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Abstract

For any a ą 0, consider the hypocoercive generators yBx `aB2y ´ yBy and yBx ´axBy ` B2y ´ yBy,
respectively for px, yq P R{p2πZq ˆR and px, yq P RˆR. The goal of the paper is to obtain exactly
the L

2pµaq-operator norms of the corresponding Markov semi-group at any time, where µa is the
associated invariant measure. The computations are based on the spectral decomposition of the
generator and especially on the scalar products of the eigenvectors. The motivation comes from an
attempt to find an alternative approach to classical ones developed to obtain hypocoercive bounds
for kinetic models.
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1 Introduction

Convergence to equilibrium of Markovian semi-groups has been investigated a lot under various
coercive assumptions on the generator, such as spectral gap or logarithmic Sobolev inequalities,
especially in a reversible framework. Nevertheless, asymptotical exponential convergence to equi-
librium is also encountered when the generator satisfies some hypoelliptic type conditions. This
phenomenon has been called hypocoercivity (see the book of Villani [21] for the history) and has
recently attracted more and more attention, with e.g. the works of Desvillettes and Villani [2],
Eckmann and Hairer [5], Rey-Bellet and Thomas [18], Hérau and Nier [11], Hérau [10], Villani [21],
Dolbeault, Mouhot and Schmeiser [4], Ottobre, Pavliotis and Pravda-Starov [17] and the references
therein. Typically, a hypocoercivity result bounds the convergence to equilibrium (for instance in
L
2 or entropy sense) by a term such as C expp´ctq, where t ě 0 is the time and C, c ą 0 are two

constants depending on the problem at hand. But these constants are not easy to describe and
generally not optimal in the literature mentioned above. Furthermore, the previous bound gives no
information about the behavior of the underlying semi-group at small times, namely how it begins
to go toward equilibrium. To try to clarify the situation, we will study in details in this paper two
simple models of hypocoercivity, by computing exactly the corresponding distance to equilibrium
in the L

2-sense. Despite the scope may seem limited, some features will be intriguing, such as the
appearance of discrete binomial and Poisson laws.

The state space of our first toy model is T ˆ R, where T ≔ R{p2πZq stands for the usual
circle. The coordinates of a generical element of TˆR are denoted px, yq, where x and y are often
interpreted respectively as a position and a speed (i.e. T ˆ R is seen as the tangent bundle of T).
For any given a ą 0, we are interested in the differential operator

La ≔ yBx ` aB2y ´ yBy.

and in the generated Markovian semi-group pP paq
t qtě0. Consider the product probability measure

µa ≔ λ b γa, where λ is the normalized Lebesgue measure on T and where γa is the normal
distribution of mean 0 and of variance a. It is easy to check that µa is invariant for La: for any
smooth function f on TˆR with bounded derivatives, µarLarf ss “ 0. It follows that for any t ě 0,

P
paq
t can be extended into a continuous operator on L

2pµaq with operator norm equal to 1. It is

furthermore known that µa is ergodic for the semi-group, in the sense that P
paq
t converges toward

µa in L
2pµaq for t large:

@ f P L
2pµaq, lim

tÑ`8

›››P paq
t rf s ´ µarf s

››› “ 0,

where }¨} designates the L
2pµaq-norm.

Our goal is to recover and to quantify this convergence given by the next result.

Theorem 1 For any a ą 0 and t ě 0, we have

|||P paq
t ´ µa||| “ max

ˆ
expp´tq, exp

„
´a

ˆ
t´ 2

1 ´ expp´tq
1 ` expp´tq

˙˙
,

where ||| ¨ ||| stands for the operator norm in L
2pµaq.

It is interesting to look at the behaviours of this operator norm for small and large times. As
t goes to 0`,

ln
´

|||P paq
t ´ µa|||

¯
“ ´ a

12
t3p1 ` op1qq. (1)
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This shows that initially, the operator norm decreases quite slowly as a function of time, the power
3 should be seen as an order of the hypocoercivity of the operator La. On the other side, as t goes
to `8,

´ ln
´

|||P paq
t ´ µa|||

¯
“

"
apt´ 2 ` Ope´tqq , if a ď 1
t , if a ą 1,

which reflects the exponential convergence to equilibrium of the semi-group pP paq
t qtě0.

This kind of informations cannot be deduced from the bounds obtained in the literature. Indeed,
note that the mapping ϕ : R` Q t ÞÑ t´ 2p1 ` expp´tqq´1p1 ´ expp´tqq is strictly convex, so that
the bound of Theorem 1 is equivalent to the family of inequalities, parametrized by s ě 0,

@ t ě 0, |||P paq
t ´ µa||| ď maxpexpp´tq, Cs expp´cstqq,

where for all s ą 0, Cs ≔ expp´apϕpsq ´ sϕ1psqqq ą 1 and cs ≔ aϕ1psq ą 0.
Up to scalings in time and in the speed variable and to a change of direction in position, we

deduce immediately from Theorem 1:

Corollary 2 For any a, c ą 0 and b P Rzt0u, consider the operator

La,b,c ≔ byBx ` aB2y ´ cyBy,

which admits µa{c as invariant probability. We have for the corresponding semi-goup pP pa,b,cq
t qtě0,

@ t ě 0, |||P pa,b,cq
t ´ µa{c|||L2pµa{cqý “ max

ˆ
expp´ctq, exp

„
´ab2

c3

ˆ
ct ´ 2

1 ´ expp´ctq
1 ` expp´ctq

˙˙
.

In particular the associated asymptotical exponential rate is

lim
tÑ`8

´1

t
ln

´
|||P pa,b,cq

t ´ µa{c|||L2pµa{cqý

¯
“ min

ˆ
c,
ab2

c2

˙
.

It is instructive to draw a comparison with the heat semi-group pQpaq
t qtě0 on T generated by the

operator Ka ≔ aB2x, which injects the same amount a of randomness per unit of time as any one of
the generators La,b,c, where b P R and c ą 0 are free parameters. Since Ka is self-adjoint in L

2pλq
and admits a as spectral gap, we get

@ t ě 0, |||Qpaq
t ´ λ|||L2pλqý “ expp´atq.

Thus it appears that if we had to choose between the Monte Carlo procedures pQpaq
t qtě0 and

pP pa,b,cq
t qtě0 to sample according to λ, it would be better to use, with a tuning c ą a and b{c ą 1,

the first coordinate for the latter Markov process, namely the primitive integral of an Ornstein-
Ulhenbeck process. Of course both procedures require the sampling of the trajectory of a Brownian
motion, which is more difficult to get than the sampling of a uniform variable on the circle,
nevertheless this is another illustration of the paradigm that to go fast to equilibrium, it is better
to resort to non-reversible Markov processes (see for instance [3], where this question was studied
in the framework of second order finite Markov chains).

Our second toy model has RˆR as state space and also depends on a parameter a ą 0: we are
now interested in the differential operator

rLa ≔ yBx ´ axBy ` B2y ´ yBy. (2)

It is easy to check that the probability measure rµa ≔ γ1{a b γ1 is invariant for rLa and we consider

the associated semi-group p rP paq
t qtě0 of Markov operators on L

2prµaq. As it will be seen in the next
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section, in the first model, for all a ą 0, the operator La is diagonalizable in L
2pµaq and its spectrum

is real. For the second model, the value 1{4 is critical with this respect: for a P p0, 1{4q, rLa is
diagonalizable in L

2prµaq and its spectrum is real, while for a P p1{4,`8q, rLa is still diagonalizable
in L

2prµaq (complexified) but most of its eigenvalues are not real. In the critical case a “ 1{4, rLa

is not diagonalizable in L
2prµaq and contains Jordan blocks of all orders. Nevertheless rµa is always

ergodic and the next result quantifies the convergence:

Theorem 3 For any a ą 0 and t ě 0, we have

||| rP paq
t ´ rµa||| “ Captq exp

˜
´1 ´

a
p1 ´ 4aq`
2

t

¸
,

where |||¨||| stands for the operator norm in L
2prµaq and where the factor Captq is described as follows:

if a P p0, 1{4q, let θ ≔
?
1 ´ 4a and define

Captq ≔

gfffee´θt ` 1 ´ θ2

2θ2
p1 ´ e´θtq2 ` 1 ´ e´2θt

2

¨
˝1 ` 1

θ

d

1 ` pθ´2 ´ 1q
ˆ
eθt ´ 1

eθt ` 1

˙2

˛
‚.

If a P p1{4,`8q, let θ ≔
?
4a´ 1i and define

Captq ≔
d

1 ` |eθt ´ 1|
2|θ|2

ˆ
|eθt ´ 1| `

b
|eθt ´ 1|2 ` 4|θ|2

˙
.

If a “ 1{4, define

Captq ≔

gffe
1 ` t2

2
` t

d
1 `

ˆ
t

2

˙2

.

Again, let us look more precisely at the behaviors of this operator norm for small and large
times.
When t ą 0 goes to zero, we obtain as above a decrease of order t3: for a P p0, 1{4s, we have

||| rP paq
t ´ rµa||| “ 1 ´

ˆ
a

6
` 1 ´ 4a

2

`
1 ´

?
1 ´ 4a

˘˙
t3 ` opt3q, (3)

and for a P r1{4,`8q,

||| rP paq
t ´ rµa||| “ 1 ´ a

6
t3 ` opt3q. (4)

When t goes to infinity, the behavior is different according to the position of a with respect to 1{4
(with an asymptotic exponential rate varying for a P p0, 1{4s): if a P p0, 1{4q, we have

||| rP paq
t ´ rµa||| „ 1

θ
exp

ˆ
´1 ´

?
1 ´ 4a

2
t

˙
.

The factor in front of the exponential explodes with time if a “ 1{4:

||| rP p1{4q
t ´ rµ1{4||| „ t exp

ˆ
´ t

2

˙
.

If a ą 1{4, since the mapping

R` Q ν ÞÑ 1 ` ν

2p4a ´ 1q
´
ν `

a
ν2 ` 4p4a ´ 1q

¯
,
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is increasing, it appears that the factor R` Q t ÞÑ Captq is oscillating between the values 1 anda
1 ` 2p1 ` 2

?
aqp4a ´ 1q´1 with period Ta ≔ 2π{

?
4a ´ 1. These oscillations are sufficiently mod-

erate so that R` Q t ÞÑ Captq expp´t{2q is non-increasing, as it is always the case for the L
2pµq-

operator norms of a Markovian semi-group admitting µ as invariant probability. The above peri-
odicity admits a peculiar consequence: it follows from (4) that d

dt
Captq expp´t{2q|t“0 “ 0 and in

conjunction with

@ k P Z`, @ t ě 0, CapkTa ` tq expp´pkTa ` tqq “ expp´kTaqCaptq expp´tq,

we get that the time derivative of ||| rP paq
t ´ rµa||| vanishes at all times of the form t “ kTa, with

k P Z`.
On the state space RˆR, we can play with scalings in time, speed and position to deduce from

Theorem 3:

Corollary 4 For any c, d ą 0 and a, b P R with ab ą 0, consider the operator

rLa,b,c,d ≔ byBx ´ axBy ` cB2y ´ dyBy

which admits rµa,b,c,d ≔ γbc{padq b γc{d as invariant probability. We have for the corresponding

semi-group p rP pa,b,c,dq
t qtě0, with the notation of Theorem 3,

@ t ě 0, ||| rP pa,b,c,dq
t ´ rµa,b,c,d|||L2prµa,b,c,dqý “ Cab{d2pdtq exp

˜
´1 ´

a
p1 ´ 4abd´2q`

2
dt

¸
.

It follows that the asymptotic exponential rate of p rP pa,b,c,dq
t qtě0 is p1´

a
p1 ´ 4abd´2q`q{2. We

are led to make a comparison with the semi-group p rQpa,b,c,dq
t qtě0 on R generated by rKa,b,c,d ≔

cB2x ´ da
b
xBx, whose amount of injected randomness is the same as rLa,b,c,d and whose reversible

probability is γbc{padq, the first marginal law of rµa,b,c,d. Up to scalings of space and time, rKa,b,c,d

is an Ornstein-Ulhenbeck generator whose spectral gap is da{b. It follows that the asymptotical

exponential rate of p rQpa,b,c,dq
t qtě0 is da{b. So if

a

b
ă 1

2

˜
1 ´

dˆ
1 ´ 4

ab

d2

˙

`

¸
,

(for instance if 4a
d
b
d

ą 1 and 2a
d

ă b
d
), it is more efficient to use the first coordinate of p rP pa,b,c,dq

t qtě0

than p rQpa,b,c,dq
t qtě0 to sample accordingly to γbc{padq. Hence the remarks for the first model are still

valid.

Instead of scaling position and speed variables as in Corollary 4, we could have considered
appropriate linear transformations of R2 and end up with operators associated to certain quadratic
symbols. Hypocoercivity of general differential operators with quadratic symbols have been recently
investigated by Ottobre, Pavliotis and Pravda-Starov [17], who obtained bounds on L

2-convergence
which are relatively precise at the level of the exponential rate (showing that all rates strictly below
those obtained above are admissible). But they provide no clue about the behavior of the operator
norm for small times, while it would be very interesting to relate the order of hypercoercivity (the
power 3 in (1), (3) or (4)) to the number of times one needs to take Lie brackets in order to get the
full tangent space in Hörmander’s condition [12], even only in the framework of quadratic symbols.
One first step in this direction would be to investigate finite chains of nearest-neighbor interacting
harmonic oscillators coupled to one heat bath (see e.g. Eckmann and Hairer [6] or Ottobre, Pavliotis
and Pravda-Starov [17], despite that these authors were not primarily interested in this situation).

Our approach is completely different from the pseudo-differential techniques of Ottobre, Pavli-
otis and Pravda-Starov [17]. We begin by studying in details the spectral decomposition of the
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operators at hand. For the second model, it was already done by Risken [19] (see also the book of
Helffer and Nier [9] or an unpublished paper of Kavian [15]). But we don’t stop with the knowledge
of the eigenvalues and of the eigenvectors, instead we investigate the scalar product of the eigen-
vectors: due to the fact that the above generators are not reversible, the eigenvectors cannot be all
orthogonals. It appears that their geometric structure can be nicely described by L

2 scalar prod-
ucts with respect to classical discrete laws such as Poisson or binomial distributions. This leads
to the construction of certain functions which well-behave under the action of the semi-groups
and turn out to be the optimal functions for the computation of the operator norms. It should
be noted that these optimal functions change with the time at which are computed the operator
norm, explaining why the latter cannot have a simple exponential form.

Of course, one can hope for precise spectral decompositions only in a restricted framework of
quadratic symbols (but see also Eckmann and Hairer [6], where the spectrum of certain hypoelliptic
generators is proven to be contained in a cusp). Nevertheless, our analysis put forward a simple
Lie algebra structure associated to the above models which is “almost” shared by kinetic models
corresponding to operators of the form yBx´U 1pxqBy`B2y´yBy, say on TˆR, where the potential U :
T Ñ R is a smooth function. We believed the revealed structure could lead to a third order linear
ordinary differential equation satisfied by the evolution of the L

2-norm of the semi-group (applied
to a generical function of mean zero with respect to the invariant measure), which is sufficiently
coercive to imply hypocoercive bounds. Unfortunately this is not true and an idea is still missing
with this respect. It was our initial motivation: to find at each time instantaneous informations
on the evolution of L2-norm of the semi-group which locally describe the trend to equilibrium and
globally imply hypocoercive bounds. This approach would be very convenient to deal with the
time-inhomogeneous evolutions we have in mind (sampling and optimizing hypocoercive random
algorithms) and it explains our interest in the small time behavior. The point of view is different
from the traditional analytical approach to hypocoercivity, consisting in replacing the natural L2-
norm by a more coercive norm, typically a norm which is comparable to an appropriately weighted
H

1-norm. The additional terms are chosen so that when differentiating with respect to time the
evolution semi-group, one gets a first order differential inequality for this new norm (see for instance
Villani [21]). The kind of estimates we are looking for are not more provided by the probabilistic
approach to hypocoercivity through Liapounov functions (see for instance Bakry, Cattiaux and
Guillin [1] and the references therein).

The paper is constructed on the following plan: in the next section (respectively Section 4)
we investigate the spectral decomposition of the first model (resp. second model), which is used
in Section 3 (resp. Section 5) to compute the corresponding operator norms. The last section is
devoted to some observations about simple kinetic models and to the motivations sketched in the
preceding paragraph.

2 Spectral decomposition of the first model

We compute here the spectral decomposition of a kinetic generator associated to the null potential
on T. Despite it is among the simplest case of hypocoercivity, we did not find its detailed treatment
in the literature. The manipulations we are to consider will be encountered again in Section 4,
under a slightly modified form. Furthermore, a very helpful Poisson distribution will make a
mysterious appearance in this continuous setting!

So, for a ą 0, which is fixed for the whole section, we are interested in the operator

La ≔ yBx ` aB2y ´ yBy.
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2.1 Decomposition of the generator on stable subspaces

A priori it can be seen as an endomorphism on smooth functions defined on T ˆ R, but for our
purposes, it is better to consider its closure in L

2pµaq, where the invariant measure µa “ λbγa was
presented in the introduction. Here we will mainly consider real Hilbert spaces, since a posteriori
all the eigenvalues of La will be real.
If we were in a totally Gaussian setting, namely if T was replaced by R and yBx by yBx ´ bxBy,
for some constant b ą 0, it would be natural to observe the action of the above operator on tensor
products of appropriately normalized Hermite polynomials, as it was done by Risken [19] (see also
Section 4 below). In the present situation, it is rather tempting to replace the Hermite polynomials
in the first variable (position x) by the usual trigonometric functions. For p P Z`, denote

@ x P T,

$
’&
’%

ϕppxq ≔ 2pp!?
p2pq!

cosppxq,

ψppxq ≔ 2pp!?
p2pq!

sinppxq.

The factors are such that pϕp, ψp`1qpPZ` is an orthonormal basis of L2pλq and they are obtained
via Wallis’ integrals. For the second variable y, it is natural to use the Hermite polynomials since
they can be conveniently associated to the standard Gaussian distribution γ1. Recall that they are
defined by

@ q P Z`, @ y P R, hqpyq ≔ p´1qq?
q!

exppy2{2q d
q

dyq
expp´y2{2q, (5)

(see for instance the book of Szegő [20], as well as for their basic properties used below). To get
the orthonormal polynomials phq,aqqPZ` associated to γa, for any fixed a ą 0, we use the similitude
of scale 1{?

a:

@ q P Z`, @ y P R, hq,apyq ≔ hqpy{
?
aq.

The family phq,aqqPZ` is then an orthonormal basis of L2pγaq and then pϕp bhq,a, ψp`1 bhq,aqp,qPZ`

is an orthonormal basis of L2pµaq. We compute that:

Lemma 5 For all p, q P Z`, we have

Larϕp b hq,as “ ´qϕp b hq,a ´
?
ap

?
qψp b hq´1,a ´

?
ap

a
q ` 1ψp b hq`1,a,

Larψp b hq,as “ ´qψp b hq,a `
?
ap

?
qϕp b hq´1,a `

?
ap

a
q ` 1ϕp b hq`1,a.

Proof

From the relations satisfied by the usual Hermite polynomials, we get that for any q P Z` and
y P R,

ah2
q,apyq ´ yh1

q,apyq “ ´qhq,apyq,
?
a

a
q ` 1hq`1,apyq “ yhq,apyq ´

?
a

?
qhq´1,apyq.

We deduce that for all p, q P Z` and all px, yq P T ˆ R,

Larϕp b hq,aspx, yq “ ϕ1
ppxqyhq,apyq ´ qϕppxqhq,apyq

“ ´p
?
aψppxqp

a
q ` 1hq`1,apyq ` ?

qhq´1,apyqq ´ aqϕppxqhq,apyq
“ ´pqϕp b hq,a `

?
ap

?
qψp b hq´1,a `

?
ap

a
q ` 1ψp b hq`1,aqpx, yq.

The computation of Larψp b hq,as is similar.
�
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From these computations we get, on one hand that for q P Z`, ϕ0 b hq,a is an eigenfunction of
La associated to the eigenvalue ´q and on the other hand that for p P N, the following vector
subspaces Vp and Wp are stable by La:

Vp ≔ ClpVectpϕp b hq,a, ψp b hq`1 : q P 2Z`qq,
Wp ≔ ClpVectpψp b hq, ϕp b hq`1,a : q P 2Z`qq,

where for any A Ă L
2pµaq, ClpAq and VectpAq stand respectively for the closure of A in L

2pµaq
and for the vector space generated by A.

2.2 Spectral analysis of La on Vp

Since each Vp and Wp are stable subspaces of La, we must now study the spectral decomposition of
the restriction of La to the Hilbert subspace Vp (the same conclusions will also hold for Wp) , where
p P N is fixed. Consider the orthonormal basis peqqqPZ` given by e0 ≔ ϕp b h0,a, e1 ≔ ψp b h1,a,
e2 ≔ ϕp b h2,a etc. This basis enables us to identify Vp with l2pZ`q, Z` being endowed with the
counting measure. From Lemma 5, the (infinite) tridiagonal matrixM associated to the restriction
of La to Vp described with the basis peqqqPZ` is

M ≔

¨
˚̊
˚̊
˚̊
˚̋

0
?
ap 0 0 ¨ ¨ ¨

´?
ap ´1 ´

?
2

?
ap 0 ¨ ¨ ¨

0
?
2
?
ap ´2

?
3
?
ap

. . .

0 0 ´
?
3

?
ap ´3

. . .
...

...
. . .

. . .
. . .

˛
‹‹‹‹‹‹‹‚
. (6)

It appears that this object is only parametrized by c ≔
?
ap. Let us writeM “ D`cS´cS˚, where

D and cS are respectively the diagonal and upper-diagonal part of M , so that ´cS˚ corresponds
to the lower-diagonal of M . Note that if S is interpreted as an (unbounded) operator of l2pZ`q,
then S˚ is (the infinite matrix associated to) its adjoint operator in l2pZ`q. In the sequel, we won’t
make much difference between such matrices and their corresponding operators on l2pZ`q, but
some preliminaries are needed in order to precisely define their domains. A priori the operators M ,
D, S and S˚ are well-defined on D, the subspace of real sequences pzpqqqqPZ` from l2pZ`q which
admit only a finite number of non-zero coefficients. It is immediate to check that they are in fact
closable and that the domains of their closures are given by

DpSq “ DpS˚q “ DpDq “ DpMq “ tpzpqqqqPZ` P l2pZ`q :
ÿ

qPZ`

qz2pqq ă `8u.

It is natural to identify the operators M , D, S and S˚ with their respective closures. In particular
the spectral decomposition of the restriction of La to Vp is then equivalent to the one of M .
Nevertheless, it is more fruitful to look at the operatorsM , D, S and S˚ as endomorphisms of S, the
subspace of sequences pzpqqqqPZ` from l2pZ`q which are such that for any r ě 0,

ř
qPZ`

qrz2pqq ă
`8. The advantage of this point of view is that we can compose the above operators without
having to take care about their domains.
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We can now state the main result of this paragraph wich describes the spectral analysis of M .

Theorem 6 Let ξ0 ≔ pξ0pqqqqPZ` be the element of S given by

@ q P Z`, ξ0pqq ≔ p´1qt q`1

2
u c

q

?
q!

expp´c2{2q.

Consider the elements of S defined by

@ n P Z`, ξn “ pcI ´ S˚qnξ0,

where I is the identity operator. Then for any n P Z`, ξn is an eigenvector of M associated to the
eigenvalue ´c2 ´ n. Furthermore pξnqnPZ` is a (Hilbert) basis of l2pZ`q.

The proof will be based on the Lie algebra generated by the operators D, S and S˚, whose structure
is determined by the following computation:

Lemma 7 We have that

rS, S˚s “ I,

rD,Ss “ S,

rD,S˚s “ ´S˚.

Proof

Recall that we interpret the operators as endomorphism of S, so the above brackets are well-defined.
For any q P Z`, we have that

SS˚peqq “ Spp´1qq
a
q ` 1eq`1q

“ p´1qq
a
q ` 1Speq`1q

“ p´1qq
a
q ` 1p´1qq

a
q ` 1eq

“ pq ` 1qeq.

Similarly, we get that S˚Speqq “ qeq, so that

rS, S˚speqq “ pSS˚ ´ S˚Sqpeqq
“ eq,

namely rS, S˚s “ I.
For any q P Z`, we also compute, with the convention e´1 “ 0, that

DSpeqq “ p´1qq`1?
qDpeq´1q “ p´1qq?

qpq ´ 1qeq´1,

SDpeqq “ ´qSpeqq “ p´1qqq?
qeq´1.

It follows that

rD,Ss “ pDS ´ SDqpeqq
“ p´1qq`1?

qeq´1

“ Speqq,

hence rD,Ss “ S. The last relation is an immediate consequence of the previous one, since D˚ “ D:

rD,S˚s “ ´rD˚, pS˚q˚s˚ “ ´rD,Ss˚ “ ´S˚

�
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Let us denote by V the vector subspace of endomorphisms of S generated by D, S, S˚ and
I. Since the latter operators are clearly independent, V is 4-dimensional. Furthermore, taking
into account that rI,Ds “ rI, Ss “ rI, S˚s “ 0, the bracket r¨, ¨s endows V with a Lie algebra
structure. This property of V suggests that to get informations about the spectral decomposition
of M “ D` cS´ cS˚, it is interesting to first investigate the spectral decomposition of the adjoint
operator of M (in the Lie algebra sense, see for instance the book of Hall [8]), which is defined by

adM : V Q X ÞÑ rM,Xs P V.

This is the object of the next result:

Lemma 8 The kernel of the operator adM is 2-dimensional and is generated by I and M . There
are two other eigenvalues, 1 and ´1, whose corresponding eigenspaces are respectively generated
by J` ≔ cI ` S and J´ ≔ cI ´ S˚.

Proof

Indeed, with the help of Lemma 7 we compute that the matrix associated to adM in the basis
pI,D, S, S˚q is given by

¨
˚̊
˝

0 0 c c

0 0 0 0
0 ´c 1 0
0 ´c 0 ´1

˛
‹‹‚.

This matrix is not difficult to diagonalize, its characteristic polynomial is X2pX2 ´ 1q, and the
announced results easily follow.

�

The interest of the operators J` and J´ is summarized as follows: if z P CS is an eigenvector
of M associated to the eigenvalue l P C, then either J`pzq “ 0 or J`pzq is an eigenvector of M
associated to the eigenvalue l ` 1. Indeed, the relation rM,J`s “ J` implies that

MpJ`pzqq “ J`pMpzqq ` J`pzq
“ pl ` 1qJ`pzq.

Similarly, either J´pzq “ 0 or J´pzq is an eigenvector of M associated to the eigenvalue l ´ 1.
This observation will be the key to the spectral decomposition of M , but let us first notice that
any eigenvalue l P C of M has a non-positive real part. To show this assertion, let z “ pzpqqqqPZ` P
l2pZ`,Cqzt0u be an associated eigenvector. It is sufficient to write, with x¨, ¨y standing for the usual
Hermitian scalar product of l2pZ`,Cq, that

2ℜplq xz, zy “ xMz, zy ` xz,Mzy
“ xDz, zy ` xz,Dzy
“ ´2

ÿ

qPN
q |zpqq|2

ď 0

This argument can be extended to the eigenvalues of any Markovian generator L in L
2pµq, where

µ is an invariant probability for L, and in particular to the eigenvalues of La in L
2pµaq.

Thus if there exists an eigenvalue l P C of M associated to an eigenvector z P CSzt0u, then
necessary we can find n P Z` such that Jn

`pzq “ 0. Because otherwise, we would conclude that for
any n P Z`, l`n is an eigenvalue of M and thus its real part is non-positive, which is not possible.
This is a hint on how we can find some eigenvectors of M : by looking at the kernel of J`, whose
computation is our next task.
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Lemma 9 The kernel of J` : DpSq Ñ l2pZ`q is generated by the vector ξ0 appearing in Theorem
6. The kernel of J´ : DpSq Ñ l2pZ`q is reduced to t0u.

Proof

More generally, let z “ pzpqqqqPZ` be any sequence from R
Z` , J`pzq can be defined as the sequence

pJ`pzqpqqqqPZ` with

@ q P Z`, J`pzqpqq ≔ czpqq ` p´1qq
a
q ` 1zpq ` 1q,

So the equation J`pzq “ 0 is equivalent to

@ q P Z`, zpq ` 1q “ p´1qq`1czpqq?
q ` 1

.

It appears that such a sequence z is determined by zp0q:

@ q P Z`, zpqq “ p´1q pq`1qq
2 cq?
q!

zp0q.

Remarking that for all q P Z`, p´1q
pq`1qq

2 “ p´1qt q`1

2
u, we deduce that z is proportional to ξ0. The

first announced result then follows from the fact that ξ0 P DpSq.
The kernel of J´ is obtained in a similar way, noting that J´ can also be extended to R

Z` via

@ z “ pzpqqqqPZ` P R
Z` , @ q P Z`, J´pzqpqq ≔ czpqq ´ p´1qq`1?

qzpq ´ 1q.

Thus, starting with J´pzqp0q “ czp0q, if z is such that J´pzq “ 0, we get that zp0q “ 0 and by
iteration we end up with z “ 0.

�

More precisely, we have ξ0 P S and for any function f : Z` Ñ R`, we observe that

ÿ

qPZ`

fpqqξ20pqq “ ErfpNc2qs (7)

where Nc2 is a Poisson distribution of parameter c2. This is why we have chosen the normalization
ξ0p0q “ expp´c2{2q, which implies that ξ0 has norm 1 in l2pZ`q. It follows another important
computational property of ξ0 with respect to the operator algebra generated by S˚. As a by-
product, we check that ξ0 is an eigenvector of M , as this was suggested by the observations made
before Lemma 9 (note that this is also a qualitative consequence of the facts that J`pMpξ0qq “
MpJ`pξ0qq ´ J`pξ0q “ 0 and that kerpJ`q is one-dimensional).

Lemma 10 We compute that for any n P Z`,

pS˚qnpξ0q “ 1

cn
DpD ` 1qpD ` 2q ¨ ¨ ¨ pD ` n´ 1qpξ0q. (8)

It follows from the particular case n “ 1 that

Mpξ0q “ ´c2ξ0.

11



Proof

By the usual convention that a void product is equal to 1 or I, for n “ 0, (8) reduces to ξ0 “ ξ0.
Let us check it for n “ 1, namely that S˚pξ0q “ 1

c
Dpξ0q. For any q P Z`, we have

S˚pξ0qpqq “ p´1qq`1?
qξ0pq ´ 1q

“ p´1qq`1`t q
2

u?q c
q´1 expp´c2{2qa

pq ´ 1q!
“ ´q

c
ξ0pqq

“ 1

c
Dpξ0qpqq,

where we have used that p´1qq`1`t q
2

u “ ´p´1qt q`1

2
u. Since J`pξ0q “ 0, we deduce directly that

Spξ0q “ ´cξ0. Recalling that M “ D ` cS ´ cS˚, it follows that

Mpξ0q “ Dpξ0q ´ c2ξ0 ´Dpξ0q “ ´c2ξ0.

Next we prove (8) by induction over n. So let us assume it for a given n P N, we write

pS˚qn`1pξ0q “ pS˚qnD
c

pξ0q

“ 1

c
prpS˚qn,Ds pξ0q `DpS˚qnpξ0qq .

Lemma 7 enables to compute the above bracket:

rpS˚qn,Ds “ pS˚qn´1rS˚,Ds ` pS˚qn´2rS˚,DsS˚ ` ¨ ¨ ¨ ` rS˚,DspS˚qn´1

“ pS˚qn´1S˚ ` pS˚qn´2S˚S˚ ` ¨ ¨ ¨ ` S˚pS˚qn´1

“ npS˚qn.

Putting together these computations, we get

pS˚qn`1pξ0q “ 1

c
pnpS˚qnpξ0q `DpS˚qnpξ0qq

“ 1

c
pD ` nqpS˚qnpξ0q

“ 1

cn`1
DpD ` 1qpD ` 2q ¨ ¨ ¨ pD ` n´ 1qpD ` nqpξ0q,

as wanted.
�

Starting with the eigenvector ξ0 P S, we construct the sequence of eigenvectors pξnqnPZ` ≔

pJn
´pξ0qqnPZ` which are associated to the eigenvalues p´c2 ´ nqnPZ` , according to the discussion

following the proof of Lemma 8. Indeed, none of the vectors Jn
´pξ0q, for n P N, vanishes, because

we have seen in Lemma 9 that the kernel of J´ is trivial.
Since the elements of the sequence pξnqnPZ` are non-zero and associated to different eigenvalues,

it is easy to see that any finite family of them is independent in l2pZ`q. It is more involved to check
that the whole sequence pξnqnPZ` is independent in l2pZ`q. To go in this direction, we present an
isometry which will also play an important role in the next section. It gives a convenient way to
deal with the fact that the vectors of the sequence pξnqnPZ` are non-orthogonal.

Let Q be the subspace of Vp consisting of vectors z which can be written as a linear combinaison
of a finite number of elements of pξnqnPZ` :

z “
ÿ

nPZ`

fpnqξn, (9)
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where only a finite number of the real coefficients fpnq are non-zero. Due to the above observation,
these coefficients are uniquely determined for z P Q. So we associate to such an element z P Q the
polynomial

F pXq ≔
ÿ

nPZ`

fpnqXn. (10)

We also consider the function G defined on Z` by

@ n P Z`, Gpnq ≔
ˆ
1 ` 1

c

d

dX

˙n

F pXq
ˇ̌
ˇ̌
X“c

, (11)

(where the power n corresponds to the composition of differential operators).

Proposition 11 The mapping Q Q z ÞÑ G is an isometry with respect to the norms l2pZ`q and
L
2pPpc2qq, where Ppc2q stands for the Poisson distribution of parameter c2.

Proof

By definition and Lemma 10, we have for any n P Z`,

ξn “ pcI ´ S˚qnξ0

“
ÿ

lPJ0,nK

ˆ
n

l

˙
cn´lp´1qlpS˚qlξ0

“
ÿ

lPJ0,nK

ˆ
n

l

˙
cn´l

ˆ´1

c

˙l

DpD ` 1q ¨ ¨ ¨ pD ` l ´ 1qξ0

“ cn
ÿ

lPJ0,nK

ˆ
n

l

˙
c´2lp´Dqp´D ´ 1q ¨ ¨ ¨ p´D ´ l ` 1qξ0. (12)

We deduce that for any n,m P Z`,

xξn, ξmy

“ cn`m
ÿ

lPJ0,nK, kPJ0,mK

ˆ
n

l

˙ˆ
m

k

˙
c´2pl`kq xp´Dqp´D ´ 1q ¨ ¨ ¨ p´D ´ l ` 1qξ0,

p´Dqp´D ´ 1q ¨ ¨ ¨ p´D ´ k ` 1qξ0y

“ cn`m
ÿ

lPJ0,nK, kPJ0,mK

ˆ
n

l

˙ˆ
m

k

˙
c´2pl`kq ÿ

qPZ`

qpq ´ 1q ¨ ¨ ¨ pq ´ l ` 1qqpq ´ 1q ¨ ¨ ¨ pq ´ k ` 1qξ20pqq

“ cn`m
ÿ

lPJ0,nK, kPJ0,mK

ˆ
n

l

˙ˆ
m

k

˙
c´2pl`kq

ErNpN ´ 1q ¨ ¨ ¨ pN ´ l ` 1qNpN ´ 1q ¨ ¨ ¨ pN ´ k ` 1qs,

where N is a Poisson random variable of parameter c2 (recall (7)). It follows that if z “ř
nPZ`

fpnqξn belongs to Q, then

xz, zy “
ÿ

n,mPZ`

fpnqfpmq xξn, ξmy

“
ÿ

n,mPZ`

fpnqfpmqcn`m
ÿ

lPJ0,nK,kPJ0,mK

ˆ
n

l

˙ˆ
m

k

˙
c´2pl`kq

ErNpN ´ 1q ¨ ¨ ¨ pN ´ l ` 1qNpN ´ 1q ¨ ¨ ¨ pN ´ k ` 1qs,
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where only a finite number of terms are non-zero. Note that we have for any l P Z`, we have

dl

dX l
F pXq

ˇ̌
ˇ̌
X“c

“
ÿ

nPZ`

fpnqnpn´ 1q ¨ ¨ ¨ pn´ l ` 1qcn´l.

Henw rewritting terms
`
n
l

˘
NpN ´ 1q ¨ ¨ ¨ pN ´ l ` 1q under the form

`
N
l

˘
npn´ 1q ¨ ¨ ¨ pn´ l ` 1q, we

get

xz, zy “
ÿ

l,kPZ`

dl

dX l
F pXq

ˇ̌
ˇ̌
X“c

dk

dXk
F pXq

ˇ̌
ˇ̌
X“c

c´pl`kq
E

„ˆ
N

l

˙ˆ
N

k

˙

“ E

«ˆ
1 ` c´1 d

dX

˙N

F pXq
ˇ̌
ˇ̌
ˇ
X“c

ˆ
1 ` c´1 d

dX

˙N

F pXq
ˇ̌
ˇ̌
ˇ
X“c

ff

“ ErG2pNqs,

which is the wanted isometry relation.
�

In order to prove the independence of the family pξnqnPZ` , we need to control the mapping asso-
ciating F to G, this is the goal of next result.

Lemma 12 Using the notations introduced in (9), (10) and (11), we have

@ n P Z`, |fpnq| ď cn exp
`
p4c2 ` 2 ` c´2q{2

˘ a
ErG2pNc2qs,

where Nc2 is a Poisson random variable of parameter c2.

Proof

By definition, we have for any n P Z`,

Gpnq “
ÿ

mPJ0,nK

ˆ
n

m

˙
F pmqpcq
cm

(13)

“
ÿ

mPZ`

npn´ 1q ¨ ¨ ¨ pn´m` 1qF
pmqpcq
m! cm

.

For any real x ą c, denote by Hx the density of a Poisson distribution of parameter px ´ cqc with
respect to a Poisson distribution of parameter c2:

@ n P Z`, Hxpnq “
ˆpx ´ cqc

c2

˙n

expp´px´ cqc ` c2q (14)

“
ˆ
x´ c

c

˙n

expp´cx` 2c2q.

Its interest is that for any m P Z`, we have

ErNc2pNc2 ´ 1q ¨ ¨ ¨ pNc2 ´m` 1qHxpNc2qs “ ErNcpx´cqpNcpx´cq ´ 1q ¨ ¨ ¨ pNcpx´cq ´m` 1qs
“ px ´ cqmcm,

where Nr stands for a Poisson random variable of parameter r, for any r ą 0.
Putting together the above relations, we get that

ErGpNc2qHxpNc2qs “
ÿ

mPZ`

F pmqpcq
m!

px´ cqm

“ F pxq.
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By analytic extension, this identity holds for any x P C, since both sides are easily seen to be
holomorphic functions of x. In particular for any θ P r0, 2πq and n P Z`, we get

ˆ
2

c exppiθq

˙n

F

ˆ
c exppiθq

2

˙
“ ErGpNc2qp2{cqn expp´inθqHc exppiθq{2pNc2qs.

An integration with respect to 1r0,2πqpθqdθ{p2πq yields

fpnq “
ż

r0,2πq

ˆ
2

c exppiθq

˙n

F

ˆ
c exppiθq

2

˙
dθ

2π

“ ErGpNc2qJnpNc2qs,

where for any m P Z`, we have

Jnpmq “
ż

r0,2πq
p2{cqn expp´inθqHc exppiθq{2pmqdθ

2π
(15)

“ 1

n!

dn

dXn
HXpmq

ˇ̌
ˇ̌
X“0

“ expp2c2q
cmn!

dn

dXn
pX ´ cqm expp´cXq

ˇ̌
ˇ̌
X“0

“ expp2c2q
cmn!

ÿ

pPJ0,nK

ˆ
n

p

˙
dp

dXp
pX ´ cqm dn´p

dXn´p
expp´cXq

ˇ̌
ˇ̌
ˇ̌
X“0

“ expp2c2q
cmn!

ÿ

pPJ0,nK

ˆ
n

p

˙
mpm´ 1q ¨ ¨ ¨ pm´ p` 1qpX ´ cqm´pp´cqn´p expp´cXq

ˇ̌
ˇ̌
ˇ̌
X“0

“ expp2c2q
cmn!

ÿ

pPJ0,nK

ˆ
n

p

˙
mpm´ 1q ¨ ¨ ¨ pm´ p` 1qp´cqm`n´2p

“ p´1qm`ncn expp2c2q
n!

ÿ

pPJ0,nK

ˆ
n

p

˙
mpm´ 1q ¨ ¨ ¨ pm ´ p` 1qc´2p.

Using Cauchy-Schwarz inequality, we obtain for any n P Z`,

|fpnq| ď
a

ErJ2
npNc2qs

a
ErG2pNc2qs.

To bound the first factor, we write that for any m P Z`,

expp´2c2q |Jnpmq| “ cn

n!

ÿ

pPZ`

ˆ
n

p

˙
mpm ´ 1q ¨ ¨ ¨ pm´ p` 1qc´2p

“ cn

n!

ÿ

pPZ`

ˆ
m

p

˙
npn´ 1q ¨ ¨ ¨ pn´ p` 1qc´2p (16)

ď cn
ÿ

pPZ`

ˆ
m

p

˙
c´2p “ cn

`
1 ` c´2

˘m
.

Thus we get as announced that

ErJ2
npNc2qs ď c2n expp4c2qE

«ˆ
1 ` 1

c2

˙2N
c2

ff
“ c2n expp4c2q exp

˜
c2

ˆ
1 ` 1

c2

˙2

´ c2

¸
.

�
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The independence in l2pZ`q of the family pξnqnPZ` now follows without difficulty: it is equivalent
to the fact that if

ř
nPZ`

fpnqξn “ 0, where the sum in l.h.s. is converging in l2pZ`q, then fpnq “ 0
for all n P Z`. But for n P Z`, consider zn ≔

ř
mPJ0,nK fpmqξm P Q, vector to which we associate

the function Gn as in (11). The convergence of the sequence pznqnPZ` to zero in l2pZ`q is equivalent
to

lim
nÑ8

ErG2
npNc2qs “ 0.

According to Lemma 12, we have for any m ď n,

|fpmq| ď cm exp
`
p4c2 ` 2 ` c´2q{2

˘ a
ErG2

npNc2qs,

so letting n going to infinity, we get fpmq “ 0, for any given m P Z`, as required.

Remark 13 Denote by φ the map that associates to any G P L
2pPc2q the formal series F pXq ≔ř

nPZ`
fpnqXn, where

@ n,m P Z`, fpnq ≔ ErGpNc2qJnpNc2qs

Jnpmq ≔ p´1qm`ncn expp2c2q
n!

ÿ

pPJ0,nK

ˆ
n

p

˙
mpm´ 1q ¨ ¨ ¨ pm ´ p` 1qc´2p.

The previous proof shows that the bound of Lemma 12 is valid in this context, so the convergence
radius of F is at least 1. But the above arguments can be improved to get that F define in fact a
holomorphic function in the whole plane. More precisely, in (16), we can rather use the bound

npn´ 1q ¨ ¨ ¨ pn´ p` 1q
n!

“ 1

pn ´ pq!

ď 1

pn ´mq! ,

with the convention that pn´mq! “ 1 if m ě n. Consequently we have

@ n,m P Z`, |Jnpmq| ď expp2c2q cn

pn ´mq!

ˆ
1 ` 1

c2

˙m

.

It follows that, for n P N,

ErJ2
npNc2qs ď c2n expp4c2qE

«
1

ppn´Nc2q!q2
ˆ
1 ` 1

c2

˙2N
c2

ff

ď c2n expp4c2qE
«

1

pn´Nc2q!

ˆ
1 ` 1

c2

˙2N
c2

ff

ď c2n
expp4c2q

n!
E

«
nNc2

ˆ
1 ` 1

c2

˙2N
c2

ff

“ c2n
expp4c2q

n!
exp

˜
c2

ˆ
1 ` 1

c2

˙2

n´ c2

¸
.

We conclude that

@ n P N, |fpnq| ď cn
expp2c2q?

n!
exp

˜˜ˆ
c` 1

c

˙2

n´ c2

¸
{2

¸
a

ErG2pNc2qs,

and this bound is sufficient to insure that F P HpCq. Note that for n “ 0, the above computations
have to be slightly modified, starting with J0pmq “ p´1qm expp2c2q and ending with |fp0q| ď
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expp2c2q
a

ErG2pNc2qs.
One can go further and check that (13) holds for any G P L

2pPc2q. Indeed, first consider the
holomorphic function R defined by

@ x P C, Rpxq ≔ ErGpNc2qHxpNc2qs ´ F pxq.

By definition of F , see also (15), we have

@ n P Z`,
1

2π

ż

Cp0,c{2q
x´nRpxq dx “ 0,

where Cp0, c{2q is the circle of radius c{2 centered at 0. By holomorphy, this implies that

@ x P C, F pxq “ ErGpNc2qHxpNc2qs. (17)

Next we compute that for any n, n1 P Z` (recall (14)),

ÿ

mPJ0,nK

ˆ
n

m

˙
1

cm
dm

dxm
Hxpn1q

ˇ̌
ˇ̌
x“c

“ exppc2q
ÿ

mPJ0,nK

ˆ
n

m

˙
1

cm

ÿ

pPJ0,mK

ˆ
m

p

˙
dp

dxp

ˆ
x ´ c

c

˙n1
ˇ̌
ˇ̌
ˇ
x“c

dm´p

dxm´p
expp´cpx ´ cqq

ˇ̌
ˇ̌
x“c

“ 1J0,nKpn1q exppc2q
ÿ

mPJ0,nK

ˆ
n

m

˙
1

cm`n1

ˆ
m

n1

˙
n1!p´cqm´n1

“ 1J0,nKpn1q exppc2qc´2n1
ÿ

mPJn1,nK

npn´ 1q ¨ ¨ ¨ pn´m` 1q
pm´ n1q! p´1qm´n1

“ 1J0,nKpn1q exppc2qnpn´ 1q ¨ ¨ ¨ pn´ n1 ` 1q
c2n

1

ÿ

lPJ0,n´n1K

ˆ
n´ n1

l

˙
p´1ql

“ δnpn1qn!c´2n exppc2q
“ pPpc2qrnsq´1δnpn1q.

Thus (13) is obtained by applying the operator
ř

mPJ0,nK

`
n
m

˘
1
cm

dm

dxm

ˇ̌
x“c

to (17).
˝

Remark 14 Due to the independence of pξnqnPZ` in l2pZ`q, the linear morphism Q Q z ÞÑ G

can be extended to the closure ClpQq of Q in l2pZ`q, let us call ψ this mapping. It is an isometry
between ClpQq and the closure of ψpQq in L

2pPpc2qq. We deduce from (13) that the image of Q by
ψ is the space of the restrictions to Z` of polynomial mappings, which is well-known to be dense
in L

2pPpc2qq. Thus ψ is an isometry between ClpQq and L
2pPpc2qq. It appears that the inverse of

ψ is ϕ ˝ φ, where φ is defined at the beginning of Remark 13 and where ϕ associates to any seriesř
nPZ`

fpnqXn from φpL2pPpc2qqq the element
ř

nPZ`
fpnqξn of ClpQq.

˝

It is time to check that ClpQq “ l2pZ`q, this will end the

Proof of Theorem 6

Indeed, by the above results, the density of Q in l2pZ`q will enable us to conclude that pξnqnPZ`

is a Hilbert basis of l2pZ`q. Thus it remains to show that if z P l2pZ`q is such that xz, ξny “ 0
for all n P Z`, then z “ 0. So let z “ pzpqqqqPZ` be such an element. Since ξn “ Jn

´pξ0q and
J´ “ cI ´ S˚, this vector z also satisfies

@ n P Z`, xz, S˚npξ0qy “ 0,
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and according to Lemma 10, this is also equivalent to

@ n P Z`, xz,Dnpξ0qy “ 0,

or

@ n P Z`,
ÿ

qPZ`

qnzpqqp´1qt q`1

2
u c

q

?
q!

expp´c2{2q “ 0. (18)

Let us denote m “ pmpqqqqPZ` the signed measure on Z` with

@ q P Z`, mpqq ≔ zpqqp´1qt q`1

2
u c

q

?
q!

expp´c2{2q.

Let m` and m´ stand respectively for the non-negative and non-positive parts of m, so that
m “ m` ´m´. From (7) and for all r ě 0, we have

ÿ

qPZ`

expprqq |mpqq| ď
d ÿ

qPZ`

expp2rqqξ20pqq
d ÿ

qPZ`

z2pqq

“ exppc2pexpp2rq ´ 1q{2q
a

xz, zy ă `8

and thus m` and m´ are non-negative measures admitting exponential moments of all order.
Furthermore (18) shows that all the usual moments of m` and m´ coincide, so we can apply

the moment characterizing theorem (see for instance the section XV4 of the book of Feller [7]) to
get that m` “ m´, namely m “ 0. It follows that z “ 0 as wanted.

�

2.3 Eigenvectors properties

Let us now compute more explicitely the eigenvectors ξn, for n P Z`,

Proposition 15 For any n P Z`, the mapping ξn defined in Theorem 6 is given, as a function of
px, yq P T ˆ R, almost everywhere by

ξnpx, yq “ 2pp!a
p2pq!

?
n!ℜ

ˆ
inhn

ˆ
y?
a

´ 2ic

˙
exppippx ` yqq

˙

“ 2pp!a
p2pq!

ÿ

lPJ0,nK

ˆ
n

l

˙
p2cqn´l

?
l!hl,apyqℜpil exppippx ` yqqq.

Thus ξnpx, yq is an appropriate linear combination of terms of the types ym cospppx ` yqq and
ym sinpppx` yqq for m P J0, nK.

Proof

For any given n P Z`, let us write

ξn “
ÿ

qPZ`

ξnpqqeq,

with

@ q P Z`, ξnpqq ≔ ppcI ´ S˚qnξ0qpqq.
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Taking into account (12) and the definition of ξ0 given in Theorem 6, we get that for any q P Z`,

ξnpqq “ cn
ÿ

lPJ0,nK

ˆ
n

l

˙
c´2lpp´Dqp´D ´ 1q ¨ ¨ ¨ p´D ´ l ` 1qξ0qpqq

“ cn
ÿ

lPJ0,nK

ˆ
n

l

˙
c´2lqpq ´ 1q ¨ ¨ ¨ pq ´ l ` 1qp´1qt q`1

2
u c

q

?
q!

expp´c2{2q.

Denoting kp ≔
2pp!?
p2pq!

, it is not difficult to check from the definition of the orthonormal basis

peqqqPZ` that

@ q P Z`, @ px, yq P T ˆ R, eqpx, yq “ kpℜpp´1qt q`1

2
uiq exppipxqhq,apyqq. (19)

Rigorously speaking, such equalities have to be understood almost everywhere in px, yq P T ˆ R,
since we are dealing with functions from L

2pµaq. Putting these expansions together, it appears
that

ξnpx, yq (20)

“ expp´c2{2qkpcnℜ

¨
˝ ÿ

qPZ`

ÿ

lPJ0,nK

ˆ
n

l

˙
c´2lqpq ´ 1q ¨ ¨ ¨ pq ´ l ` 1q cq?

q!
iq exppipxqhq,apyq

˛
‚.

Interpreting again the term and Wp qpq ´ 1q ¨ ¨ ¨ pq ´ l ` 1qcq´2l as c´l dl

dXlX
q
ˇ̌
ˇ
X“c

, we have

ÿ

lPJ0,nK

ˆ
n

l

˙
c´2lqpq ´ 1q ¨ ¨ ¨ pq ´ l ` 1qcq “

ˆ
1 ` 1

c

d

dX

˙n

Xq

ˇ̌
ˇ̌
X“c

,

so that

ÿ

qPZ`

ÿ

lPJ0,nK

ˆ
n

l

˙
c´2lqpq ´ 1q ¨ ¨ ¨ pq ´ l ` 1q cq?

q!
iqhq,apyq “

ˆ
1 ` 1

c

d

dX

˙n ÿ

qPZ`

Xq

?
q!
iqhq,apyq

ˇ̌
ˇ̌
ˇ̌
X“c

.

To go further, recall that Hermite polynomials satisfy

@ r P C, @ y P R,
ÿ

qPZ`

rq
hqpyq?
q!

“ exppry ´ r2{2q. (21)

Thus we deduce that

ÿ

qPZ`

Xq

?
q!
iqhq,apyq “ exp

ˆ
iXy?
a

` X2

2

˙

“ exp

˜
´1

2

ˆ
iX ´ y?

a

˙2

` y2

2a

¸
.
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Recalling the definition (5) of the Hermite polynomials, the previous formulation leads to

ÿ

qPZ`

ÿ

lPJ0,nK

ˆ
n

l

˙
c´2lqpq ´ 1q ¨ ¨ ¨ pq ´ l ` 1q cq?

q!
iqhq,apyq

“
ˆ
1 ` i

c

d

dpiXq

˙n

exp

˜
´1

2

ˆ
iX ´ y?

a

˙2

` y2

2a

¸ˇ̌
ˇ̌
ˇ
X“c

“
ÿ

lPJ0,nK

ˆ
n

l

˙
ilc´l dl

dpiXql exp
˜

´1

2

ˆ
iX ´ y?

a

˙2

` y2

2a

¸ˇ̌
ˇ̌
ˇ̌
X“c

“
ÿ

lPJ0,nK

ˆ
n

l

˙
ilc´lp´1ql

?
l!hl

ˆ
iX ´ y?

a

˙
exp

˜
´1

2

ˆ
iX ´ y?

a

˙2

` y2

2a

¸ˇ̌
ˇ̌
ˇ̌
X“c

“
ÿ

lPJ0,nK

ˆ
n

l

˙
pciq´l

?
l!hl

ˆ
ic ´ y?

a

˙
exp

ˆ
icy?
a

` c2

2

˙

“ pciq´n
?
n!hn

ˆ
2ic ´ y?

a

˙
exp

ˆ
icy?
a

` c2

2

˙
,

where we have used another property of Hermite polynomials:

@ n P Z`, @ r, s P C,
?
n!hnpr ` sq “

ÿ

lPJ0,nK

ˆ
n

l

˙
sn´l

?
l!hlprq.

This relation, parity properties of the Hermite polynomials and equation (20) lead immediately to
the announced expressions.

�

Remark 16 A posteriori, the last assertion of Proposition 15, as well as the spectrum of the
restriction of La to Vp, could have been obtained in the following way. Consider the change of
variables T ˆ R Q px, yq ÞÑ pz, yq P T ˆ R with z “ x ` y (in T). Acting on functions of the form
gpz, yq, the generator La can be rewritten under the form

pLa ≔ aB2z ` 2aBzBy ` aB2y ´ yBy.

Consider next functions g of product type g1 b g2, with

g1 : T Q z ÞÑ exppαzq P T,

where α P iZ. The relation Bzg1pzq “ αg1pzq implies that pLarg1 b g2s “ g1 b pLa,αrg2s, where pLa,α

is the Sturm-Liouville differential operator acting on functions h of the real variable y through

pLa,αrhspyq ≔ ah2pyq ´ py ´ 2aαqh1pyq ` aα2hpyq.

It is not difficult to check that this operator admits a family ppqqqPZ` of polynomials with complex

coefficients such that: for any q P Z`, pq is of degree q and pLa,αrpqs “ paα2 ´ qqpq (the factor

aα2 ´ q is imposed by the coefficient of highest degree of pLa,αrpqs).
Thus we easily recover all the spectal information contained in Theorem 6 and Proposition 15.
But relations such as those described in Lemma 7 will be encountered again in Sections 4 and 6,
indeed, they are the starting point of all our developments.

˝
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2.4 Spectral analysis of La on Wp

The spectral decomposition of the restriction of La to Wp, for fixed p P N, is similar. This is due to
the fact that the restriction of La to Wp is conjugate to the restriction of La to Vp. More precisely,
consider the basis pe1

qqqPZ` of Wp given by

e1
0 ≔ ψp b h0,a , e1

1,≔ ´ϕp b h1,a,

e1
2 ≔ ψp b h2,a , e1

3,≔ ´ϕp b h3,a,

...
...

Then the matrix of the restriction of La to Wp in the basis pe1
qqqPZ` is also given by (6). Thus

Theorem 6 and Proposition 15 are still valid, after obvious modifications (note for instance that
(19) remains true is we replace eq by e1

q and the real part ℜ by the imaginary part ℑ):

Proposition 17 For n P Z`, consider ξ1
n ≔ pcI ´ S˚1qnξ1

0, where S˚1 and ξ1
0 have the same

coefficients as S˚ and ξ0, introduced in Theorem 6, but in the basis pe1
qqqPZ` instead of peqqqPZ` .

Then pξnqnPZ` is a Hilbert basis of Wp consisting of eigenvectors associated respectively to the
eigenvalues p´c2 ´ nqnPN of the restriction of La to Wp. Coming back to functional notations, we
have for all n P N,

@ px, yq P T ˆ R, ξ1
npx, yq “ 2pp!a

p2pq!
?
n!ℑ

ˆ
inhn

ˆ
y?
a

´ 2ic

˙
exppippx` yqq

˙
.

This result completes the spectral decomposition of La in L
2pµaq. This operator is diagonaliz-

able, the set of its eigenvalues is

Λa ≔ t´c2 ´ n : p, n P Z`u,

and the multiplicity of any l P Λa is 1Z`plq`2cardptpp, nq P NˆZ` : l “ ´pc2 `nquq (in particular
if a is not rational, the multiplicity of l P Λa is 1 or 2, according to l P Z` or not).

Remark 18 The above conclusions do not extend to the Gaussian framework, where one is rather
interested in the (closure in L

2pγb´1 b γaq of the) operator

rLa,b ≔ yBx ´ bxBy ` aB2y ´ yBy,

where a, b ą 0. As it will be seen in Section 4 (considering the scalings x ÞÑ x{?
a and y ÞÑ y{?

a),
rLa,b is diagonalizable only if b ­“ 1{4 (for b “ 1{4, Jordan blocks of all orders appear), while for
b ą 1{4, some of the eigenvalues are not real. In some sense, the appearance of complex eigenvalues
facilitates the convergence to equilibrium (see the end of Section 5) and here we are far from this
situation, if we look at La as an ersatz of rL1,b as b Ñ 0`.

˝

2.5 Link with hypocoercivity

The above spectral decomposition of La is not sufficient to deduce its hypocoercivity. More pre-

cisely, let pP paq
t qtě0 be the Markovian semi-group associated to La in L

2pµaq, according to Hille-

Yosida’s theory [23]. Formally, we have for all t ě 0, P
paq
t “ expptLaq, which corresponds to the

evolution equation

BtP paq
t pfq “ P

paq
t pLapfqq,
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valid at least for all f in the domain DpLaq of La in L
2pµaq. Probability theory provides a regular

version of this semi-group. Consider the stochastic differential equation in T ˆ R

"
dXt “ Yt dt

dYt “ ´Yt dt `
?
2dBt,

(22)

where pBtqtě0 is a standard real Brownian motion. Assume that initially pX0, Y0q takes the de-
terministic value px, yq P T ˆ R. It is well-known that the above stochastic differential equation
admits a solution (which is almost surely (a.s.) unique with respect to the law of the Brownian
motion, see for instance the book of Ikeda and Watanabe [13]). Then for any t ě 0 and f P L

2pµaq,
we have µa-a.s. in px, yq P T ˆ R,

P
paq
t pfqpx, yq “ Ex,yrfpXt, Ytqs,

where the subscript x, y of the expectation indicates that we started with pX0, Y0q “ px, yq.
As already alluded to, hypocoercivity concerns the exponentially fast convergence of pP paq

t qtě0

toward its equilibrium µa, here in L
2pµaq. It was proven that given f P L

2pµaq, one can find two
numbers Cpfq ě 0 and α ą 0 such that

@ t ě 0,
›››P paq

t pfq ´ µapfq
››› ď Cpfq expp´αtq, (23)

where }¨} stands for the L
2pµaq norm. The constant α depends on a but not on f , see for instance

Villani [21] or Dolbeault, Mouhot and Schmeiser [4] for this kind of hypocoercive bounds.
A straightforward consequence of the spectral analysis of our simple model is that it is sufficient

to study hypocoercivity on Vp, for p P Z`. Indeed, for q P Z`, denote Uq the line in L
2pµa) generated

by ϕ0 b hq,a. The subspaces Uq, Vp, Wp1, for q P Z` and p, p1 P N are mutually orthogonal and
their Hilbert sum is equal to whole space L

2pµaq. If A is one of these subspaces, let ΠpAq be the
orthogonal projection on A and remark that ΠpAq commutes with the elements of the semi-group.

Denote by pP pa,Aq
t qtě0 the semi-group generated by the restriction of La on A, we have for all

t ě 0, P
pa,Aq
t “ P

paq
t ΠpAq “ ΠpAqP paq

t ΠpAq. It follows that for any t ě 0 and for any f P L
2pµaq

with µapfq “ 0,

›››P paq
t pfq

›››
2

“
ÿ

qPZ`

›››P pa,Uqq
t pfq

›››
2

`
ÿ

pPN

›››P pa,Vpq
t pfq

›››
2

`
ÿ

p1PN

›››P pa,Wp1 q
t pfq

›››
2

.

Since µapfq “ 0, we have ΠpU0qpfq “ 0. The other terms of the first sum are also easy to estimate:

@ t ě 0, @ q P N, P
pa,Uqq
t pfq “ expp´qtqΠpUqqpfq. (24)

We deduce that for all t ě 0,

ÿ

qPZ`

›››P pa,Uqq
t pfq

›››
2

ď expp´tq
ÿ

qPN

›››ΠpUqqpfq
›››
2

.

If we were able to estimate
›››P pa,Vpq

t pfq
›››
2

, for p P N, then a similar bound would also be valid for
›››P pa,Wpq

t pfq
›››
2

, because the action of P
pa,Wpq
t is isometrically conjugate to that of P

pa,Vpq
t . Thus to

deduce bounds such as (23), it is enough to know how to deal with the quantity
›››P pa,Vpq

t pfq
›››
2

, for

p P N and t ě 0.

This is not obvious, because the eigenvectors pξnqnPZ` of P
pa,Vpq
t (described in Theorem 6 and
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Proposition 15) are not orthogonal. Indeed, we computed their scalar products in the proof of
Proposition 11: for any m,n P Z`,

xξn, ξmy “ cn`m
ÿ

lPJ0,nK, kPJ0,mK

ˆ
n

l

˙ˆ
m

k

˙
c´2pl`kq

E

”
N

plq
c2
N

pkq
c2

ı
ą 0, (25)

where we recall that c “ ?
ap, that Nc2 is a Poisson variable of parameter c2 and where we used

the notation

@ n P Z`, @ m P Z`, npmq
≔ npn´ 1q ¨ ¨ ¨ pn´m` 1q. (26)

To any function f P Vp, we can associate a sequence of coefficients pfpnqqnPZ` so that f “ř
nPZ`

fpnqξn in L
2pµaq. Their interest is that for all t ě 0,

P
pa,Vpq
t pfq “ expp´c2tq

ÿ

nPZ`

expp´ntqfpnqξn,

and computations similar to those of the proof of Proposition 11 lead to

›››P pa,Vpq
t pfq

›››
2

“ expp´2c2tq
ÿ

m,nPZ`

fpnqfpmq expp´pn`mqtq xξn, ξmy

“ expp´2c2tqErG2
t pNc2qs,

where

@ t ě 0, n P Z`, Gtpnq ≔
ˆ
1 ` 1

c expptq
d

dX

˙n ÿ

mPZ`

fpmqXm

ˇ̌
ˇ̌
ˇ̌
X“c expp´tq

.

Unfortunately we have not been able to directly relate this quantity and the same expression at
time t “ 0. This is why we develop another approach in the next section, where the important
role will rather be played by “Poisson distributions with negative parameters”.

3 Computation of L2-operator norms

Our purpose here is to prove Theorem 1. From the considerations of the end of last section, this

requires to compute the operator norm of P
pa,Vpq
t in L

2pµaq, for any given a ą 0, p P N and t ě 0.

Indeed, remark that

Lemma 19 For any a ą 0 and t ě 0, we have

|||P paq
t ´ µa||| “ max

ˆ
expp´tq,max

pPN
|||P pa,Vpq

t |||
˙
.

Proof

From the orthogonality of the subspaces Uq, Vp, Wp1 , for q P Z` and p, p1 P N, and from their

stability by the operators P
paq
t , for all t ě 0, we get

|||P paq
t ´ µa||| “ |||P paq

t ´ P
pa,U0q
t |||

“ max

˜
sup
qPN

|||P pa,Uqq
t |||, sup

pPN
|||P pa,Vpq

t |||, sup
p1PN

|||P pa,Wp1 q
t |||

¸
,
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where we also used that µa “ ΠpU0q “ P
pa,U0q
t where µa is seen as an endomorphism of L2pµaq.

From (24), we deduce that

@ t ě 0, @ q P N, |||P pa,Uqq
t ||| “ expp´qtq,

and by conjugacy we have

@ t ě 0, @ p P N, |||P pa,Vpq
t ||| “ |||P pa,Wpq

t |||.

�

3.1 Lower bound of |||P
pa,Vpq
t |||

So let a ą 0 and p P N be fixed and denote again c ≔
?
ap. By isometry, for any t ą 0, the operator

norm of P
pa,Vpq
t in L

2pµaq coincides with that of expptMq in l2pZ`q, where M is defined in (6). We
have seen in Theorem 6 that the spectrum of M consists of the sequence p´c2 ´ nqnPZ` and that
a corresponding Hilbert basis of eigenvectors is pξnqnPZ` , where

@ n P Z`, @ q P Z`, ξnpqq “ cn
ÿ

lPJ0,nK

ˆ
n

l

˙
c´2lqplqp´1qt q`1

2
u c

q

?
q!

expp´c2{2q,

(see (12)). We have already computed their scalar product in (25), but let us give another expression
which will be more convenient.

Lemma 20 We have for all n,m P Z`,

xξn, ξmy “ p2cqn`m exppp4c2q´1qErnpN
1{p4c2qq

m
pN

1{p4c2qqs

where N1{p4c2q is a Poisson random variable of parameter 1{p4c2q.

Proof

We have seen in (25) that for all n,m P Z`,

xξn, ξmy “ cn`m
ÿ

pPZ`

ÿ

lPJ0,nK, kPJ0,mK

ˆ
n

l

˙ˆ
m

k

˙
pplqppkq c

´2pl`kq`2p

p!
expp´c2q.

To go further, let us introduce two free variables X and Y and interpret in the above formula, for
p, l, k P Z`,

pplq “ dl

dX l
Xp

ˇ̌
ˇ̌
X“1

and ppkq “ dk

dY k
Y p

ˇ̌
ˇ̌
Y “1

.
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We are thus lead to compute at X “ 1 “ Y the expression

cn`m expp´c2q
ÿ

lPJ0,nK, kPJ0,mK

ˆ
n

l

˙ˆ
m

k

˙
c´2pl`kq dl`k

dX ldY k

ÿ

pPZ`

XpY p c
2p

p!

“ cn`m expp´c2q
ÿ

lPJ0,nK, kPJ0,mK

ˆ
n

l

˙ˆ
m

k

˙
c´2pl`kq dl`k

dX ldY k
exppc2XY q

“ cn`m expp´c2q
ÿ

lPJ0,nK

ˆ
n

l

˙
c´2l d

l

dX l

ˆ
1 ` 1

c2
d

dY

˙m

exppc2XY q

“ cn`m expp´c2q
ÿ

lPJ0,nK

ˆ
n

l

˙
c´2l d

l

dX l
p1 `Xqm exppc2XY q

“ cn`m expp´c2q
ÿ

lPJ0,nK

ˆ
n

l

˙
c´2l

ÿ

qPJ0,lK

ˆ
l

q

˙ ˆ
dq

dXq
p1 `Xqm

˙ ˆ
dl´q

dX l´q
exppc2XY q

˙

“ cn`m expp´c2q
ÿ

lPJ0,nK

ˆ
n

l

˙
c´2l

ÿ

qPJ0,lK

ˆ
l

q

˙
mpqqp1 `Xqm´qpc2Y ql´q exppc2XY q.

For X “ 1 “ Y , we get

xξn, ξmy “ cn`m
ÿ

lPJ0,nK

ˆ
n

l

˙
c´2l

ÿ

qPJ0,lK

ˆ
l

q

˙
mpqq2m´qc2pl´qq

“ 2mcn`m
ÿ

l,qPZ`

ˆ
n

l

˙ˆ
l

q

˙
p2c2q´qmpqq.

Interpreting again mpqq as dq

dXqX
m

ˇ̌
X“1

, we have

ÿ

qPZ`

ˆ
l

q

˙
p2c2q´qmpqq “

ÿ

qPZ`

ˆ
l

q

˙
p2c2q´q dq

dXq
Xm

ˇ̌
ˇ̌
ˇ̌
X“1

“
ˆ
1 ` 1

2c2
d

dX

˙l

Xm

ˇ̌
ˇ̌
ˇ
X“1

,

so that

xξn, ξmy “ 2mcn`m
ÿ

lPZ`

ˆ
n

l

˙ ˆ
1 ` 1

2c2
d

dX

˙l

Xm

ˇ̌
ˇ̌
ˇ̌
X“1

“ 2mcn`m

ˆ
2 ` 1

2c2
d

dX

˙n

Xm

ˇ̌
ˇ̌
X“1

“ p2cqn`m

ˆ
1 ` 1

4c2
d

dX

˙n

Xm

ˇ̌
ˇ̌
X“1

“ p2cqn`m
ÿ

lPZ`

ˆ
n

l

˙
1

p4c2ql
dl

dX l
Xm

ˇ̌
ˇ̌
ˇ̌
X“1

“ p2cqn`m
ÿ

lPZ`

ˆ
n

l

˙
1

p4c2qlm
plq

“ p2cqn`m
ÿ

lPZ`

nplqmplq p4c2q´l

l!
.
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This expression can be written under the form given in the above lemma.
�

This formulation enables to compute quite efficiently the norm of expptMqz for z in a dense
subspace of l2pZ`q. It is based on the remark that ErN pnqs “ ρn if n P Z` and N is a Poisson
distribution of parameter ρ ą 0. In fact we will also use the underlying computation with negative
ρ:

Lemma 21 Let rρ, pρ P R be given and consider rz ≔
ř

nPZ`
rfpnqξn and pz ≔

ř
nPZ`

pfpnqξn, where
for all n P Z`,

rfpnq ≔ rρn
n!

and pfpnq ≔ pρn
n!
.

Then we have

xrz, pzy “ expprρpρ` 2cprρ ` pρqq.

Proof

To justify the absolute convergence in the following computations, they should be first considered
with rρ and pρ replaced by |rρ| and |pρ|.
According to Lemma 20, we have

xrz, pzy “
ÿ

n,mPZ`

rfpnq pfpmq xξn, ξmy

“
ÿ

n,mPZ`

rfpnq pfpmqp2cqn`m exppp4c2q´1qErnpN
1{p4c2qq

m
pN

1{p4c2qqs

“ exppp4c2q´1qE

»
–

¨
˝ ÿ

nPZ`

p2cqn rfpnqnpN
1{p4c2qq

˛
‚

¨
˝ ÿ

mPZ`

p2cqm pfpmqmpN
1{p4c2qq

˛
‚

fi
fl ,

where N1{p4c2q is still a Poisson random variable of parameter 1{p4c2q.
For any fixed N P Z`, we have

ÿ

nPZ`

p2cqn rfpnqnpNq “
ÿ

nPZ`

p2cqnnpNq rρn
n!

“
ÿ

nPZ`,něN

p2cqn rρn
pn´Nq!

“ p2crρqN
ÿ

nPZ`

p2cqnrρn
n!

“ p2crρqN expp2crρq.

Thus it appears that

xrz, pzy “ exppp4c2q´1q expp2cprρ ` pρqqE
”
p4c2rρpρqN1{p4c2q

ı

“ expp2cprρ ` pρqq expprρpρq.

�

In particular, if z P l2pZ`q is given by z “ ř
nPZ`

ρn

n!
ξn, with ρ P R, we get

}z}2 “ exp
`
ρ2 ` 4cρ

˘
.
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The interest of this formula is that for such z, we have

@ t ě 0, expptMqz “ expp´c2tq
ÿ

nPZ`

expp´ntqρ
n

n!
ξn, (27)

so that

@ t ě 0, }expptMqz}2 “ expp´2c2tq exp
`
expp´2tqρ2 ` 4 expp´tqcρ

˘
.

We deduce a lower bound on the operator norm ||| expptMq||| in l2pZ`q:

Lemma 22 For any t ě 0, we have

||| expptMq||| ě exp

ˆ
´c2

ˆ
t´ 2

1 ´ expp´tq
1 ` expp´tq

˙˙
.

Proof

Since by definition, for any t ě 0,

||| expptMq||| ≔ sup
zPl2pZ`qzt0u

}expptMqz}
}z} ,

we deduce from the above computations that

||| expptMq|||2 ě expp´2c2tq sup
ρPR

exp
`
pexpp´2tq ´ 1qρ2 ` 4pexpp´tq ´ 1qcρ

˘
(28)

“ expp´2c2tq exp
˜
sup
ρPR

`
pexpp´2tq ´ 1qρ2 ` 4pexpp´tq ´ 1qcρ

˘
¸

“ expp´2c2tq exp
ˆ

´4pexpp´tq ´ 1q2c2
expp´2tq ´ 1

˙

“ expp´2c2tq exp
ˆ
4c2p1 ´ expp´tqq

expp´tq ` 1

˙
.

�

3.2 Upper bound of |||P
pa,Vpq
t |||

To get a matching upper bound of ||| expptMq|||, consider the subspace Z of z P l2pZ`q which are
finite linear combinaisons of vectors of the previous type, namely that can be written under the
form

z “
ÿ

nPZ`

ÿ

lPJrK

νl
ρnl
n!
ξn, (29)

where r P N and νl, ρl are real numbers, for l P JrK.

Lemma 23 The subspace Z is dense in l2pZ`q.

Proof

Consider z P l2pZ`q orthogonal to Z, we want to show that z “ 0. The orthogonality of z to Z is
equivalent to the fact that for any ρ P R,

C
z,

ÿ

nPZ`

ρn

n!
ξn

G
“ 0

27



This means that the series
ř

nPZ`

xz,ξny
n!

ρn vanishes for all real values of ρ and it is possible only if

@ n P Z`, xz, ξny “ 0.

But we have seen in Proposition 6 that this implies that z “ 0.
�

The previous result suggests that any z P l2pZ`q can be written under the form

z “
ÿ

nPZ`

ż
ρn

n!
νpdρqξn, (30)

for an appropriate signed measure ν on R. But we won’t push the investigation in this direction
(see also the last remark of this section), since what is interesting for us is that by density

@ t ě 0, ||| expptMq||| “ sup
zPZzt0u

}expptMqz}
}z} , (31)

and that the norm }z} can be computed for z P Z:

Lemma 24 Let z P Z be given by (29).Then we have

}z}2 “ ν 1Apρqν,

where ν (respectively ν 1) is the column (resp. line) vector of coordinates pνlqlPJrK and where Apρq is
the r ˆ r-matrix given by

@ k, l P JrK, Ak,lpρq ≔ exp pρkρl ` 2cpρk ` ρlqq .

Proof

This is an immediate computation: let us denote for l P JrK,

zl ≔
ÿ

nPZ`

ρnl
n!
ξn,

so that z “ ř
lPJrK νlzl and

xz, zy “
ÿ

l,kPJrK

νlνk xzl, zky

“
ÿ

l,kPJrK

νlAl,kpρqνk,

according to Lemma 21.
�

The advantage of the decomposition (29) is that it well-behaves under the action of the semi-group
under consideration:

@ t ě 0, expptMqz “ expp´c2tq
ÿ

nPZ`

ÿ

lPJrK

νl
pexpp´tqρlqn

n!
ξn.

The above lemma then implies that

xexpptMqz, expptMqzy “ expp´2c2tqν 1Apexpp´tqρqν. (32)

To treat the r.h.s., we need the following result.
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Lemma 25 For any t ě 0, any r P N and any ν “ pνkqkPJrK, ρ “ pρkqkPJrK P R
r, we have

ν 1Apexpp´tqρqν ď exp

ˆ
´4c2

1 ´ expp´tq
1 ` expp´tq

˙
ν 1Apρqν.

Proof

Fix the dimension r P N and the time t ą 0 (for t “ 0 the announced result is trivial), and consider

ρ0 ≔ ´ 2c

1 ` e´t
, (33)

which is the maximizer in (28) (we omit the dependence on t in the sequel). Define next the vector
h “ phkqkPJrK P R

r by

@ k P JrK, hk ≔ ρk ´ ρ0,

where ρ “ pρkqkPJrK P R
r is a vector given as in the statement of the lemma. We compute that for

any k, l P JrK,

e´2tρkρl ` 2e´tcpρk ` ρlq “ ´4c2e´t 2 ` e´t

p1 ` e´tq2 ` 2e´tc

1 ` e´t
phk ` hlq ` e´2thkhl,

and

ρkρl ` 2cpρk ` ρlq “ ´4c2
1 ` 2e´t

p1 ` e´tq2 ` 2e´tc

1 ` e´t
phk ` hlq ` hkhl.

Note that the terms hk ` hl have the same factor in the two last expressions. This leads us to
introduce the vector η whose coordinates are given by

@ k P JrK, ηk ≔ exp

ˆ
2e´t

1 ` e´t
hk

˙
νk,

so that we can write

ν 1Ape´tρqν “ exp

ˆ
´4c2e´t 2 ` e´t

p1 ` e´tq2
˙
η1Bpe´thqη

ν 1Apρqν “ exp

ˆ
´4c2

1 ` 2e´t

p1 ` e´tq2
˙
η1Bphqη,

where Bphq is the r ˆ r-matrix given by

@ k, l P JrK, Bk,lphq ≔ expphkhlq.

Since

´4c2
1 ` 2e´t

p1 ` e´tq2 ` 4c2e´t 2 ` e´t

p1 ` e´tq2 “ ´4c2
1 ´ e´t

1 ` e´t
,

it remains to prove that for any η “ pηkqkPJrK P R
r and any h “ phkqkPJrK P R

r,

η1Bpe´thqη ď η1Bphqη.
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To get this bound, it is sufficient to expand these expressions:

η1Bpe´thqη “
ÿ

k,lPJrK

exppe´2thkhlqηkηl

“
ÿ

k,lPJrK

ÿ

nPZ`

e´2nt

n!
phkhlqnηkηl

“
ÿ

nPZ`

e´2nt

n!

¨
˝ ÿ

kPJrK

hnkηk

˛
‚
2

ď
ÿ

nPZ`

1

n!

¨
˝ ÿ

kPJrK

hnkηk

˛
‚
2

“ η1Bphqη.

�

Coming back to (31) and (32), we get that for any t ě 0,

||| expptMq||| ď exp

ˆ
´c2

ˆ
t´ 2

1 ´ expp´tq
1 ` expp´tq

˙˙
,

and in conjunction with Lemma 22, it follows that

||| expptMq||| “ exp

ˆ
´c2

ˆ
t´ 2

1 ´ expp´tq
1 ` expp´tq

˙˙
.

Coming back to the notations of the beginning of this section, we have that for any a ą 0, any
p P N and any t ě 0,

|||P pa,Vpq
t ||| “ exp

ˆ
´ap2

ˆ
t´ 2

1 ´ expp´tq
1 ` expp´tq

˙˙
.

Injecting this quantity in Lemma 19, Theorem 1 is proved.

3.3 Final remarks

To finish this section, let us make explicit the functions for which the operator norms of the semi-
group are reached. It will appear a posteriori that there is a faster way to justify the introduction
of such functions of the form presented in Lemma 21.

From the above computations, it follows that if t ą 0 is such that |||P paq
t ´ µa||| “ expp´tq, then

any element of U1zt0u is a maximizing function for the computation of |||P paq
t ´ µa|||, for instance

the mapping T ˆ R Q px, yq ÞÑ y.

This no longer true if t ą 0 is such that |||P paq
t ´µa||| ą expp´tq, in which case zt ≔

ř
nPZ`

ρnt
n!
ξn P V1

is a maximizing function, where ρt ≔ ´2
?
ap1 ` expp´tqq´1 is the quantity defined in (33) when

p “ 1 (let z1
t ≔

ř
nPZ`

ρnt
n!
ξ1
n P W1, where the ξ1

n are defined in Proposition 17, with p “ 1, then

any non-null linear combination of zt and z
1
t is also maximizing). So let us compute zt and more

generally:

Lemma 26 For any p P N and ρ P R, consider z ≔
ř

nPZ`

ρn

n!
ξn P Vp. Then we have, almost

everywhere in px, yq P T ˆ R,

zpx, yq “ 2pp!a
p2pq!

exp

ˆ
2
?
apρ` ρ2

2

˙
cos

ˆ
ρy?
a

` ppx` yq
˙
.
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Proof

Recall from Proposition 17, that almost everywhere in px, yq P T ˆ R, ξnpx, yq is the real part of

ÿ

lPJ0,nK

ˆ
n

l

˙
l!p2cqn´l hl,apyq?

l!
il exppippx ` yqq,

where c “ ?
ap. We deduce that zpx, yq is a.e. the real part of

2pp!a
p2pq!

exppippx ` yqq
ÿ

nPZ`

ρn
ÿ

lPJ0,nK

p2cqn´l

pn ´ lq! i
lhl,apyq?

l!

“ 2pp!a
p2pq!

exppippx` yqq
ÿ

lPZ`

il
hl,apyq?

l!

ÿ

něl

p2cqn´l

pn´ lq!ρ
n

“ 2pp!a
p2pq!

exppippx` yqq
ÿ

lPZ`

piρql hl,apyq?
l!

expp2cρq

“ 2pp!a
p2pq!

exppippx` yqq expp2cρq exp
ˆ
iρy?
a

` ρ2

2

˙
,

where (21) was taken into account.
�

Thus, when |||P paq
t ´ µa||| ą expp´tq, functions proportional to

T ˆ R Q px, yq ÞÑ exp

ˆ
´ 2iy

1 ` expp´tq ` ipx ` yq
˙
,

are maximizers for the computation of |||P paq
t ´ µa||| in the complexified L

2pµaq.
Lemma 26 leads us to consider for any p P N and for any ρ P R the mapping

Fp,ρ : T ˆ R Q px, yq ÞÑ exppiρy ` ippx` yqq.

If R` Q t ÞÑ ρt P R is a smooth function, define

@ t ě 0, @ px, yq P T ˆ R, Gtpx, yq ≔ Fp,ρtpx, yq,

we compute that

BtGtpx, yq ` LaGtpx, yq “ pipρ1
t ´ ρtqy ´ app` ρtq2qGtpx, yq.

Thus if we choose ρt ≔ expptqρ for given ρ P R and all t ě 0, we get

BtP paq
t rGts “ ´app` expptqρq2P paq

t rGts,

whose integration leads to

@ t ě 0, P
paq
t rGts “ expp´arρ2pe2t ´ 1q{2 ` 2pρpet ´ 1q ` p2tsqG0.

This formula can be rewritten under the form

P
paq
t rFp,ρs “ expp´ap2tq expp´arρ2p1 ´ e´2tq{2 ` 2pρp1 ´ e´tqsqFp,e´tρ,

and via Lemma 26, this corresponds to (27).
From here it is possible to follow our previous arguments (computing instead µarFp,rρFp,pρs for
rρ, pρ P R, namely values of the characteristic function associated to µa) to get the same proof of
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Theorem 1. So the above manipulations of functions of the form Fp,ρ are a short way to avoid the
spectral decomposition of La.
This approach could also be considered in our second model (or for some quadratic symbol oper-
ators), but it would be more tricky, because in the end the corresponding maximizing functions
for the computation of the operator norms will be linear and not of the form R ˆ R Q px, yq ÞÑ
exppiαx ` iβyq, where α, β P R.

Remark 27 After some elementary manipulations, Lemma 26 enables to translate the question
asked around (30) into the following one: is there a set M of complex measures on R such that
the relation

@ y P R, fpyq “
ż

R

exppiyρq νpdρq,

induces a bijection between functions f P L
2pµaq (complexified) and measures ν P M? Whatever

it is, M contains all finite linear combinations of Dirac masses. Note that since L
2pµaq is not

included in the space S 1 of tempered distributions, the usual Fourier transform in S 1 does not give
the answer.

˝

4 Spectral decomposition of the Gaussian case

We treat here the spectral decomposition of our second model. Despite it is already known (see
for instance Risken [19]), we will proceed differently, rather following an approach based on a
decomposition of the generator similar to our roadmap used in Section 2. Apart from underlying
the analogies and differences between our two models, this will put us in good position to compute
the operators norms.

4.1 Decomposition of the generator on stable subspaces

So for fixed a ą 0, we are interested in the operator rLa defined in (2). Since the coefficients of rLa

are affine and the associated invariant measure rµa “ γ1{abγ is Gaussian, it is natural to check how
rLa acts on the Hermite polynomials, renormalized to be orthogonal in L

2prµaq. The definition of
the orthogonal polynomials associated to γ were recalled in (5). To simplify notations, we sightly
modify those adopted in Section 2 and rather consider

@ p P N, @ x P R, hp,apyq ≔ hpp
?
axq.

The family php,a b hqqp,qPN is then an orthogonal basis of L2prµaq. In analogy with Lemma 5, we
begin by

Lemma 28 For all p, q P N, we have

rLarhp,a b hqs “
?
aphp´1,a b hq`1 ´

?
aqhp`1,a b hq´1 ´ qhp,a b hq.

Proof

Taking into account the following classical relations, valid for all q P N and y P R (with the
convention h´1 “ 0),

h2
qpyq ´ yh1

qpyq “ ´qhqpyq
h1
qpyq “ qhq´1pyq

hq`1pyq “ yhqpyq ´ qhq´1pyq,
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we compute that for all p, q P N and x, y P R, we have

rLarhp,a b hqspx, yq
“ y

?
aphp´1,apxqhqpyq ´ axqhp,apxqhq´1pyq ´ qhp,apxqhqpyq

“
?
aphp´1,apxqphq`1 ` qhq´1qpyq ´

?
aqphp`1,a ` php´1,aqpxqhq´1pyq ´ qhp,apxqhqpyq

“ p
?
aphp´1,a b hq`1 ´

?
aqhp`1,a b hq´1 ´ qhp,a b hqqpx, yq.

�

This formula leads us to introduce, for n P N, the subspace Hn of L2prµaq generated by hp,a bhn´p,

for p P J0, nK. Indeed, Hn is left invariant by rLa. Let us consider the matrix ĂMn associated to the
restriction of rLa to Hn in the orthonormal basis php,a b hn´pqpPJ0,nK. It is the tridiagonal matrix
given by

ĂMn “

¨
˚̊
˚̊
˚̊
˚̋

´n ?
an 0 ¨ ¨ ¨ 0

´?
an ´pn´ 1q

a
a2pn´ 1q ...

0 ´
a
a2pn ´ 1q ´pn´ 2q . . . 0

. . .
. . .

?
an

0 ¨ ¨ ¨ 0 ´?
an 0

˛
‹‹‹‹‹‹‹‚
. (34)

In order to diagonalize this matrix, it is fruitful to decompose it into its diagonal , above-diagonal
and below-diagonal parts, i.e. ĂMn “ rDn ` ?

aSn ´ ?
aS˚

n, with

@ p, q P J0, nK, rDnpp, qq ≔
"

´pn´ pq , if p “ q

0 , otherwise.

@ p, q P J0, nK, Snpp, qq ≔
" a

pp` 1qpn ´ pq , if q “ p` 1
0 , otherwise.

and where S˚
n stands here for the transposed matrix associated to Sn.

The next point is crucial to understand the spectral structure of ĂMn:

Lemma 29 For any n P N, the commutators of Sn, S
˚
n and rDn are given by

rSn, S˚
ns “ ´2 rDn ´ nIn

rSn, rDns “ Sn

rS˚
n,

rDns “ ´S˚
n,

where In is the nˆ n identity matrix.

Proof

The two first relations are just direct computations: for any p, q P J0, nK, we have

rSn, S˚
nspp, qq “ SnS

˚
npp, qq ´ S˚

nSnpp, qq
“ Snpp, p ` 1qSnpq, q ` 1qδq`1“p`1 ´ Snpp ´ 1, pqSnpq ´ 1, qqδq´1“p´1

“ ppp ` 1qpn ´ pq ´ ppn´ p` 1qqδq“p

“ pn ´ 2pqδq“p

“ ´2 rDnpp, qq ´ nInpp, qq.
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In a similar way, we have for any p, q P J0, nK,

rSn, rDnspp, qq “ Sn rDnpp, qq ´ rDnSnpp, qq
“ Snpp, p ` 1q rDnpq, qqδq“p`1 ´ rDnpp, pqSnpq ´ 1, qqδp“q´1

“ ´ppn ´ p´ 1q
a

pp` 1qpn ´ pq ´ pn´ pq
a

pp` 1qpn ´ pqqδq“p`1

“
a

pp ` 1qpn´ pqδq“p´1

“ Snpp, qq.

The last equality is a consequence of the previous one:

rS˚
n,

rDns “ r rD˚
n, pS˚

nq˚s˚

“ r rDn, Sns˚

“ ´rSn, rDns˚

“ ´S˚
n.

�

Thus it appears that the vector space rVn generated by the four matrices In, rDn, Sn and S˚
n

is a real Lie subalgebra of glpn ` 1,Rq, stable by transposition and containing ĂMn. It is not
difficult to check that for n P Nzt0u, the four matrices In, rDn, Sn and S˚

n are independent, so
that dimprVnq “ 4 (the case n “ 0 is different: rV0 “ R and dimprV0q “ 1). To avoid trivialities, we
assume that n P Nzt0u in the discussion that follows. It is possible to reduce the dimension to 3,
by considering the next slight modifications. Define

Dn ≔
rDn ` n

2
In

Mn ≔
ĂMn ` n

2
In,

and let Vn be the vector space generated by the three matrices Dn, Sn and S˚
n. We deduce

immediately from the above lemma that

rSn, S˚
ns “ ´2Dn

rSn,Dns “ Sn

rS˚
n,Dns “ ´S˚

n.

so Vn is still a real Lie subalgebra of glpn` 1,Rq stable by transposition. We recognize the slp2,Rq
Lie algebra. Indeed, defining

e1 ≔ ´Dn e2 ≔ Sn{
?
2 e3 ≔ S˚

n{
?
2,

these elements satisfy the same Lie bracket relations

re1, e2s “ e2 re1, e3s “ ´e3 re2, e3s “ e1,

as the elements of usual basis of slp2,Rq given by

e1 ≔
1

2

ˆ
1 0
0 ´1

˙
e2 ≔

1?
2

ˆ
0 1
0 0

˙
e3 ≔

1?
2

ˆ
0 0
1 0

˙
.

For n “ 1, we even have equality between these elements and if we rather see the Vn, for n P N, as
complex vector spaces, then pVnqnPN is the family of all irreducible representations of slp2,Cq (see
for instance Section 4.4 of the book of Hall [8]).
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4.2 Spectral analysis of L̃a

The Lie algebra structure of Vn suggests that to get informations about the spectral decomposition
of Mn “ ?

aSn ´ ?
aS˚

n ` Dn P Vn, it is interesting to first investigate the spectral decomposition
of the adjoint operator at Mn, which is defined by

adMn : Vn Q X ÞÑ rMn,Xs P Vn.

This is the object of the next result, where Vn and adMn are replaced by their natural complexifi-
cations.

Lemma 30 Let n P Nzt1u be fixed. The kernel of the operator adMn is generated by Mn. For
a ­“ 1{4, there are two other eigenvalues, θ and ´θ where

θ ≔

" ?
1 ´ 4a , if a P r0, a{4q?
4a ´ 1i , if a ą 1{4.

The corresponding eigenspaces are respectively generated by

J` “ 4
?
aDn ` p1 ´ θqSn ´ p1 ` θqS˚

n (35)

J´ “ 4
?
aDn ` p1 ` θqSn ´ p1 ´ θqS˚

n.

For a “ 1{4, the operator adMn is not diagonalizable and its matrix is equal to the 3 ˆ 3 Jordan

block

¨
˝

0 1 0
0 0 1
0 0 0

˛
‚ associated to the eigenvalue 0, in the basis pMn,Dn ´ 2

?
aS˚

n,´2
?
aS˚

nq.

Proof

Due to the fact that rMn,Mns “ 0, we already know that Mn is an eigenvector associated to the
eigenvalue 0 of adMn . Using the above bracket relations, we compute that the matrix associated
to adMn in the basis pDn, Sn, S

˚
nq is given by

¨
˝

0 ´2
?
a ´2

?
a?

a ´1 0?
a 0 1

˛
‚.

It characteristic polynomial is ´XpX2 ´ 1` 4aq, so for a ­“ 1{4, adMn admits three distinct eigen-
values which are 0, θ and ´θ, defined in the above statement. Computing associated eigenvectors,
we get the announced results, for a ­“ 1{4. For a “ 1{4, since the characteristic polynomial is ´X3,
it appears that 0 is the only possible eigenvalue. Furthermore it is clear that the above matrix has
rank 2 (in fact for any a ě 0), so adMn is necessarily similar a 3ˆ 3 Jordan block associated to the
eigenvalue 0. Already knowing that Mn is in the kernel of adMn , it is not difficult to complete it
into a basis in which the matrix associated to adMn has the required form, e.g. the basis given in
the lemma.

�

For the remaining of this section, the case a “ 1{4 will often be excluded from our study. This
value is critical for the spectra of the Mn, n P Nzt1u, to be real. More precisely, we will see that
for a P p0, 1{4s, the spectrum of Mn is real (so a posteriori complexification was not necessary),
while for a P p1{4,`8q, it does contain non-real eigenvalues. First we present a simple but very
useful technical result.
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Lemma 31 For a P p0,`8qzt1{4u, kerpJ`q, the kernel of J`, is of dimension 1.

Proof

From (35) we remark that J` is a tridiagonal matrix, whose supdiagonal has only non-vanishing
entries (namely the values

a
app` 1qpn ´ pqpθ ´ 1q, for p P J0, nK). So if f “ pfpqpPJ0,nK is a

vector belonging to kerpJ`q and if f0 “ 0, we deduce by iteration that f “ 0: indeed the equation
J`p0, 0qf0`J`p0, 1qf1 “ 0, implies f1 “ 0, next the equation J`p1, 0qf0`J`p1, 1qf1`J`p1, 2qf2 “ 0
enables us to see that f2 “ 0, etc., in the end the nullity fn is a consequence of the last but one
equation. It follows that kerpJ`q is at most of dimension 1, otherwise we could find a non-zero
vector in kerpJ`q whose first coordinate is zero.

To see that kerpJ`q is not reduced to t0u, let be given λ an eigenvalue of (the complexification
of) Mn and denote by ϕ ­“ 0 a corresponding eigenvector. Since we have

MnJ`ϕ “ J`Mnϕ ` θϕ

“ pλ ` θqϕ.

we get that either λ` θ is an eigenvalue of Mn or J`ϕ “ 0. If the latter condition is not satisfied,
we iterate this operation to see that either λ` 2θ is an eigenvalue of Mn or J2

`ϕ “ 0. But λ ` pθ

cannot be an eigenvalue of Mn for all p P N, so necessarily there exists p P N with Jp
`ϕ ­“ 0 and

J
p`1
` ϕ “ 0, i.e. Jp

`ϕ P kerpJ`qzt0u.
�

By extending to Jordan-type subspaces the latter argument, we will prove the following important
result.

Proposition 32 For a ­“ 1{4, the matrix Mn is diagonalizable and all the eigenvalues have mul-
tiplicity 1. More precisely if λ is an eigenvalue of Mn such that λ ` θ is not an eigenvalue of
Mn, then the spectrum of Mn is the set tλ ´ kθ : k P J0, nKu. Furthermore, for k P J1, nK, J`
(respectively J´) transforms the spectral line associated to λ ´ kθ (resp. λ ´ pk ´ 1qθ) into the
spectral line associated to λ´ pk ´ 1qθ (resp. λ´ kθ).

Proof

We define that a subspace V of Cn`1 is of type pl, dq, with l P C and d P N, if there exists a basis
pϕ0, ϕ1, ..., ϕdq of V such that

Mnϕ0 “ lϕ0,

@ p P J1, dK, Mnϕp “ lϕp ` ϕp´1.

The Jordan decomposition implies that Mn is diagonalizable if and only if there is no pl, 1q-type
subspace for any l P C (by taking into account that maximal pl, dq-type subspaces lead to Jordan
blocks, which contains pl, 1q-type subspaces if d ě 1). We are to proceed by a contradictory
argument to show that Mn is diagonalizable. First consider V a pl, 1q-type subspace endowed of a
basis pϕ0, ϕ1q as above. The relation MnJ` “ J`Mn ` θJ` implies that

MnJ`ϕ0 “ pl ` θqJ`ϕ0,

MnJ`ϕ1 “ pl ` θqJ`ϕ1 ` J`ϕ0. (36)

Thus if kerpJ`qXV “ t0u, we get that J`ϕ0 and J`ϕ1 must be independent, so J`pV q is a pl`θ, 1q-
type subspace. In particular l ` θ is an eigenvalue of Mn. Next let λ be as in the statement of
the proposition and assume there exists a pλ, 1q-type subspace V , endowed of a basis pϕ0, ϕ1q as
above. Necessarily kerpJ`q Ă V , otherwise the above argument would lead to fact that λ` θ is an
eigenvalue of Mn. So let f P kerpJ`qzt0u be given. The relation MnJ`f “ J`Mnf ` θJ`f implies
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that J`Mnf “ 0, namely Mnf P kerpJ`q. Lemma 31 then shows that Mnf is proportional to f ,
i.e. f is an eigenvector of Mn. The only eigenvectors of Mn belonging to V are proportional to
ϕ0, thus we deduce that J`ϕ0 “ 0. But (36) (with l replaced by λ) implies that either λ ` θ is
an eigenvalue of Mn, which is forbidden by our choice of λ, either J`ϕ1 “ 0, which is not more
possible, because it would lead to dimpkerpJ`qq ě 2. It follows that a pλ, 1q-type subspace does
not exist.

Nevertheless, a eigenvector ϕ ­“ 0 associated to λ exists and necessarily J`ϕ “ 0. A consequence
of this property and of Lemma 31 is that for any l ­“ λ and any pl, 1q-subspace V , we have
kerpJ`q X V “ t0u. As it was already shown, we then get that J`pV q is a pl` θ, 1q-type subspace.
If l` θ ­“ λ, we reiterate this procedure. Necessarily we end up with a integer p P Nzt0u such that
l ` pθ “ λ, otherwise we would construct an infinity of eigenvalues. But another contradiction
appears, because Jp

`pV q is in fact a pλ, 1q-type subspace. In conclusion, there is no pl, 1q-type
subspace: Mn is diagonalizable.

The other assertions of the proposition are proven in a similar way: first kerpJ`q is necessarily
the eigenspace associated to λ, which by consequence is of multiplicity 1. Next any non-zero
eigenvector ϕ associated to an eigenvalue l ­“ λ of Mn is such that J`ϕ is a non-zero eigenvector
associated to l ` θ. Iterating again, we deduce there exists p P Nzt0u such that l ` pθ “ λ and
J
p
`ϕ belongs to the line eigenspace associated to λ. Another application of Lemma 31 shows that

the dimension of the eigenspace associated to l was necessarily 1 (otherwise you could find ϕ ­“ 0
in this eigenspace and k P J1, pK such that Jk´1

` ϕ belongs to kerpJ`q but not to the eigenspace
associated to λ, which is not permitted). This is only possible if the spectrum of Mn coincides
with the set tλ ´ kθ : k P J0, nKu and if for k P J1, nK, J` transforms the spectral line associated
to λ ´ kθ into the spectral line associated to λ´ pk ´ 1qθ. Rather working with J´ instead of J`
leads to the corresponding statement for J´.

�

To end the determination of the spectrum of Mn, we point out another particular feature of this
matrix: Mn is skew-centrosymmetric, i.e. T pMnq “ ´Mn, where for any pn ` 1q ˆ pn ` 1q matrix
M “ pMk,lqk,lPJ0,nK, we define

@ k, l P J0, nK, pT pMqqk,l ≔ Mn´k,n´l.

This transformation T also applies to vectors by

@ f “ pfkqkPJ0,nK, T pfq ≔ pfn´kqkPJ0,nK

and it is easily checked that for any matrix M and vector f ,

T pMfq “ T pMqT pfq,

(for general references about (skew) centrosymmetric matrices, see for instance the papers of
Weaver [22] and Lee [16]). An important consequence of the skew-centrosymmetry of Mn is that
its spectrum is symmetric with respect to 0. Indeed, if λ is an eigenvalue of Mn and if ϕ is a
corresponding eigenvector, we get, by using that T is a linear involution, that

MnT pϕq “ T pT pMnqϕq
“ ´T pMnϕq
“ ´λT pϕq.

This shows that ´λ is also an eigenvalue of Mn, an associated eigenvector being T pϕq. In conjunc-
tion with Proposition 32, this observation leads to the determination of the spectrum of Mn.

Proposition 33 For a ­“ 1{4, the spectrum of Mn is tpk ´ n{2qθ : k P J0, nKu. For a “ 1{4, Mn

is similar to the Jordan block of size n` 1 associated to the eigenvalue 0 (in particular Mn is not
diagonalizable for n ě 1).
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Proof

The first assertion is an immediate consequence of Proposition 32 and of the symmetry of the
spectrum of Mn. Note that as a ­“ 1{4 goes to 1{4, θ and the eigenvalues of Mn converge to zero.
A usual result on perturbation of spectrum (cf. for instance the chapter 2 of book of Kato [14])
then implies that the spectrum of Mn for a “ 1{4 is reduced to t0u. But the arguments of the
proof Lemma 31 also apply to the tridiagonal matrix Mn to show that the dimension of kerpMnq
is at most 1. By the Jordan decomposition, it follows that Mn is necessarily similar to the Jordan
block of size n` 1 associated to the eigenvalue 0.

�

In view of this result it is natural to make the convention that θ “ 0 when a “ 1{4. Recalling that

for all n P N, ĂMn “ Mn ´ n
2
In is (the matrix associated to) the restriction of rLa to Hn and that

L
2prµaq “ Â

nPNHn, where the Hn, n P N are mutually orthogonal, we get

Corollary 34 For any a ą 0, the spectrum of rLa in L
2prµaq is

!
´n

2
` pk ´ n{2qθ : n P N, k P J0, nK

)
.

For a ­“ 1{4, rLa is diagonalizable in L
2prµaq, but rL1{4 is not diagonalizable and it contains Jordan

blocks of all dimensions.

For a ­“ 1{4 and n P N, we have seen that a family pξpqpPJ0,nK of eigenvectors associated to the
eigenvalues ppp´ n{2qθqpPJ0,nK of Mn is given by

@ p P J0, nK, ξp ≔ J
p
`ξ0,

where ξ0 is a normalized vector generating the kernel of J´.
Using this information, it is possible to make explicit the eigenvectors of rLa, which are polynomial.
But as seen in Section 3 for our first model, to obtain hypocoercive bounds, it is more crucial to
compute the scalar products of the eigenvectors than to known them exactly. This is the objective
of next section.

5 Norms of hypocoercive Gaussian semi-groups

We are going to prove Theorem 3, by following the approach of Section 3, namely by investigating
scalar products of underlying eigenvectors.

Let a ą 0 be fixed. Since, on one hand the orthogonal decomposition L
2prµaq “ Â

nPNHn,

introduced in the previous section, is left stable by all the elements of the semi-group p rP paq
t qtě0,

and on the other hand rµa correspond to the orthogonal projection on H0, the space containing the
constant functions, we have for all t ě 0,

||| rP paq
t ´ rµa|||2

L2prµaqý “ sup
nPN

||| rP paq
t |||2Hný.

By the isometries introduced at the beginning of Section 4, we have for any n P N and t ě 0,

||| rP paq
t |||Hný “ ||| expptĂMnq|||, where ĂMn is the pn ` 1q ˆ pn ` 1q matrix defined in (34) and where

||| ¨ ||| stands for the operator norm with respect to the canonical Hermitian norm on C
n`1. We are

thus brought back to the finite dimensional setting of Section 4, n P N being fixed.
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5.1 Identification of eigenvectors when a P p0, 1{4q

For the first part of this section, we restrict ourself to the case a P p0, 1{4q, so that θ is real and
belongs to p0, 1q. Recall that

Dn ≔

¨
˚̊
˚̊
˚̊
˚̋

´n
2

0 0 ¨ ¨ ¨ 0

´n
2

` 1 0
...

0 0 ´n
2

` 2
. . . 0

. . .
. . . 0

0 ¨ ¨ ¨ 0 0 n
2

˛
‹‹‹‹‹‹‹‚

and Sn ≔

¨
˚̊
˚̊
˚̊
˚̋

0
?
n 0 ¨ ¨ ¨ 0

0 0
a

2pn ´ 1q ...

0 0 0
. . . 0

. . .
. . .

?
n

0 ¨ ¨ ¨ 0 0 0

˛
‹‹‹‹‹‹‹‚
,

and that

ĂMn ≔ Mn ´ n

2
In

Mn ≔ Dn `
?
apSn ´ S˚

nq
θ ≔

?
1 ´ 4a

J` ≔ 4
?
aDn ` p1 ´ θqSn ´ p1 ` θqS˚

n

J´ ≔ 4
?
aDn ` p1 ` θqSn ´ p1 ´ θqS˚

n.

Furthermore, ξ0 is a normalized vector generating the kernel of J´ and for all p P J1, nK, ξp ≔ J
p
`ξ0,

so that pξpqpPJ0,nK is a family of eigenvectors of Mn associated to the eigenvalues ppp´n{2qθqpPJ0,nK.
We begin by checking that ξ20 ≔ pξ20ppqqpPJ0,nK is the binomial distribution of parameter p1 ´ θq{2.
Lemma 35 We can take

@ p P J0, nK, ξ0ppq “

dˆ
n

p

˙ ˆ
1 ´ θ

2

˙p ˆ
1 ` θ

2

˙n´p

. (37)

Proof

Let ξ be the vector whose coordinates are given by the r.h.s. of (37). It is sufficient to show that
J´ξ “ 0. By definition, we have for any p P J0, nK (with the convention ξp´1q “ ξpn` 1q “ 0),

Dnξppq “
´

´n

2
` p

¯
ξppq,

Snξppq “
a

pp` 1qpn ´ pqξpp` 1q

“
a

pp` 1qpn ´ pq
c
n´ p

p` 1

c
1 ´ θ

1 ` θ
ξppq

“ pn´ pq
c

1 ´ θ

1 ` θ
ξppq,

S˚
nξppq “

a
ppn´ p` 1qξpp ´ 1q

“
a
ppn´ p` 1q

c
p

n´ p` 1

c
1 ` θ

1 ´ θ
ξppq

“ p

c
1 ´ θ

1 ` θ
ξppq.

It follows that

J´ξppq “
˜
4
?
a

´
p´ n

2

¯
` p1 ` θqpn´ pq

c
1 ´ θ

1 ` θ
´ p1 ´ θqp

c
1 ` θ

1 ´ θ

¸
ξppq

“
´
2
?
a p2p ´ nq ` pn´ pq

a
p1 ´ θqp1 ` θq ´ p

a
p1 ` θqp1 ´ θq

¯
ξppq

“ 2
?
ap2p´ n` n´ p´ pqξppq

“ 0.
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�

Following the same arguments of Section 3, we are now looking for a family pQpqpPJ0,nK of polyno-
mials, with Qp of degree p for p P J0, nK, such that

@ p P J0, nK, ξp “ QppDnqξ0. (38)

To do so, we will need two preliminary computations

Lemma 36 We have

J` “ 8a ´ 2?
a

Dn ` 2?
a
Mn ´ J´,

and for any p P Z`,

rJ´, J
p
`sξ0 “ 4ppp´ 1 ´ nqθ2Jp´1

` ξ0.

Proof

By definition, we see that

J` ` J´ “ 8
?
aDn ` 2Sn ´ 2S˚

n

“ 8
?
aDn ` 2?

a
pMn ´Dnq,

and the first equality follows at once.
The second equality is trivial for p “ 0 since by convention J0

` is the pn` 1q ˆ pn` 1q identity
matrix In, so that rJ´, J0

`s “ 0. For p “ 1, we are going to show that

rJ´, J`s “ 8θMn. (39)

Let us first remark a priori from the actions of J´ and J` on the eigenspaces of Mn, that J´J`,
J`J´ and rJ´, J`s are functions of Mn, at least for a ­“ 1{4, when all the eigenvalues of Mn are
distinct. Indeed, recalling that rDn, Sns “ ´Sn, rDn, S

˚
ns “ S˚

n and rMn, J´s “ ´θJ´, we get

rJ´, J`s “
„
J´,

8a ´ 2?
a

Dn ` 2?
a
Mn ´ J´



“ 8a ´ 2?
a

rJ´,Dns ` 2?
a

rJ´,Mns

“ 8a ´ 2?
a

r4
?
aDn ` p1 ` θqSn ´ p1 ´ θqS˚

n,Dns ` 2?
a
θJ´

“ 8a ´ 2?
a

p1 ` θqrSn,Dns ´ 8a´ 2?
a

p1 ´ θqrS˚
n,Dns ` 2?

a
θJ´

“ 8a ´ 2?
a

p1 ` θqSn ` 8a ´ 2?
a

p1 ´ θqS˚
n ` 2?

a
θJ´

“ ´2θ2?
a

p1 ` θqSn ´ 2θ2?
a

p1 ´ θqS˚
n ` 2?

a
θp4

?
aDn ` p1 ` θqSn ´ p1 ´ θqS˚

nq

“ 2θ?
a

p´θpp1 ` θqSn ` p1 ´ θqS˚
nq ` 4

?
aDn ` p1 ` θqSn ´ p1 ´ θqS˚

nq

“ 2θ?
a

p4
?
aDn ` p1 ´ θ2qSn ´ p1 ´ θ2qS˚

nq

“ 2θ?
a

p4
?
aDn ` 4aSn ´ 4aS˚

nq

“ 8θMn.
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Hence, from (39) we deduce that for any p P N,

rJ´, J
p
`s “ rJ´, J`sJp´1

` ` J`rJ´, J`sJp´2
` ` ¨ ¨ ¨ ` J

p´1
` rJ´, J`s

“ 8θpMnJ
p´1
` ` J`MnJ

p´2
` ` ¨ ¨ ¨ ` J

p´1
` Mnq.

Applying this formula to the vector ξ0 and taking into account that Jq
`ξ0 is an eigenvector of

Mn associated to the eigenvalue pq ´ n{2qθ for all q P J0, nK (and that the relation MnJ
q
`ξ0 “

pq ´ n{2qθJq
`ξ0 is also true for q ą n, since then Jq

`ξ0 “ 0), we obtain for all p P N,

rJ´, J
p
`sξ0 “ 8θ2ppp´ 1 ´ n{2q ` pp´ 2 ´ n{2q ` ¨ ¨ ¨ ` p´n{2qqJp´1

` ξ0

“ 4ppp ´ 1 ´ nqθ2Jp´1
` ξ0,

as announced.
�

We can now find pQppXqqpě0 such that (38) is satisfied.

Lemma 37 Consider the family of polynomials pQppXqq defined by the recurrence relation:

Q0pXq “ 1 and Q1pXq “ ´
ˆ

2?
a
θ2X ` n?

a
θ

˙
,

@ p P J1, n ´ 1K, Qp`1pXq “
ˆ

´ 2?
a
θ2X ` 2p ´ n?

a
θ

˙
QppXq ` 4θ2ppn` 1 ´ pqQp´1pXq.

Then for any p P J0, nK, Qp is of degree p and (38) is fulfilled.

Proof

Of course ξ0 “ Q0pDnqξ0 and if we assume that for some p P J0, n ´ 1K, ξq “ QqpDnqξ0 for all
q P J0, pK, then we can write, using the first relation of Lemma 36, and that J´ξ0 “ 0

ξp`1 “ J`pJp
`ξ0q

“
ˆ
8a ´ 2?

a
Dn ` 2?

a
Mn ´ J´

˙
J
p
`ξ0

“ 8a ´ 2?
a

DnQppDnqξ0 ` 2?
a

´
p´ n

2

¯
θJ

p
`ξ0 ´ rJ´, J

p
`sξ0 ´ J

p
`J´ξ0

“
ˆ
8a ´ 2?

a
Dn ` 2?

a
θ

´
p´ n

2

¯˙
QppDnqξ0 ´ rJ´, J

p
`sξ0.

If p “ 0, since rJ´, J0
`s “ 0, this gives ξ1 “ Q1pDnqξ0 with Q1 the polynomial described in the

lemma, recalling that θ2 “ 1 ´ 4a.
For p ą 1, the second relation of Lemma 36 enables to replace rJ´, J

p
`sξ0 by 4ppp´1´nqθ2Jp´1

` ξ0 “
4ppp ´ 1 ´ nqθ2Qp´1pDnqξ0, due to our iterative assumption. So we end up with the announced
recurrence relation for the family pQppXqqpPJ0,nK, which clearly implies that for any p P J0, nK, Qp

is of degree p.
�

Remark 38 Let us define Qn`1 by extending the above recurrence:

Qn`1pXq “
ˆ

´ 2?
a
θ2X ` n?

a
θ

˙
QnpXq ` 4θ2nQn´1pXq.

The computations of the above proof show that Qn`1pDnqξ0 “ Jn`1
` ξ0 “ 0. It follows that for any

p P J0, nK, Qn`1pDnqξp “ Qn`1pDnqQppDnqξ0 “ QppDnqQn`1pDnqξ0 “ 0. Thus Qn`1pDnq “ 0,
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because pξpqpPJ0,nK is a basis of the underlying vector space. The operator Dn has n ` 1 distinct
eigenvalues (given by the elements of its diagonal), so its minimal polynomial has degree n`1 and
Qn`1 must be proportional to it. Indeed, an immediate analysis of the leading monomials proves
that

Qn`1pXq “
ˆ´2θ2?

a

˙n`1 ź

pPJ0,nK

´
X ` n

2
´ p

¯
.

A similar observation leads to the uniqueness property of the family pQppXqqpPJ0,nK: assume that

for some p P J0, nK, ξp “ rQppDnqξ0, where rQp is a polynomial of degree p. Then necessarily we

have rQp “ Qp. Indeed, pQp ≔ Qp ´ rQp would be a polynomial of degree less than p such that
pQppDnqξ0 “ 0 and by the above arguments it appears that pQp must be proportional to Qn`1 of

degree n` 1. This is only possible if pQp “ 0 as wanted.
˝

Since it will be more convenient to work with polynomials whose leading term is 1 and to shift
the eigenvalues of Dn by n{2 (to end up with the set J0, nK, which is the support of the binomial
law ξ20), we define

@ p P J0, nK, PppXq “
ˆ´2θ2?

a

˙´p

QppX ´ n{2q.

In the sequel, we denote

υ ≔

1

θ
´ 1.

It is easy to see that the recurrence relation holds

P0pXq “ 1,

@ p P J0, n´ 1K, Pp`1pXq “
´
X ´ p`

´n
2

´ p
¯
υ

¯
PppXq ` 1

4
ppn` 1 ´ pqpυ2 ` 2υqPp´1pXq.

Note that the term P´1 is not necessary to determine P1.
These modifications also prompt us to exchange the pξpqpPJ0,nK for the pζpqpPJ0,nK defined by

@ p P J0, nK, ζp ≔

ˆ´2θ2?
a

˙´p

ξp

“ Pp

´
Dn ` n

2
In

¯
ξ0. (40)

The family pζpqpPJ0,nK still consists of a basis of eigenvectors of Mn (associated to the family of
eigenvalues ppp´ n{2qθqpPJ0,nK), its advantage is encapsulated in the next result.

Lemma 39 For any p, q P J0, nK, we have

xζp, ζqy “ βp1´θq{2rPpPqs,

where βp1´θq{2 is the binomial distribution of parameter p1 ´ θq{2.

Proof
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This is a direct computation: for any p, q P J0, nK, we have

xζp, ζqy “
ÿ

mPJ0,nK

ζppmqζqpmq

“
ÿ

mPJ0,nK

´
Pp

´
Dn ` n

2
In

¯
ξ0

¯
pmq

´
Pq

´
Dn ` n

2
In

¯
ξ0

¯
pmq

“
ÿ

mPJ0,nK

PppmqPqpmqpξ0pmqq2

“ βp1´θq{2rPpPqs,

where we have used (40) and (37).
�

The recurrence relation satisfied by pPppXqqpPJ0,nK may lead the reader to think that they are the
orthogonal polynomials associated to some law on J0, nK. This law cannot be βp1´θq{2, because
the family pζpqpPJ0,nK is not orthogonal: this is the heart of the subject and the motivation for the
computations of this section.

It is time now to provide an explicit formula for the polynomials PppXq, p P J0, nK. In analogy
with Section 3 again, it is more convenient to express them in the basis pΠpqpPJ0,nK, where

@ p P J0, nK, ΠppXq ≔
ź

kPJ0,p´1K

pX ´ kq,

(slightly abusing notations, the r.h.s. could also be written Xppq).

Lemma 40 For any p P J0, nK, we have

PppXq “
ÿ

kPJ0,pK

ppp´kqpn´ kqpp´kq

pp´ kq!
´υ
2

¯p´k

ΠkpXq. (41)

Proof

After computing the first elements of the family pPppXqqpPJ0,nK, one guesses that they will be of
the form

PppXq “
ÿ

kPJ0,pK

αp,kυ
p´kΠkpXq,

for some coefficients pαp,kqpPJ0,nK,kPJ0,pK independent of the parameter υ. Putting such a form in the
recurrence relation, it appears that to be conserved for Pp`1 (assuming it is true for Pp and Pp´1),

one must have αp,k “ ppn`1´pq
2pp´kq αp´1,k. Since necessarily αp,p “ 1, this leads to the announced

formula. Once the latter is suspected, it is sufficient to check it by induction: assuming that (41)

43



is true for Pp and Pp´1 (this is immediate for P0 and P1), we compute that
´
X ´ p`

´n
2

´ p
¯
υ

¯
PppXq ` 1

4
ppn` 1 ´ pqpυ2 ` 2υqPp´1pXq

“
ÿ

kPZ`

ppp´kqpn ´ kqpp´kq

pp ´ kq!
´υ
2

¯p´k ´
X ´ p`

´n
2

´ p
¯
υ

¯
ΠkpXq

`1

4

ÿ

kPZ`

pp´ 1qpp´1´kqpn´ kqpp´1´kq

pp´ 1 ´ kq! ppn` 1 ´ pqpυ2 ` 2υq
´υ
2

¯p´1´k

ΠkpXq

“
ÿ

kPZ`

ppp´kqpn ´ kqpp´kq

pp ´ kq!
´υ
2

¯p´k

pX ´ kqΠkpXq

`
ÿ

kPZ`

ppp´kqpn´ kqpp´kq

pp´ kq!
´
k ´ p`

´n
2

´ p
¯
υ

¯ ´υ
2

¯p´k

ΠkpXq

`1

2

ÿ

kPZ`

ppp´kqpn´ kqpp´kq

pp´ kq! pp´ kqpυ ` 2q
´υ
2

¯p´k

ΠkpXq

“
ÿ

kPZ`

ppp´kqpn ´ kqpp´kq

pp ´ kq!
´υ
2

¯p´k

Πk`1pXq

`
ÿ

kPZ`

ppp´kqpn´ kqpp´kq

pp´ kq!
´
k ´ p`

´n
2

´ p
¯
υ ` pp´ kq

´
1 ` υ

2

¯¯ ´υ
2

¯p´k

ΠkpXq

“
ÿ

kPZ`

ppp´k`1qpn´ k ` 1qpp´k`1q

pp ´ k ` 1q!
´υ
2

¯p´k`1

ΠkpXq

`
ÿ

kPZ`

ppp´kqpn´ kqpp´kq

pp´ kq! pn´ p´ kq υ
2

´υ
2

¯p´k

ΠkpXq

“
ÿ

kPZ`

pp` 1qpp`1´kqpn´ kqpp`1´kq

pp` 1 ´ kq!
kpn ´ k ` 1q

pp ` 1qpn´ pq
´υ
2

¯p`1´k

ΠkpXq

`
ÿ

kPZ`

pp` 1qpp`1´kqpn´ kqpp`1´kq

pp` 1 ´ kq!
pp` 1 ´ kqpn ´ p´ kq

pp ` 1qpn ´ pq
´υ
2

¯p`1´k

ΠkpXq

“
ÿ

kPZ`

pp` 1qpp`1´kqpn´ kqpp`1´kq

pp` 1 ´ kq!
´υ
2

¯p`1´k

ΠkpXq,

which is the wanted expression for Pp`1pXq.
�

Remark 41 It is possible to give a compact formula for the r.h.s. of (41): introduce two free
variables Z1 and Z2 and consider the following interpretations:

pn´ kqpp´kq “ p´1qp´k dp´k

dZ
p´k
1

1

Z
n´p`1
1

ˇ̌
ˇ̌
ˇ
Z1“1

,

ΠkpXq “ dp

dZ
p
2

ZX
2

ˇ̌
ˇ̌
Z2“1

.

The r.h.s of (41) can then be seen as

ÿ

kPJ0,pK

ˆ
p

p´ k

˙ ˆ´υ
2

˙p´k
dp´k

dZ
p´k
1

dp

dZ
p
2

ZX
2

Z
n´p`1
1

ˇ̌
ˇ̌
ˇ̌
Z1“1,Z2“1

“
ˆ

d

dZ2

´ υ

2

d

dZ1

˙p
ZX
2

Z
n´p`1
1

ˇ̌
ˇ̌
ˇ
Z1“1,Z2“1

.
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Unfortunately, it is not obvious to obtain the wanted recurrence relation from this expression.
˝

From the two last lemmas, we can deduce an explicit formula for xζp, ζqy, p, q P J0, nK, but it is
not so easy to handle. It rather suggests to consider certain particular vectors.

5.2 Exact computation of ||| rP paq
t ´ rµa|||L2prµaqý, a P p0; 1{4q

To any ρ P R, associate the vector

zpρq ≔
ÿ

pPJ0,nK

ρp

p!
ζp. (42)

Lemma 42 For any rρ, pρ P R, we have

xzprρq, zppρqy “
ˆ
1 ` 1 ´ θ2

2θ
prρ ` pρq ` 1 ´ θ2

4θ2
rρpρ

˙n

.

Proof

From Lemma 39, we get that

xzprρq, zppρqy “ βp1´θq{2

»
– ÿ

pPJ0,nK

rρp
p!
Pp

ÿ

qPJ0,nK

pρq
q!
Pq

fi
fl

“ 2´n
ÿ

mPJ0,nK

ˆ
n

m

˙
p1 ´ θqmp1 ` θqn´m

ÿ

pPJ0,nK

rρp
p!
Pppmq

ÿ

qPJ0,nK

pρq
q!
Pqpmq. (43)

From (41), we have for any m P J0, nK and p P J0, nK,

Pppmq “
ÿ

kPZ`

ppp´kqpn´ kqpp´kq

pp´ kq!
´υ
2

¯p´k

mpkq.

Hence, using the relation ppp´kq{pp!q “ 1{pk!q and exchanging sums, we obtain

ÿ

pPJ0,nK

rρp
p!
Pppmq “

ÿ

kPZ`

1

k!
rρkmpkq ÿ

pěk

rρp´k

ˆ
n´ k

p´ k

˙ ´υ
2

¯p´k

“
ÿ

kPZ`

1

k!
rρkmpkq

ˆ
1 ` υrρ

2

˙n´k

“
ˆ
1 ` υrρ

2

˙n ÿ

kPZ`

ˆ
m

k

˙
rρk

ˆ
1 ` υrρ

2

˙´k

“
ˆ
1 ` υrρ

2

˙n
˜
1 ` rρ

ˆ
1 ` υrρ

2

˙´1
¸m

“
ˆ
1 ` υrρ

2

˙n´m ´
1 ` rρ

´
1 ` υ

2

¯¯m

.

Coming back to (43), it appears that 2n xzprρq, zppρqy is equal to

ÿ

mPJ0,nK

ˆ
n

m

˙
p1 ´ θqm

´
1 ` rρ

´
1 ` υ

2

¯¯m ´
1 ` pρ

´
1 ` υ

2

¯¯m

p1 ` θqn´m

ˆ
1 ` υrρ

2

˙n´m ˆ
1 ` υpρ

2

˙n´m

“
ˆ

p1 ´ θq
´
1 ` rρ

´
1 ` υ

2

¯¯ ´
1 ` pρ

´
1 ` υ

2

¯¯
` p1 ` θq

ˆ
1 ` υrρ

2

˙ ˆ
1 ` υpρ

2

˙˙n

“ p2 `Aprρ ` pρq `Brρpρqn ,
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where

A ≔ p1 ´ θq
´
1 ` υ

2

¯
` p1 ` θqυ

2

“ 1

2
p1 ´ θq1 ` θ

θ
` 1

2
p1 ` θq1 ´ θ

θ

“ 1 ´ θ2

θ
,

and

B ≔ p1 ´ θq
´
1 ` υ

2

¯2

` p1 ` θq
´υ
2

¯2

“ 1

4
p1 ´ θq

ˆ
1 ` θ

θ

˙2

` 1

4
p1 ` θq

ˆ
1 ´ θ

θ

˙2

“ 1

2

1 ´ θ2

θ2
.

as announced.
�

The main interest of vectors of the form zpρq, for ρ P R, is that they well-behave under the action
of the semi-group associated to Mn, more precisely:

@ t ě 0, expptMnqzpρq “ exp

ˆ
´nθt

2

˙
zpexppθtqρq.

To take advantage of this property, let us consider a basis of R
n`1, of the form pzpρkqqkPJ0,nK:

indeed, classical Vandermonde determinants show that such a family will be a basis as soon all the
ρk are distinct. Since powers play an important role in the kind of formulas that we have obtained
so far, it is convenient to chose a basis of the form pzpρkqqkPJ0,nK, where ρ is a real different from
´1, 0 and 1. Then any z P R

n`1 can be written under the form

z “
ÿ

kPJ0,nK

νkzpρkq, (44)

where the νk, for k P J0, nK, are the appropriate coordinates.

Lemma 43 With the notation (44), we have

xz, zy “ p1 ´ θ2qn
ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

¨
˝ ÿ

kPJ0,nK

ˆ
1 ` ρk

2θ

˙p

νk

˛
‚
2

,

where γ ≔ θ2{p1 ´ θ2q ą 0.
It follows that for any given t ě 0, the operator norm of expptMnq is equal to the square root of

the largest eigenvalue of the symmetric matrix exp p´nθtqB´1{2A˚BAB´1{2, where A and B are
respectively the triangular and diagonal matrices defined by

@ k, l P J0, nK, Ak,l ≔

ˆ
k

l

˙
p1 ´ exppθtqqk´l exppθltq,

@ k P J0, nK, Bk,k ≔

ˆ
n

k

˙
γn´k.
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Proof

From Lemma 42 and by definition of γ, we get that for any k, l P J0, nK,

A
zpρkq, zpρlq

E
“

ˆ
1 ` 1 ´ θ2

2θ
pρk ` ρlq ` 1 ´ θ2

4θ2
ρk`l

˙n

“ p1 ´ θ2qn
ˆ
γ `

ˆ
1 ` ρk

2θ

˙ ˆ
1 ` ρl

2θ

˙˙n

“ p1 ´ θ2qn
ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

ˆ
1 ` ρk

2θ

˙p ˆ
1 ` ρl

2θ

˙p

.

Thus, if we use (44) and expand xz, zy, we get

xz, zy “
ÿ

k,lPJ0,nK

νkνl

A
zpρkq, zpρlq

E

“ p1 ´ θ2qn
ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

ÿ

k,lPJ0,nK

νkνl

ˆ
1 ` ρk

2θ

˙p ˆ
1 ` ρl

2θ

˙p

“ p1 ´ θ2qn
ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

¨
˝ ÿ

kPJ0,nK

ˆ
1 ` ρk

2θ

˙p

νk

˛
‚
2

,

as announced.
Concerning the second part of the lemma, since for any t ě 0,

expptMnqz “ exp

ˆ
´nθt

2

˙ ÿ

kPJ0,nK

νkzpexppθtqρkq,

replacing in the above computation the ρk by exppθtqρk, for k P J0, nK, leads to

exp pnθtq p1 ´ θ2q´n xexpptMnqz, expptMnqzy

“
ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

¨
˝ ÿ

kPJ0,nK

ˆ
1 ` exppθtqρ

k

2θ

˙p

νk

˛
‚
2

“
ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

¨
˝ ÿ

kPJ0,nK

ˆ
1 ´ exppθtq ` exppθtq

ˆ
1 ` ρk

2θ

˙˙p

νk

˛
‚
2

“
ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

¨
˝ ÿ

kPJ0,nK

ÿ

lPJ0,pK

ˆ
p

l

˙
p1 ´ exppθtqqp´l exppθltq

ˆ
1 ` ρk

2θ

˙l

νk

˛
‚
2

“
ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

¨
˝ ÿ

lPJ0,pK

ˆ
p

l

˙
p1 ´ exppθtqqp´l exppθltqηl

˛
‚
2

,

where we have defined

@ l P J0, nK, ηl ≔
ÿ

kPJ0,nK

ˆ
1 ` ρk

2θ

˙l

νk.

Since ρ R t´1, 1u, Vandermonde determinant insures that the linear morphism R
n`1 Q pνkqkPJ0,nK ÞÑ

η ≔ pηlqlPJ0,nK P R
n`1 is bijective. Using the matrices A,B defined in the lemma, we can write

xexpptMnqz, expptMnqzy “ pexp p´θtq p1 ´ θ2qqn xAη,BAηy ,
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and considering the same expression at time t “ 0, it appears that

sup
zPRn`1zt0u

xexpptMnqz, expptMnqzy
xz, zy “ exp p´nθtq sup

ηPRn`1zt0u

xAη,BAηy
xη,Bηy

“ exp p´nθtq sup
ηPRn`1zt0u

@
AB´1{2η,BAB´1{2η

D

xη, ηy

“ exp p´nθtq sup
ηPRn`1zt0u

@
η,B´1{2A˚BAB´1{2η

D

xη, ηy .

The variational caracterization of eigenvalues then implies the second part of the above lemma.
�

The matrix B being non degenerate, the largest eigenvalue of B´1{2A˚BAB´1{2 is also the largest
eigenvalue of B´1A˚BA. Next result determines it:

Lemma 44 The largest eigenvalue of B´1A˚BA is Λn
θ,t expp2θntq, where

Λθ,t ≔ e´2θt ` 1 ´ θ2

2

ˆ
1 ´ e´θt

θ

˙2

` 1 ´ e´2θt

2

¨
˝1 ` 1

θ

d

1 ` 1 ´ θ2

θ2

ˆ
eθt ´ 1

eθt ` 1

˙2

˛
‚. (45)

Proof

Consider J the pn`1q-diagonal matrix with Jk,k “ p´1qk for k P J0, nK and rA ≔ JAJ , whose entries

are non-negative. Being conjugate, the two matrices B´1A˚BA and JB´1A˚BAJ “ B´1 rA˚B rA
have the same spectrum. The advantage of B´1 rA˚B rA is that all its entries are positive, so Perron-
Frobenius theorem asserts that if we can find an eigenvector vector of B´1 rA˚B rA whose coordinates
are positive, then the corresponding eigenvalue is the largest one. In view of the entries of rA and
B, it is natural to try vectors η ≔ pηlqlPJ0,nK P R

n`1 whose coordinates are powers, namely of the
form

@ l P J0, nK, ηl “ rl,

where r ą 0 is to be determined so that η is an eigenvector vector of B´1 rA˚B rA. We compute that
for any k P J0, nK,

p rAηqk “
ÿ

lPJ0,nK

ˆ
k

l

˙
peθt ´ 1qk´leθltrl

“
´
eθt ´ 1 ` eθtr

¯k

.

To simplify notation, let s ≔ eθt ´ 1 ` eθtr. Then for any k P J0, nK, we have

p rA˚B rAηqk “
ÿ

lPJ0,nK

ˆ
l

k

˙
peθt ´ 1ql´keθkt

ˆ
n

l

˙
γn´lsl

“ γn
ˆ

eθt

eθt ´ 1

˙k
1

k!

ÿ

lěk

lpkq
ˆpeθt ´ 1qs

γ

˙l
nplq

l!

“ γn
ˆ

eθt

eθt ´ 1

˙k
1

k!

ˆpeθt ´ 1qs
γ

˙k

npkq ÿ

lěk

pn ´ kqpl´kq

pl ´ kq!

ˆpeθt ´ 1qs
γ

˙l´k

“ γn
ˆ
eθts

γ

˙k
npkq

k!

ˆ
1 ` peθt ´ 1qs

γ

˙n´k

.
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Thus in the end, we get for any k P J0, nK,

pB´1 rA˚B rAηqk “
´
eθts

¯k
ˆ
1 ` peθt ´ 1qs

γ

˙n´k

.

It appears that the vector η is an eigenvector for B´1 rA˚B rA if and only if we have

eθts

ˆ
1 ` peθt ´ 1qs

γ

˙´1

“ r,

and in this case the corresponding eigenvalue will be

Λ ≔

ˆ
1 ` peθt ´ 1qs

γ

˙n

“
ˆ
1 ` peθt ´ 1q

γ
peθt ´ 1 ` eθtrq

˙n

. (46)

Expanding the above condition, we end up with the second order equation in r:

peθt ´ 1qreθtr2 ` peθt ´ 1 ´ γr1 ` eθtsqr ´ γeθts “ 0.

For t ą 0, this equation admits a positive solution as required, namely

r “ 1

2
e´θt

ˆ
1 ´ eθt ` γr1 ` eθts `

b
peθt ´ 1 ´ γr1 ` eθtsq2 ` 4γe2θt

˙

“ 1

2
e´θt

¨
˝1 ´ eθt ` γr1 ` eθts ` p1 ` eθtq

gffepγ ` 1q
˜
γ `

ˆ
eθt ´ 1

eθt ` 1

˙2
¸˛

‚.

Inserting this value in (46), we obtain

Λ “

¨
˝1 ` peθt ´ 1q

2γ

¨
˝eθt ´ 1 ` p1 ` eθtq

¨
˝γ `

gffepγ ` 1q
˜
γ `

ˆ
eθt ´ 1

eθt ` 1

˙2
¸˛

‚
˛
‚

˛
‚
n

“

¨
˝1 ` peθt ´ 1q2

2γ
` e2θt ´ 1

2

¨
˝1 `

gffe
ˆ
1 ` 1

γ

˙ ˜
1 ` 1

γ

ˆ
eθt ´ 1

eθt ` 1

˙2
¸˛

‚
˛
‚
n

,

and this leads to the assertion of the lemma.
�

Now we can come back to our project of computing the L
2-operator norms of the hypocoercive

semi-group associated to the generator rLa, at least for a P p0, 1{4q.

Theorem 45 For any a P p0, 1{4q and any t ě 0, we have

||| rP paq
t ´ rµa|||L2prµaqý “

a
Λθ,t exp

ˆ
´1 ´ θ

2
t

˙
,

where we recall that θ ≔
?
1 ´ 4a and that Λθ,t was defined in (45).

Proof

We have seen at the beginning of this section that for any a P p0, 1{4q and any t ě 0,

||| rP paq
t ´ rµa|||2

L2prµaqý “ sup
nPN

expp´ntq||| expptMnq|||2. (47)
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According to Lemmas 43 and 44, we have

||| expptMnq|||2 “ pexppθtqΛθ,tqn ,
so that

||| rP paq
t ´ rµa|||2

L2prµaqý “ sup
nPN

pexpp´p1 ´ θqtqΛθ,tqn .

Since we know a priori that the l.h.s. is less or equal to 1, necessarily the quantity expp´p1´θqtqΛθ,t

is less or equal to 1 and the above supremum is attained for n “ 1.
�

We remark that for any fixed time t ě 0, as θ ą 0 goes to zero, Λθ,t converges toward

Λ0,t ≔ 1 ` t2

2
` t

d

1 `
ˆ
t

2

˙2

.

Since on one hand, for any fixed n P N and t ě 0, the operator expptMnq is a continuous function
of the (hidden) parameter a ą 0 and on the other hand, (47) is always true, the previous theorem
can be extended for the value a “ 1{4:
Corollary 46 For any t ě 0, we have

||| expptL1{4q ´ rµ1{4|||L2prµ1{4qý “
a

Λ0,t exp

ˆ
´1

2
t

˙
.

5.3 Exact computation of ||| rP paq
t ´ rµa|||L2prµaqý, a ą 1{4

For the remaining part of this section, we consider the situation where a ą 1{4. The parameter
θ is now purely imaginary and we choose θ “

?
4a´ 1i. Most of the previous arguments can be

extended and we will only insist on the main changes.
First (37) is still valid if we rather rewrite it under the form

@ p P J0, nK, ξ0ppq “
dˆ

n

p

˙ ˆ?
1 ´ θ?
2

˙p ˆ?
1 ` θ?
2

˙n´p

,

where the signs of the two complex numbers
?
1 ´ θ and

?
1 ` θ are chosen so that their product is

equal to 2
?
a. Anyway, the important object is p|ξ0ppq|2qpPJ0,nK, which is just pp1`|θ|2q{4qn{2

´`
n
p

˘¯
pPJ0,nK

,

since |1 ` θ| “ |1 ´ θ| “
b
1 ` |θ|2. Indeed, Lemmas 36, 37 and 40 don’t need to be modified, since

they only deal with algebraic properties of ξ0, J´ and J`. Similarly, we consider the family
pζpqpPJ0,nK defined by (40). The next change comes with Lemma 39, which must rather state that
for any p, q P J0, nK, we have

xζp, ζqy “ p1 ` |θ|2qn{2β1{2rPpPqs, (48)

where β1{2 is the binomial distribution of parameter 1{2 (note that x¨, ¨y now stands for the usual
Hermitian product on C

n`1).
Definition 42 can be extended to any ρ P C, but Lemma 42 must be replaced by

Lemma 47 For any rρ, pρ P C, we have

xzprρq, zppρqy “
´
1 ` |θ|2

¯´n{2
˜
γ `

ˆ
1 ` rρ

δ

˙ ˆ
1 ` pρ

δ

˙¸n

,

where

γ ≔ |θ|2 and δ ≔
2θ

1 ` |θ|2
.
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Proof

The first part of the proof of Lemma 42 and (48) show that

xzprρq, zppρqy

“
˜
1 ` |θ|2

4

¸n{2 ˜ˆ
1 ` rρ1 ` θ

2θ

˙ ˆ
1 ` pρ1 ` θ

2θ

˙
`

ˆ
1 ` rρ1 ´ θ

2θ

˙ ˆ
1 ` pρ1 ´ θ

2θ

˙¸n

“
˜
1 ` |θ|2

4

¸n{2 ˜
2 ` rρ

θ
` pρ
θ

` |1 ` θ|2
2

rρ
θ

pρ
θ

¸n

“

¨
˝

b
1 ` |θ|2

2

˛
‚
n ¨

˝2 ´ 2

1 ` |θ|2
`

¨
˝

d
2

1 ` |θ|2
`

d
1 ` |θ|2

2

rρ
θ

˛
‚

¨
˝

d
2

1 ` |θ|2
`

d
1 ` |θ|2

2

pρ
θ

˛
‚

˛
‚
n

.

expression which coincides with the announced one.
�

Fix any complex number ρ whose norm is different from 0 and 1. Then pzpρkqqkPJ0,nK is a basis of
C
n`1 and any z P C

n`1 can be written under the form (44), where the νk, for k P J0, nK, are the
appropriate complex coordinates.

Using Lemma 47 and the notations introduced there, we obtain as in Lemma 43 that

xz, zy “
´
1 ` |θ|2

¯´n{2 ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

ˇ̌
ˇ̌
ˇ̌

ÿ

kPJ0,nK

ˆ
1 ` ρk

δ

˙p

νk

ˇ̌
ˇ̌
ˇ̌

2

“
´
1 ` |θ|2

¯´n{2 ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p |ηp|2 ,

with

@ l P J0, nK, ηl ≔
ÿ

kPJ0,nK

ˆ
1 ` ρk

δ

˙l

νk.

As in the proof of Lemma 43, we also compute that for any t ě 0,

xexpptMnqz, expptMnqzy

“
´
1 ` |θ|2

¯´n{2
|expp´nθt{2q|2

ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

ˇ̌
ˇ̌
ˇ̌

ÿ

lPJ0,pK

ˆ
p

l

˙
p1 ´ exppθtqqp´l exppθltqηl

ˇ̌
ˇ̌
ˇ̌

2

“
´
1 ` |θ|2

¯´n{2 ÿ

pPJ0,nK

ˆ
n

p

˙
γn´p

ˇ̌
ˇ̌
ˇ̌

ÿ

lPJ0,pK

ˆ
p

l

˙
p1 ´ exppθtqqp´l exppθltqηl

ˇ̌
ˇ̌
ˇ̌

2

.

Thus, if the matrices A and B are defined in the same way as in Lemma 43, it appears the L
2-

operator norm of expptMnq is equal to the square root of the largest eigenvalue of the Hermitian
matrix B´1{2A˚BAB´1{2, where A˚ is the Hermitian adjoint matrix associated to A. If exppθtq ­“
1, consider the diagonal matrices rC and pC defined by

@ k P J0, nK, rCk,k ≔

p1 ´ eθtqk

|1 ´ eθt|k
,

pCk,k ≔

p1 ´ eθtq´keθkt

|p1 ´ eθtq´1|k
.
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We can write A “ rC rA pC, where the entries of rA are just the absolute values of the entries of A.
The interest is that B´1{2A˚BAB´1{2 “ pC´1B´1{2 rA˚B rAB´1{2 pC is conjugate to the symmetric
matrix B´1{2 rA˚B rAB´1{2, whose entries are positive. We can then use Perron-Frobenius theorem
to get

Lemma 48 The largest eigenvalue of B´1{2A˚BAB´1{2 is Λn
θ,t, where

Λθ,t ≔

$
&
%

1 ` ν2

2|θ|2

ˆ
1 `

b
1 ` 4 |θ|2

ν2

˙
, if ν ­“ 0

1 , if ν “ 0

with ν ≔
ˇ̌
eθt ´ 1

ˇ̌
.

Proof

If ν “ 0, A is just the identity matrix, so the result is immediate. Assume that ν ­“ 0. As in Lemma
44, the wanted largest eigenvalue is also the largest eigenvalue of B´1 rA˚B rA and it is sufficient to
find a corresponding positive eigenvector. Again we look for a vector η ≔ pηlqlPJ0,nK P R

n`1 whose
coordinates are of the form

@ l P J0, nK, ηl “ rl,

where r ą 0 is to be determined to insure that η is an eigenvector vector of B´1 rA˚B rA. Let us
denote s “ ν ` r, so that for any k P J0, nK,

p rAηqk “
ÿ

lPJ0,nK

ˆ
k

l

˙
νk´lrl

“ sk.

It follows that for any k P J0, nK,

p rA˚B rAηqk “
ÿ

lPJ0,nK

ˆ
l

k

˙
νl´k

ˆ
n

l

˙
γn´lsl

“ γn
1

k!

ÿ

lěk

lpkqνl´k

ˆ
s

γ

˙l
nplq

l!

“ γn´k s
k

k!
npkq ÿ

lěk

ˆ
n´ k

l ´ k

˙ ˆ
νs

γ

˙l´k

“
ˆ
n

k

˙
γn´ksk

ˆ
1 ` νs

γ

˙n´k

.

Finally, it appears that for any k P J0, nK,

pB´1 rA˚B rAηqk “ sk
ˆ
1 ` νs

γ

˙n´k

.

Thus η will be the wanted eigenvector, with Λ ≔ p1 ` νpν ` rq{γqn as associated eigenvalue, if the
following equation has a positive solution r:

ν ` r “ r

ˆ
1 ` νpν ` rq

γ

˙
.

Since ν ­“ 0, this is equivalent to r2 ` νr´ γ “ 0, which admits r “ p´ν `
a
ν2 ` 4γq{2 as positive

solution. Expanding Λ, we end up with the announced result.

52



�

The arguments of the proof of Theorem 45 enable to conclude the computation of L2-operator
norms of the hypocoercive semi-group associated to the generator rLa, for a P p1{4,8q:

Theorem 49 For any a ą 1{4 and any t ě 0, we have

||| rP paq
t ´ rµa|||2

L2prµaqý “ Captqe´t,

with

Captq ≔ 1 `

ˇ̌
ˇe

?
4a´1it ´ 1

ˇ̌
ˇ

2p4a ´ 1q

ˆˇ̌
ˇe

?
4a´1it ´ 1

ˇ̌
ˇ `

bˇ̌
e

?
4a´1it ´ 1

ˇ̌2 ` 4p4a ´ 1q
˙
.

Let us finish this section by noting that for all a ą 0, the maximizing functions for the computation

of the operator norms of the semi-group p rP paq
t qtě0 belong to H1, namely are linear mapping (but

they are not eigenfunctions of rLa). This justifies the assertion made before Remark 27.

6 Concluding remarks

One common feature of the previous analysis of La or rLa, for a ą 0, is that the underlying L
2

space was decomposed into ‘pPPVp, where the subspaces Vp are orthogonal and left invariant by
the generator at hand. In the first model the index set P is Z` \N\N and Z` in the second model.
These decompositions were maximal, in the sense that each of the Vp, p P P, cannot be non-trivially
decomposed further (due to the non-orthogonality of all the eigenvectors belonging to Vp). Inside
each of the Vp, p P P, the restriction of the generator was written under the form Kp ` Rp ´ R˚

p ,
where Kp is self-adjoint in Vp and where the brackets of the operators Kp, Rp and R˚

p have nice
forms (especially rKp, Rps “ Rp, which implies that there is a basis consisting of eigenvectors of
Kp in which the matrix of Rp has a below-diagonal form, thus among decompositions of the type
Kp ` Rp ´ R˚

p , Rp is in some sense minimal). Indeed, everything was deduced from the relations
satisfied by these brackets. So it is natural to wonder if something is left of these observations for
more general models.

First we note that the decompositions of the restriction of generator to the subspace Vp, p P P,
can be lifted into a decomposition K ` R ´ R˚ of the initial generator, where K ≔ ‘pPPKp and
R ≔ ‘pPPRp. More precisely, in the first model we get

K “ aB2y ´ yBy
R “ yBx ´ aBxBy
R˚ “ ´aBxBy,

with

rK,Rs “ R, rR,R˚s “ aJ,

where J “ B2x is a coercive operator on T (and for any α, β ą 0, αJ ` βK is coervive on T ˆ R).
Similarly, in the second model we have

K “ B2y ´ yBy
R “ yBx ´ BxBy
R˚ “ axBy ´ BxBy,

with

rK,Rs “ R, rR,R˚s “ J ´ aK,
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where J ≔ BxB˚
x “ B2x ´ axBx is a coercive Ornstein-Ulhenbeck operator on R.

In the literature about hypocoercivity, the authors have often a predilection for brackets of first
order operators (this is maybe due to the importance of Hörmander’s condition in hypoellipticity),
but it seems that in the considered toy models, the key is given by brackets between second order
operators.
More generally, let be given a smooth potential U : T Ñ R and consider on T ˆ R the kinetic
operator

L ≔ yBx ´ U 1pxqBy ` B2y ´ yBy.

The following remarks can be adapted to the situation of potentials defined on R, under appropriate
conditions. The associated invariant probability is µ ≔ ν ˆ γ1, where ν is the Gibbs measure on T

whose density with respect to the Lebesgue measure λ is proportional to expp´Uq. As above, we
can write L “ K `R ´R˚, where

K “ B2y ´ yBy
R “ yBx ´ BxBy
R˚ “ U 1pxqBy ´ BxBy

The operator K is still self-adjoint in L
2pµq and R˚ is adjoint to R. We furthermore have

rK,Rs “ R, rR,R˚s “ J ´ U2K

where J ≔ B˚
xBx “ B2x ´U 1pxqBx is the usual coercive Langevin operator associated to U on T ( note

that the formulation L “ K `R´R˚ is different from the one proposed by Villani L “ A˚A`B

in the first chapter of [21] since our operator K is a second order one).
We are wondering if these properties could not be used to deduce, in a direct manner, hypoco-

ercive bounds for the semi-group pPtqtě0 associated to L. So let f P L
2pµq be given with µrf s “ 0

and denote for t ě 0, Ft ≔ µrpPtrf sq2s. Since we expect behaviors such as (1), (3) and (4) to be
valid again, it is natural to look for inequalities satisfied by Ft, F

1
t , F

2
t and F3

t . So let us compute
formally (a justification would require regularity assumptions on f) these derivatives: using the
relation rK,Rs “ R, we get that for all t ě 0,

F 1
t “ 2 xKft, fty ,

F 2
t “ 4

@
K2ft, ft

D
´ 4 xft, Rfty ,

F3
t “ 8

@
K3ft, ft

D
´ 24 xKft, Rfty ´ 12 xft, Rfty ` 4 xrR,R˚sft, fty .

where ft is a short hand for Ptrf s and where x¨, ¨y stands for the scalar product in L
2pµq. In view

of rR,R˚s, which brings the missing coercivity through J , hope is rising.
We first tried to find three constants A,B,C ą 0 such that for regular functions f and for all

t ě 0,

AFt `BF 1
t ` CF 2

t ` F3
t ď 0.

It is sufficient to prove such a differential inequality with t “ 0. Interpreting AF0`BF 1
0`CF 2

0 `F3
0

as a quadratic form in f , we would like to find A,B,C ą 0 so that it is non-positive definite. In
fact, we were able to attain this objective in the case U ” 0, then up to appropriate changes of
the constants A,B,C ą 0 (where would enter the supremum norms of U 1 and U2), it could be
extended to all smooth potential U . That is where we are brought back to the first toy model (with
a “ 1). Unfortunately, in this simple case, we can show that there is no choice of the constants
A,B,C ą 0 so that the quadratic form AF0`BF 1

0`CF 2
0 `F3

0 is non-positive definite. Despite the
fact that for any p P N, it is possible to find “constants” Ap, Bp, Cp ą 0 such that the restriction to
Vp (and to Wp, with the notations of Section 2) of the quadratic form ApF0 `BpF

1
0 `CpF

2
0 ` F3

0
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is non-positive definite (an analogous statement is valid in the Gaussian case). Thus an idea is
missing to push further this alternative approach.

Furthermore, these considerations are maybe not without links with the traditional approach,
where the L

2 norm is modified by the addition of terms, since among them, xf,Rfy “ xBxf, Byfy
plays a major role (see for instance Villani [21]).
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