-k)!

p(n+1—p)(v? + 2v) <g

)pilik I (X)

- +2) (2)" M)

)pik My 41(X)

S (e () oo () (5) e

2

n—k+ 1)@kt 0\ p—k+1
( ) < > I (X)

(=) (p, — k) (P—F) v U\ P
s Tk 2 (2) )

(p+ 1)PH1=R)(n — p)PH1=F) E(n —k +1) so\ptl-k
-z GrR e 2) )

(p+ 1)PHI=F)(n — B)PH1=R) (p 4+ 1 — k) (n —p — k) fv\p+i-k
+k§+ (p+1—k)! (p+1)(n—p) <§) 11, (X)

(p+ 1)PH1=F) (n — k)P+1=k) g\ p+1-k
- 3 )

(p+1—k)! 2

Hk (X)7
k€Z+

which is the wanted expression for P, (X).
|

Remark 41 It is possible to give a compact formula for the r.h.s. of (41): introduce two free
variables Z; and Z5 and consider the following interpretations:

(= k)" = (-1t

I (X)

The r.h.s of (41) can then be seen as

p —o\P7F gk gp zX
2 —k)\ 2 dzPF dZ8 zp P

ke[0,p]

_ (4 _vd N _Z
N dZy 2dz, Z?_p"—l

Z1=1,Z>=1 Z1=1,Zy=1
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Unfortunately, it is not obvious to obtain the wanted recurrence relation from this expression.

]

From the two last lemmas, we can deduce an explicit formula for (¢,,(,), p,q € [0,n], but it is
not so easy to handle. It rather suggests to consider certain particular vectors.

5.2 Exact computation of |\|]3t(a) — HallL2)os a € (0;1/4)

To any p € R, associate the vector
or
z(p) = Z Efp' (42)

Lemma 42 For any p,p € R, we have

I (R S AR

Proof

From Lemma 39, we get that

Ba—aya | D, P Z

pe[0,n] 2 q<]o, n]]

2 Y] <m>(1—0) (1+0)" Z m) Y pP . (43)

me[0,n] e[o, ]] qe[[O "ﬂ

z(p), 2(P))

From (41), we have for any m € [0,n] and p € [0, n],

Z plP— k )(p k) <§)pfkm(k)‘

keZ 4

Hence, using the relation p®—*) /(p!) = 1/(k!) and exchanging sums, we obtain

> Lhm = X gitw g (p )G

pe|o, n]] keZ 4

[ [
7 N N
— —
+ +

S e
M|bz M|bz
N— " ~—

:l 3
3
T
— +
(=Y +
+ ™
~
g +
+ ™
o M|b
\_/l
N——— —
S \_/
3

Coming back to (43), it appears that 2™ (z(p), z(p)) is equal to

B (e sl o) o (10 2) T ()
((1—6) <1+ﬁ<1+%)) <1+ﬁ<1+§)) L (1+0) <1+%ﬁ> <1+%)>n

(2+ A5+ ) + Bip)".
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where

v v
A = (1—9)(1+§)+(1+9)5
1 1+0 1 1-0
= 5(1_9)T+§(1+9)T
16
= .
and
v 2 v\ 2
B = (1—0)<1+§) +(1+0)<§>
1 1+6\* 1 1-0)\2
o (S0 v (552
11—
2 62

as announced.

The main interest of vectors of the form z(p), for p € R, is that they well-behave under the action
of the semi-group associated to M,,, more precisely:

Vit=0, exp(tMy)z(p) = exp (_%%) z(exp(60t)p).

To take advantage of this property, let us consider a basis of R**!, of the form (2(Pr)) keo,n]:
indeed, classical Vandermonde determinants show that such a family will be a basis as soon all the
pr are distinct. Since powers play an important role in the kind of formulas that we have obtained
so far, it is convenient to chose a basis of the form (z(p"*)) ke[o,n]» Where p is a real different from
—1, 0 and 1. Then any z € R**! can be written under the form

z = Z vez(pb), (44)

ke[0,n]
where the v, for k € [0,n], are the appropriate coordinates.

Lemma 43 With the notation (44), we have

o= a-er S (M| 8 (145) ]

pe[0,n] ke[0,n]

where v = 02/(1 — 6%) > 0.

It follows that for any given t = 0, the operator norm of exp(tM,,) is equal to the square root of
the largest eigenvalue of the symmetric matriz exp (—n@t) B~Y2A*BAB~Y2, where A and B are
respectively the triangular and diagonal matrices defined by

v kyl € [[07n]]7 Ak,l

(’;) (1 — exp(68))F~" exp(Bit),

(B

Vke [[Ovn]]v Bk,k
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Proof
From Lemma 42 and by definition of v, we get that for any &, € [0, n],

<Z(ﬂk)72(/}l)> = <1 ;1 ;902 (0" + o)+ %ﬁ;ﬁ”)n
(1— 02" <’y+ <1 . g_g> <1 ; %))n
wer g () (o)

pe[0,n]

Thus, if we use (44) and expand (z, z), we get

G2y =Y w20

k,le[0,n]
kNP I\P
_ _ p2\n n n—p p_ p_
(1-67) Z <p>7 Z 787 <1+29> <1+29>
pe0,n] k,le[0,n]
2
k\P
= 1= >, <n>'y"_p > <1+g—9> Vi |
pe[0,n] p ke[0,n]

as announced.
Concerning the second part of the lemma, since for any ¢ > 0,

ot
exp(tir)e = e (<5) 3 nstexn(en)sh),
ke[0,n]
replacing in the above computation the p* by exp(6t)pF, for k € [0, n], leads to
p g p P~ Dy €eXp P, s 1|l

exp (nft) (1 — %) lexp(tM,,)z, exp(tM,)z)

2
kN P
= Z <Z>’Y”p Z <1+exp(9t)g—9> Vk)
pel0,n] ke[0,n]
2
n A\
- Z <>7n—p Z <1—exp(9t)~|—exp(9t) <1+2—9>> Vg
pe[0,n] p ke[0,n]
kN ?
= Z " P Z Z b (1 — exp(6t))P~Lexp(it) 14+ 2 vy,
p ! 20
pel0,n] ke[o,n] 1€]0,p]
2
SR <]z)><1exp(f)t))Plexp(ezt)nl),
pelon] NP 1€10.0]

where we have defined
Y
V1 e[0,n], o= Z <1~|—2—9> V.
ke[0,n]

Since p ¢ {—1, 1}, Vandermonde determinant insures that the linear morphism R"*! 5 (1) keon] —
n = (M)iefon] € R"™*1 is bijective. Using the matrices A, B defined in the lemma, we can write

(exp(tMy)z exp(tM,)z) = (exp (—6t) (1 — 62))" (An, BAn),
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and considering the same expression at time ¢ = 0, it appears that

sup (exp(tMn)z, exp(tMn)z) exp (—nft)  sup (An, BAn)

2eRn+1\ {0} (z,2) nernti\foy <1, B
AB~2n, BAB™1/?
exp (—nft)  sup < e )
neR™+1\{0} (n,m)
B~Y2A*BAB~Y?
= exp(—nft) sup . 77>‘
neRn+1\{0} {nmy

The variational caracterization of eigenvalues then implies the second part of the above lemma.

[
The matrix B being non degenerate, the largest eigenvalue of B~Y/2A4* BAB /2

eigenvalue of B~'A*BA. Next result determines it:

is also the largest

Lemma 44 The largest eigenvalue of B"'A*BA is AG, exp(20nt), where

1—62 [1—e0\? 120t 1 1—62 [eft —1\2
Ag; = e 20 14+ 24/1 . (45
0.t c Tt 9 Tt o\ T e g (45)

Proof

Consider J the (n+1)-diagonal matrix with J; 5, = (—1)* for k € [0,n] and A = JAJ, whose entries
are non-negative. Being conjugate, the two matrices B~'A*BA and JB~'A*BAJ = B 'A*BA
have the same spectrum. The advantage of B ~1A*BA is that all its entries are positive, so Perron-
Frobenius theorem asserts that if we can find an eigenvector vector of B ~1 A* BA whose coordinates
are positive, then the corresponding eigenvalue is the largest one. In view of the entries of A and
B, it is natural to try vectors n = (m)ie[o,n] € R"™*! whose coordinates are powers, namely of the
form

VZE[[O,TL]], m = Tl,

where r > 0 is to be determined so that 7 is an eigenvector vector of B ~“14*BA. We compute that
for any k € [0,n],

(ﬁn)k _ Z <I;> (691& _ 1)k7169ltrl
le[o,n]

k
= <th -1+ eetr> .

To simplify notation, let s := e — 1 + e%r. Then for any k € [0, 1], we have

(A* BAn); D <Ii:> (eP — 1yl—k Ot (7) =l
le[0,n]
k 1
_ (YL 3 (" —1)s n¥
et —1) k! = 0% I

- () B () e ()

0t N\ * (k) ot _ n—k
_ o e”s\ " n 14 (e 1)s .
gl k! gl




Thus in the end, we get for any k € [0,n],
(BABAY. = () <1 ple-Ds )3> |
Y

It appears that the vector n is an eigenvector for B~1A*BA if and only if we have

o0t -1

—1

ePts (1 + 7(6 )S> =,
Y

and in this case the corresponding eigenvalue will be

A = <1+Lt_l)s>n

~
. (eet —1) o . Oty "
= (1 + e (e 1+ )> . (46)

Expanding the above condition, we end up with the second order equation in r:
(e —D)[er? + (" —1 —A[1 + " r —~e] = 0.

For ¢t > 0, this equation admits a positive solution as required, namely

1
ro= 56791‘/ <1 — e 1+ e+ \/(e‘% —1—7[1+e%])2 + 4’7629t>

2
1 _p ot 0t ot Lt_l
= 56 I—e”+y[1+e”]+ 1 +e"), | (v+1) | v+ o0t 1+ 1

Inserting this value in (46), we obtain

ot ot 2
et —1 e’ —1
(Gt} =1+ 1+ | v+ (’y+1)<’y+<m>>

n
(e —1)2 ¥ 1 1 1 [eft —1\?

1 1 1+ =) (1+= (=
Tt + b el ,

and this leads to the assertion of the lemma.

n

A

I
—_
_|_

Now we can come back to our project of computing the L?-operator norms of the hypocoercive
semi-group associated to the generator L, at least for a € (0,1/4).

Theorem 45 For any a € (0,1/4) and any t = 0, we have

Sla ~ 1-6
12— fallziyo = A/Aorexp <—T > ;
where we recall that § := /1 — 4a and that Ag; was defined in (45).

Proof
We have seen at the beginning of this section that for any a € (0,1/4) and any ¢ > 0,

|||]5t(a) - ﬁami%ﬁa)o = sug exp(—nt)|| exp(tM,,) . (47)

ne
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According to Lemmas 43 and 44, we have
exp(tMy)[? = (exp(8t)Ag.)"
so that

I = RialRagayo = sup (exp(—(1 = )t)Ag,)"
neN
Since we know a priori that the Lh.s. is less or equal to 1, necessarily the quantity exp(—(1—0)t)Ag;
is less or equal to 1 and the above supremum is attained for n = 1.
[ |

We remark that for any fixed time ¢ > 0, as 6 > 0 goes to zero, Ay, converges toward

2

t £\ 2
A = 14+ —+1t/1 — .
0 + 5+ +<2>

Since on one hand, for any fixed n € N and ¢ > 0, the operator exp(tM,,) is a continuous function
of the (hidden) parameter a > 0 and on the other hand, (47) is always true, the previous theorem
can be extended for the value a = 1/4:

Corollary 46 For anyt > 0, we have

. 1
lexp(tLija) = Fyjalliz o = VAorexp <_§t>‘

5.3 Exact computation of H|]5t(a) — fla|lL2@)os a > 1/4

For the remaining part of this section, we consider the situation where a > 1/4. The parameter
0 is now purely imaginary and we choose 0 = +/4a — 1i. Most of the previous arguments can be
extended and we will only insist on the main changes.

First (37) is still valid if we rather rewrite it under the form

e o - Q)Y ()

where the signs of the two complex numbers 4/1 — 6 and /1 + 6 are chosen so that their product is

equal to 24/a. Anyway, the important object is (|§0(p)\2)pe[[07nﬂ, which is just ((146]?)/4)™/> <(z)> o]
pe0,n

since [1+ 6] = |1 — 0] = 4/1 + |0]*. Indeed, Lemmas 36, 37 and 40 don’t need to be modified, since
they only deal with algebraic properties of &, J_ and J,. Similarly, we consider the family
(Cp)pefo,n) defined by (40). The next change comes with Lemma 39, which must rather state that
for any p, q € [0,n], we have

Gy = (L+10)"281 0[PPy, (48)

where (3, is the binomial distribution of parameter 1/2 (note that (:,-) now stands for the usual
Hermitian product on C"*1).
Definition 42 can be extended to any p € C, but Lemma 42 must be replaced by

Lemma 47 For any p,p € C, we have
5 — 2 P P
GO = (14 167) (w (1+2) (14 5)) ,

260
146

where

v o= 10 and 9§ =
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Proof
The first part of the proof of Lemma 42 and (48) show that

z(p),2(p))
1+ 6] 146 1+0 1-0 1-0Y)
( ) <<1+ s ><1+ L >+<1+ L ><1+ L ))
|1+9| 7\
2 —=
o [rrler - 1+|9
2 1+\9\ \6

expression which coincides with the announced one.

%lbz
tbllb)l

n

leb?

/1+\6§
1+|9 0

Fix any complex number p whose norm is different from 0 and 1. Then (z(p*)) kelo,n] 1S a basis of
C"*! and any z € C"*! can be written under the form (44), where the vy, for k € [0,n], are the
appropriate complex coordinates.

Using Lemma 47 and the notations introduced there, we obtain as in Lemma 43 that

(2,7) = (1+|¢9|2)_"/2 3 <Z>7M D <1+§>ka

pe0,n] ke0,n]
—n/2 ny\ ,_
= (1+10P) Y (p)’y Pl
pef0,n]
with
AN
Vie [[O,n]], o= Z (1 + %) V.

ke0,n]
As in the proof of Lemma 43, we also compute that for any ¢t > 0,

(exp(tMy)z, exp(tMy)z)

(1168) " lexpt-ner2 3 ()| X (7)) 0 - explonytexpioion

pel0n] 1e[0,p]
2
—n/2 n
_ 2 n—p p o p—lI
(102) ™ 5 (D) X (7) 0 - expienyexsioton
pel0n] le[0,p]

Thus, if the matrices A and B are defined in the same way as in Lemma 43, it appears the L2-
operator norm of exp(tM,,) is equal to the square root of the largest eigenvalue of the Hermitian
matrix B~/2A* BAB~1/2, where A* is the Hermitian adjoint matrix associated to A. If exp(6t) =
1, consider the diagonal matrices C and C defined by

- (1 _ e@t)k
Y ke [0,n], Cpp = ——2
[0.7] T

. (1 _ eet)—keekt

Crr =
’ (1 — o)=L
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We can write A = CDZ@, where the entries of A are just the absolute values of the entries of A.
The interest is that B~Y2A*BAB~Y2 = C—1B~124*BAB~Y2C is conjugate to the symmetric
matrix B~Y2A* BAB~1/2, whose entries are positive. We can then use Perron-Frobenius theorem
to get

Lemma 48 The largest eigenvalue of B~Y2A*BAB~1/2 is Af ;. where

2
- 1+%<1+«/1+43—L> Lifr=0
0t =

1 ,ifv =20
with v = |e€t —1.

Proof

If v = 0, A is just the identity matrix, so the result is immediate. Assume that v = 0. Asin Lemma
44, the wanted largest eigenvalue is also the largest eigenvalue of B~1A*BA and it is sufficient to
find a corresponding positive eigenvector. Again we look for a vector 7 = (1)ie[o,n] € R"*! whose
coordinates are of the form

VZE[[O,TL]], m = Tl,

where 7 > 0 is to be determined to insure that 7 is an eigenvector vector of B 1A*BA. Let us
denote s = v + r, so that for any k € [0,n],

Ane = > (?)V“TZ

lefo,n]

= Sk.

It follows that for any k € [0, n],

(A*BAn), = )] <li>1/lk<7>’y"lsl

le[0,n]

1 S ln(l)
o n = (k), -k [ 2 e
S At (7) I

Tk

L (k) Z (n - k‘) (VS)lk
A -k) 5

n—k
= <n>’yn_k3k (1 + ﬁ) .
k Y

Finally, it appears that for any k € [0, n],
N N Us n—k
(B~'A*BAp), = s* <1 + —) .

Thus 1 will be the wanted eigenvector, with A := (1 + v(v +r)/y)"™ as associated eigenvalue, if the
following equation has a positive solution 7:

Since v = 0, this is equivalent to 72 + vr —~ = 0, which admits r = (—v + /v + 47)/2 as positive
solution. Expanding A, we end up with the announced result.
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The arguments of the proof of Theorem 45 enable to conclude the computation of L2-operator
norms of the hypocoercive semi-group associated to the generator L, for a € (1/4,0):

Theorem 49 For any a > 1/4 and any t = 0, we have

151 = fialo iy = Calt)e™,

with

‘e\/4a—lit . 1‘

Cot) = 1+ (‘ev4a—1it 1|+ /Jevietie 1 4 4(d4a - 1)) .

2(4a —1)

Let us finish this section by noting that for all @ > 0, the maximizing functions for the computation
(a))

of the operator norms of the semi-group (P, );>¢ belong to Hj, namely are linear mapping (but
they are not eigenfunctions of L,). This justifies the assertion made before Remark 27.

~

6 Concluding remarks

One common feature of the previous analysis of L, or f/a, for @ > 0, is that the underlying L2
space was decomposed into @pepV), where the subspaces V, are orthogonal and left invariant by
the generator at hand. In the first model the index set P is Z. LuNuUN and Z, in the second model.
These decompositions were maximal, in the sense that each of the V},, p € P, cannot be non-trivially
decomposed further (due to the non-orthogonality of all the eigenvectors belonging to V,). Inside
each of the V},, p € P, the restriction of the generator was written under the form K, + R, — R},
where K, is self-adjoint in V), and where the brackets of the operators K, R, and R have nice
forms (especially [K,, R,] = Ry, which implies that there is a basis consisting of eigenvectors of
K, in which the matrix of R, has a below-diagonal form, thus among decompositions of the type
Ky + R, — R7, R, is in some sense minimal). Indeed, everything was deduced from the relations
satisfied by these brackets. So it is natural to wonder if something is left of these observations for
more general models.

First we note that the decompositions of the restriction of generator to the subspace V,,, p € P,
can be lifted into a decomposition K + R — R* of the initial generator, where K = @pep K, and
R = ®pepRR,. More precisely, in the first model we get

K = a@i — Y0y
R = y0, —ad.0y
R* = —ady0y,

with
[K7 R] = R7 [Rv R*] = CLJ,

where J = 02 is a coercive operator on T (and for any «, 8 > 0, aJ + BK is coervive on T x R).
Similarly, in the second model we have

K = (92 — Y0y
R = y0, — 0,0,
R* = axdy — 0,0y,

with

[K,R] = R, [R,R*] = J — aK,
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where J = 0,0% = 02 — axd, is a coercive Ornstein-Ulhenbeck operator on R.

In the literature about hypocoercivity, the authors have often a predilection for brackets of first
order operators (this is maybe due to the importance of Hormander’s condition in hypoellipticity),
but it seems that in the considered toy models, the key is given by brackets between second order
operators.

More generally, let be given a smooth potential U : T — R and consider on T x R the kinetic
operator

L = yo—U'(x)0y + 0 — ydy.

The following remarks can be adapted to the situation of potentials defined on R, under appropriate
conditions. The associated invariant probability is p = v x 71, where v is the Gibbs measure on T
whose density with respect to the Lebesgue measure A is proportional to exp(—U). As above, we
can write L = K + R — R*, where

K = (92 — Y0y
R = y0,— 0,0,
R* = U'(z)d, — 050,

The operator K is still self-adjoint in L?(x) and R* is adjoint to R. We furthermore have
[K,R] = R, [R,R*|=J-U"K

where J = 0%0, = 02 —U’(x)0, is the usual coercive Langevin operator associated to U on T ( note
that the formulation L = K + R — R* is different from the one proposed by Villani L = A*A+ B
in the first chapter of [21] since our operator K is a second order one).

We are wondering if these properties could not be used to deduce, in a direct manner, hypoco-
ercive bounds for the semi-group (P;)s>o associated to L. So let f € L.2(u1) be given with p[f] =0
and denote for ¢t = 0, F; := u[(P:[f])?]. Since we expect behaviors such as (1), (3) and (4) to be
valid again, it is natural to look for inequalities satisfied by F, F/, F}’ and F}”. So let us compute
formally (a justification would require regularity assumptions on f) these derivatives: using the
relation [K, R] = R, we get that for all ¢t > 0,

F = 2{Kfi. fo),
F/ = 4<K2ft,ft>—4<ft,th>,
F' = 8{K3f, fry — 24(K fr, Rfey — 12{ fy, Rfe) + 4{[R, R*]fs, fo)-

where f; is a short hand for P;[f] and where {-,-) stands for the scalar product in L?(x). In view
of [R, R*], which brings the missing coercivity through J, hope is rising.

We first tried to find three constants A, B, C' > 0 such that for regular functions f and for all
t =0,

AF, + BF) + CF/ + F/" < 0.

It is sufficient to prove such a differential inequality with ¢ = 0. Interpreting AFy+ BF|+CF{+ F{
as a quadratic form in f, we would like to find A, B,C > 0 so that it is non-positive definite. In
fact, we were able to attain this objective in the case U = 0, then up to appropriate changes of
the constants A, B,C > 0 (where would enter the supremum norms of U’ and U”), it could be
extended to all smooth potential U. That is where we are brought back to the first toy model (with
a = 1). Unfortunately, in this simple case, we can show that there is no choice of the constants
A, B,C > 0 so that the quadratic form AFy+ BFj+CF{ + F{' is non-positive definite. Despite the
fact that for any p € N, it is possible to find “constants” A,, B, C}, > 0 such that the restriction to
Vp (and to W,, with the notations of Section 2) of the quadratic form A,Fy + B,Fy + C,Fy + Fy'
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is non-positive definite (an analogous statement is valid in the Gaussian case). Thus an idea is
missing to push further this alternative approach.

Furthermore, these considerations are maybe not without links with the traditional approach,

where the L? norm is modified by the addition of terms, since among them, (f, Rf) = (0, f, 0, f)
plays a major role (see for instance Villani [21]).
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