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Abstract We begin by studying the eigenvectors associated to irreducible finite birth
and death processes, showing that the i th nontrivial eigenvector ϕi admits a succession
of i decreasing or increasing stages, each of them crossing zero. Imbedding naturally
the finite state space into a continuous segment, one can unequivocally define the zeros
of ϕi , which are interlaced with those of ϕi+1. These kind of results are deduced from
a general investigation of minimax multi-sets Dirichlet eigenproblems, which leads to
a direct construction of the eigenvectors associated to birth and death processes. This
approach can be generically extended to eigenvectors of Markov processes living on
trees. This enables to reinterpret the eigenvalues and the eigenvectors in terms of the
previous Dirichlet eigenproblems and a more general conjecture is presented about
related higher order Cheeger inequalities. Finally, we carefully study the geometric
structure of the eigenspace associated to the spectral gap on trees.
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562 L. Miclo

1 Introduction and results

The official purpose of this paper is to give a description of the shape of the eigenvectors
associated to finite birth and death processes. Indeed, this subject is quite classical,
because generators of finite irreducible birth and death processes are totally positive
matrices (up to the addition of a factor of the identity, this follows from results in
a paper of Karlin and McGregor [15], for instance) for which a whole theory has
been developed (see the book of Karlin [16] for an extensive account or the article of
Fomin and Zelevinsky [11] for a more friendly introduction, and the references given
therein), starting in the 1930s with the works of Schoenberg [19] and Gantmacher and
Krein [14]. In the latter article, the authors showed in particular that the eigenvectors
associated to the kth eigenvalue have exactly k − 1 sign changes, for 1 ≤ k ≤ N ,
with N the size of the matrix. The corresponding question in a continuous framework
is even better known, since it is related to the famous Courant theorem for Sturm-
Liouville operators, see for instance the Sect. VI.6 of [8]. Nevertheless, we would like
to give a rather simple and probability-oriented (even if the techniques will remain
rather analytical) proof of the results presented below. We did not find in the literature
those concerning monotonicity properties, so in fact we do not know if they hold more
generally for totally positive matrices. Furthermore, some of the presented arguments
and behaviors can be extended to Markov processes on trees, a situation which is
outside the scope of total positivity (except for the path case), but here we will only
begin such an investigation.

Maybe more important is the unofficial message we would like to convey about
some quantities�k we introduce in next section for general reversible (finite) Markov
processes, since we believe they could bring insight to more difficult questions, spe-
cially those concerning higher order Cheeger inequalities. Another remote motivation
for the consideration of the�k , is that they may give some clues about a probabilistic
interpretation of the eigenvalues in the setting of birth and death processes, concern-
ing their relations with strong stationary times (see Theorem 4.20 of Diaconis and Fill
[10]). But coming back to the object of this paper, we will see that the results presented
below are consequences of the first properties one can deduce for the �k .

So we consider an irreducible birth and death process on the state space V �
{0, . . . , N }. The simplest way to specify it is through its jump rates bx > 0 from x
to x + 1, for 0 ≤ x < N , and dx > 0, from x to x − 1, for 0 < x ≤ N (it is also
convenient to define bN = d0 = 0). The corresponding generator L , acting on F(V ),
the space of real-valued functions defined on V , is given by

∀ f ∈ F(V ), ∀ x ∈ V, L[ f ](x) � bx ( f (x + 1)− f (x))+ dx ( f (x − 1)− f (x))

(1)

It is well-known that L admits a unique invariant probability π . It is indeed reversible,
meaning that L is self-adjoint in L

2(π). So let λ0 ≤ λ1 ≤ · · · ≤ λN the eigenvalues of
−L , in increasing order. It is easy to check that λ0 = 0, with eigenspace Vect(�), and
that all the eigenvalues have multiplicity one, so we have 0 = λ0 < λ1 < · · · < λN . Let
ϕ0, ϕ1, . . . , ϕN be some corresponding (nonnull) eigenvectors. If for some 0 ≤ k ≤ N ,
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On eigenfunctions of Markov processes on trees 563

we have ϕk(0) = 0, then using the relation L[ϕk](x) = λkϕk(x) for x going from
the left of V to the right, we would get that ϕk ≡ 0 (one would have noticed that this
argument also shows the above multiplicity one assertion). Thus we can normalize the
ϕk , for 0 ≤ k ≤ N , with the unusual convention that ϕk(0) = 1.

Let us recall that a nodal domain of a function ϕ ∈ F(V ) is a connected component
(with respect to the usual graph structure of V ) of the set {x ∈ V : ϕ(x) > 0} or of
the set {x ∈ V : ϕ(x) < 0}. One of the results from the paper of Gantmacher and
Krein [14] we will recover, is that for any fixed 0 ≤ k ≤ N , ϕk admits exactly k + 1
nodal domains. Let us denote them by Ak,0, Ak,1, . . . , Ak,k , ordered by their smallest
elements. As can be guessed, ϕk is positive or negative on Ak,i , according to the parity
of i . But one can be more precise: write Ak,i � �a−

k,i , a+
k,i �. Then for i between 0 and

k − 1, we have that a−
k,i+1 − a+

k,i is either equal to 1 or 2, i.e. there is at most one
point between Ak,i and Ak,i+1, where ϕk vanishes. In case such a point exists, let us
denote it by ck,i . If it does not exist, we introduce a new virtual point ck,i belonging
to the continuous interval [0, N ], but not to V , in the following way: we extend ϕk

into a function ϕ̄k on [0, N ] so that it is affine on any of the intervals [l, l + 1], for
0 ≤ l < N , and we take ck,i the unique point in (a+

k,i , a−
k,i+1)where ϕ̄k vanishes. Then

we will prove the following interlacing property for the finite sequences (ck,i )0≤i<k :

∀ 0 < k < N , ∀ 0 ≤ i < k, ck+1,i < ck,i < ck+1,i+1

Finally, we describe some monotonicity properties of the eigenvectors ϕk . For 0 <
k ≤ N and 0 < i < k, one can introduce in a unique way two successive or equal
point(s) e−

k,i , e+
k,i in Ak,i , so that, if i is odd (respectively even) ϕk is decreasing

(resp. increasing) on �e+
k,i−1, e−

k,i �, increasing (resp. decreasing) on �e+
k,i , e−

k,i+1� and

ϕk(e
−
k,i ) = ϕk(e

+
k,i ). For the left-hand and right-hand domains, we have that ϕk is

decreasing on �0, e−
k,1� and increasing on �e+

k,k−1, N� if k is even and decreasing
otherwise (for k = 0, this does not hold, since remember that ϕ0 = �).

Generically, the above behaviors can be simplified, since we have ck,i �∈ V and
e−

k,i = e+
k,i , for 0 < i < k ≤ N . To give a rigorous result, these statements hold almost

surely (a.s.) if the birth and death rates bx , for 0 ≤ x < N , and dx , for 0 < x ≤ N
are sampled independently according to laws absolutely continuous with respect to
the restriction of the Lebesgue measure on (0,+∞). Nevertheless, one should keep
in mind the prototype of the simple random walk on V (for its usual nearest neighbor
graph structure with loops at the left and right end points) for these behaviors, where
for 0 ≤ k ≤ N , the above eigenvectors ϕk are given by the restrictions of the functions
cos(πk · /N ) to V (they correspond to the eigenvalues λk = 1 − cos(πk/N )).

These results can be extended to one-dimensional continuous frameworks, the
proofs even simplify if the setting is sufficiently regular, for instance for elliptic
reflected diffusions on compact intervals, with smooth coefficients. But one can
expect a general formulation via Dirichlet forms which includes all cases (discrete
or continuous irregular situations), see [18] where this was done for the spectral gap,
but we will not enter into the associated technicalities here. In discrete case or for
regular diffusions, the monotonicity of the eigenvectors associated to the spectral gap
was also obtained by Chen and Wang [5] and Chen [6,7].
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564 L. Miclo

The article will be organized according to the following plan. In the next section
we will develop a Dirichlet eigenproblem point of view for general finite irreducible
generators and show that it is convenient to extend the state space into a continuous
graph, in the spirit of the geometric realizations considered by Friedman [12] for simple
random walks. We will take advantage of this exposition to present an interesting
conjecture about higher order Cheeger inequalities, which later in the paper will be
proven to be true for generators whose underlying graph is a tree. Coming back to
birth and death processes in Sect. 3, these considerations will enable us to construct
the eigenvectors directly. The underlying principle can be translated into a numerical
algorithm, but we will not study here its efficiency. The behaviors mentioned in this
introduction will be deduced from this construction and in particular we will recover the
nodal theorem for birth and death processes. Section 4 will deal with the a.s. assertions
and we will also see that the previous constructions can be generically extended to
processes whose associated graph is a tree. In last section we will investigate the shape
of the eigenvectors corresponding to the spectral gap on trees, exhibiting a center point
and certain monotonicity features.

2 Dirichlet eigenproblems

Here we will work in the general setting of finite irreducible and reversible Markov
processes. We introduce for them some quantities which are believed to be close to the
eigenvalues. They combine a spectral feature, since they are related to first Dirichlet
eigenvalues associated to subdomains, with a kind of multi-isoperimetry, where sets
play an important role. In the particular cases when the underlying graph is a tree,
the quantities introduced coincide exactly with the eigenvalues, but this is not true in
general.

Still with the state space V = {0, 1, . . . , N }, we are given a generator L =
(L(x, y))x,y∈V assumed to be irreducible and reversible with respect to some prob-
ability π , which is then positive on V . We endow the latter set an unoriented graph
structure, by saying that for x, y ∈ V , {x, y} is an edge if and only if L(x, y) > 0
(which is equivalent to L(y, x) > 0 by reversibility, also note there are no loops). We
will denote by E the collection of these edges. For our purpose, it is better to see this
graph (V, E) as a continuous space V̄ , where each edge {x, y} ∈ E is replaced by
an edge-segment, written [x, y], of length 1/(π(x)L(x, y)). Of course the boundary
points of these edge-segments corresponding to a given vertex x ∈ V are all identified
with a unique point still designated by x , so V is naturally embedded into V̄ . Some-
times we will refer to the elements of V̄ \V as virtual points. On each edge-segment
[x, y] we use classical calculus with respect to the length parameter, in particular we
consider the natural Lebesgue measure λ[x,y] and the whole space V̄ is endowed with
the measure λ �

∑
{x,y}∈E λ[x,y]. The formula π = ∑

x∈V π(x)δx also enables us to

extend π to V̄ . Such a continuous setting was introduced by Friedman [12] for simple
random walks (where L(x, y) = 1 for any {x, y} ∈ E).

Coming back to V , let us recall that the Dirichlet form E associated to π and L is
given by
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∀ f ∈ F(V ), E( f ) � −π( f L[ f ])
= 1

2

∑

x,y∈V

π(x)L(x, y)( f (y)− f (x))2

To extend this notion to V̄ , we denote by F(V̄ ) the space of absolutely continuous
functions on V̄ (i.e. that are absolutely continuous on all edge-segments) and for any
f ∈ F , F̄( f ) will designate the subspace of functions F ∈ F(V̄ ) which coincide
with f on V . Then we define a Dirichlet form Ē on F(V̄ ) by taking

∀ F ∈ F(V̄ ), Ē(F) �
∫

(F ′)2 dλ ∈ R̄+

where F ′ stands for the weak derivative of F . Rigorously speaking, the Dirichlet form
should be the restriction of Ē to D(Ē) � {F ∈ F(V̄ ) : Ē(F) < +∞} and note that it
is not naturally defined on the space L

2(π), so the classical theory of Dirichlet forms
(cf. for instance the book of Fukushima et al. [13]) cannot be applied to associate to
(π, Ē) a regular Markov process (on this subject, see also the end of Remark 1 below).
Nevertheless, the link with the previous discrete Dirichlet form is that

∀ f ∈ F , E( f ) = min
F∈F̄( f )

Ē(F) (2)

as can be easily checked, the minimizing F ∈ F( f ) is the affine extension of f on
each of the edge-segments of V̄ .

We now introduce the first Dirichlet eigenvalue associated to a subdomain, first
in V , so we can recall its probabilistic interpretation. Let A ⊂ V , the corresponding
first Dirichlet eigenvalue is defined as the quantity

λ0(A) � inf
f ∈F0(A)\{0}

E( f )

π( f 2)

where F0(A) is the subspace of F(V ) consisting of functions vanishing outside A
(the usual convention inf ∅ = +∞ is assumed to enforced in the whole paper). In
particular, we have λ0(V ) = λ0 = 0. To see its meaning from a probabilistic point
of view, let (X (x)(t))t≥0 be a jump process on V , of generator L and starting from
x ∈ V . The first exit time from A is defined by

τ
(x)
A � inf{t ≥ 0 : X (x)(t) �∈ A} ∈ R̄+ (3)

and it is well-known (cf. for instance the book manuscript of Aldous and Fill [1],
Chap. 3) that

λ0(A) = − sup
x∈A

lim
t→+∞

1

t
ln

(
P

[
τ
(x)
A > t

])
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566 L. Miclo

If A is assumed to be connected (with respect to the graph (V, E)), then the r.h.s.
limit does not depend on the choice of x ∈ A and 1/λ0(A) is a measurement of the
difficulty to get out of A for Markov processes of generator L .

In the same way, replacing E by Ē and considering F̄0(A), the subspace consisting
of functions from F(V̄ ) vanishing outside A, we can define λ̄0(A), the first Dirichlet
eigenvalue of a subset A ⊂ V̄ . But we will only be interested in subsets A which are
open, connected and whose intersection with V is nonempty. Call A0 the collection
of all such subsets.

Remark 1 It is still possible to give an easy probabilistic interpretation of λ̄0(A) for
A ∈ A0, but one has to resort to instantaneous points (the considerations below are
related to the framework of graph with boundary in the terminology of Friedman [12]).

So let A ∈ A0 be given and denote by ∂A its topological boundary. We define a
new generator L̃ A on Ã � (A ∩ V )  ∂A (we have (A ∩ V ) ∩ ∂A = ∅, because A is
assumed to be open) by first taking

∀ x �= y ∈ Ã ∩ V, L̃ A(x, y) � L(x, y)

Next consider z ∈ Ã\V , then z ∈ ∂A and there exists an edge {x, y} ∈ E such that
z ∈ (x, y) (the interior of the edge-segment [x, y]) and let x be chosen such that
[x, z) ⊂ A. We define L̃ A(x, z) � 1/(π(x)λ([x, z])). In the unusual situation where
A ∩ [x, y] = [x, y]\{z}, one has also to define L̃ A(y, z) � 1/(π(y)λ([y, z])), but
apart from that case, we take L̃ A(v, z) � 0 for any other v ∈ Ã ∩ V . The values
of L̃ A(z, v) for z ∈ Ã\V and v ∈ Ã are not important for our purpose, because we
need to consider a Markov process (X̃ (x)A (t))t≥0 on Ã, associated to generator L̃ A and
starting from x ∈ A ∩ V , only up to the exit time from V ∩ A,

τ̃
(x)
A � inf{t ≥ 0 : X̃ (x)A (t) �∈ A ∩ V } ∈ R̄+

Then, taking into account (2) and (3) applied to the probability π̃A, which is the
restriction of π to A ∩ V divided by π(V ∩ A), and to the Dirichlet form ẼA given by

∀ f ∈ F( Ã), ẼA( f ) �
1

2

∑

x,y∈A∩V

π̃A(x)L(x, y)( f (y)− f (x))2

+
∑

x∈A∩V,z∈∂A

π̃A(x)L̃ A(x, z)( f (z)− f (x))2

it appears that for any x ∈ A ∩ V ,

λ̄0(A) = − lim
t→+∞

1

t
ln

(
P

[
τ̃
(x)
A > t

])
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In fact, if one is interested in extending the generator L̃ A to the state space V  ( Ã\V ),
one should take for any z ∈ Ã\V , say z ∈ (x, y) with {x, y} ∈ E ,

∀ v ∈ V ∪ ( Ã\{z}), L̃ A(z, v) �
{+∞, if v = x or v = y

0, otherwise

This means that z is an instantaneous point for a Markov process (X̃ A(t))t≥0 “associ-
ated” to this extended L̃ A: once it reaches z, it immediately jumps out of it, either to x or
y. The probability of going to x (respectively y) should be λ−1([x, z])/(λ−1([x, z])+
λ−1([y, z])) (resp. λ−1([y, z])/(λ−1([x, z])+ λ−1([y, z]))). Thus a jump from x to z
should be interpreted as an attempt to jump from x to y, which is accepted with
probability λ−1([z, y])/(λ−1([x, z]) + λ−1([y, z])). Of course such a process can
be constructed directly, but it cannot be characterized in the usual way through a
generator matrix and its trajectories are not (a.s.) right continuous because of the
instantaneous jumps. In some sense it is also reversible with respect to π , even if we
have π( Ã\V ) = 0 (see also the above definition of the Dirichlet form ẼA). Our initial
process (X (t))t≥0 can be recovered from (X̃ A(t))t≥0 by erasing the instantaneous
positions at times t where X̃ A(t) �∈ V and replacing them by the corresponding right
limits. This construction can be done on any state space included in V̄ which is a finite
extension of V and which contains at most one point in each (x, y), for {x, y} ∈ E .
If we add more points on such intervals, it is less obvious how to describe the transi-
tion between the (space-successive) instantaneous points. It seems the latter should be
replaced by instantaneous excursions, but then one is led to get out of the state space
V̄ . If it was possible to find a limit procedure through finer and finer discretizations
of V̄ containing V , one can imagine that the resulting (quite irregular) object would
be a Markov process associated to (π, Ē). But this would not be the Brownian motion
on V̄ , corresponding to (λ/λ(V̄ ), Ē).

We are now going to consider pseudo-partitions of V̄ made of elements from A0. So
fix 0 ≤ k ≤ N and denote by Ak the set of disjoint (k + 1)-tuples A � (A0, . . . , Ak)

from A0. For such an element A ∈ Ak , we define

�(A) � max
0≤i≤k

λ̄0(Ai )

and

�k � inf
A∈Ak

�(A)

which we will concentrate on here. Of course for k = 0, we have �0 = λ̄0(V̄ ) = 0.
Also remark that since λ̄0(∅) = +∞, the above definition of �k would not have
been modified if we had removed the requirement that the elements of A0 should
have nonempty intersection with V . This shows that the finite sequence (�k)0≤k≤N

is nondecreasing.
To start an investigation of these quantities, we check that all the infima entering into

their definitions are in fact attained. Next two lemmas are classical (see for instance
Friedman [12]), we give them for the sake of completeness.
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568 L. Miclo

Lemma 2 For any A ∈ A0, there exists a unique function FA ∈ F̄0(A), satisfying
Ē(FA)/π(F2

A) = λ̄0(A) and normalized by max FA = 1.
The function is positive on A and satisfies on A ∩ V (but not on Ã),

∀ x ∈ A ∩ V, L̃ A[ f Ã](x) = −λ̄0(A) f Ã(x)

where Ã and L̃ A are the set and the generator defined in Remark 1 and where f Ã is
the restriction to Ã of FA.

Proof By definition of Ē , in the infimum defining λ̄0(A) it is sufficient to consider
functions from F̄0(A) which are affine on any segment [x, y] with x �= y ∈ Ã and
which is included in some edge-segment. Since such functions vanish outside A and in
particular on ∂A, they are parametrized by their values on the finite set A ∩ V . We can
also restrict our attention to nonnegative functions, because for any F ∈ F(V̄ ), we
have Ē(|F |) ≤ Ē(F) (and by irreducibility, this inequality is strict if F has both positive
and negative values). and of course π(|F |2) = π(F2). Finally by homogeneity, we
can enforce the normalization asking for the functions to have their maximum equal
to 1. Thus we are led to the minimization of a continuous functional over the compact
set { f ∈ F(A ∩ V ) : 0 ≤ f ≤ 1 and maxA∩V f = 1} and the first assertion follows,
except for the uniqueness statement. Next let FA ∈ F̄0(A) be a nonnegative minimizer
and denote by f Ã its restriction to Ã. Of course f Ã has to vanish on ∂A, but applying
an usual variational argument to the value of f Ã(x) for given x ∈ A ∩ V , we get the
relation mentioned in the lemma. It can be rewritten on A ∩ V as

L̂ A[ f A∩V ] = −λ̄0(A) f A∩V

where f A∩V is the restriction of FA to A ∩ V and where the operator L̂ A is defined
on F(A ∩ V ) by

∀ f ∈ F(A ∩ V ), ∀ x ∈ A ∩ V,

L̂ A[ f ](x) =
∑

y∈A∩V

L(x, y)( f (y)− f (x))− f (x)
∑

y∈∂A

L̃ A(x, y)

The matrix associated to L̂ A is irreducible and all its off-diagonal entries are non-
negative, so Perron–Frobenius theorem can be applied to see that it admits a largest
eigenvalue, which is of multiplicity one and whose eigenspace is generated by a posi-

tive function. Even more precisely, if an eigenfunction of L̂ A is nonnegative, then it is
indeed positive and associated to the largest eigenvalue. As a consequence, −λ̄0(A)
is the largest eigenvalue of L̂ A and its eigenspace is generated by f A∩V and this ends
the proof of the above lemma. �

As a consequence of the above caracterization of minimizing functions, we get a
simple but very useful monotonicity property for λ̄0 on A0.

Lemma 3 For any A, B ∈ A0, we have

A � B �⇒ λ̄0(A) > λ̄0(B)
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Proof The inequality λ̄0(A) ≥ λ̄0(B) comes from F̄0(B) ⊃ F̄0(A) and it is strict
because of Lemma 2: FA cannot be a minimizer for λ̄0(B) because it is not positive
on B (notice that the openness and connectedness of the elements of A0 is crucial for
the strict inequality). �

Next we consider the second minimum previously introduced.

Lemma 4 For 0 ≤ k ≤ N, there exists A(k) � (A(k)0 , . . . , A(k)k ) ∈ Ak such that
�k = �(A(k)).

Proof For fixed 0 ≤ k ≤ N , choose a minimizing sequence from Ak and call it
(A(n,k))n∈N:

lim
n→∞�(A

(n,k)) = �k

Without loss of generality, we can also assume that for any n ∈ N,�(A(n,k)) ≤ 1+�k .
For n ∈ N, denote A(n,k) � (A(n,k)0 , . . . , A(n,k)k ) and for 0 ≤ l ≤ k, Fn,l � F

A(n,k)l
.

These functions satisfy

λ((F ′
n,l)

2) = Ē(Fn,l)

≤ �
(

A(n,k)
)
π

(
(Fn,l)

2
)

≤ 1 +�k

and thus the collection {F ′
n,l : n ∈ N, 0 ≤ l ≤ k} is weakly relatively compact

in L
2(λ). If we fix some point x0 ∈ V̄ , the set {Fn,l(x0) : n ∈ N, 0 ≤ k ≤ n} is

also relatively compact in R. From these observations it follows that we can find a
subsequence (n p)p∈N and k + 1 functions (F∞,l)0≤l≤k ∈ F(V̄ )\{0} such that we are
insured of the weak convergences

∀ 0 ≤ l ≤ k, lim
p→∞ F ′

n p,l = F ′∞,l

and of the uniform convergences

∀ 0 ≤ l ≤ k, lim
p→∞ Fn p,l = F∞,l

As a consequence, we get that

∀ 0 ≤ l ≤ k,

{
lim p→∞ Ē(Fn p,l) ≥ Ē(F∞,l)

lim p→∞ π(F2
n p,l
) = π(F2∞,l)

which implies in fact that

max
0≤l≤k

Ē(F∞,l)

π(F2∞,l)
≤ �k
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For any 0 ≤ l ≤ k, let A(k)l be a connected component of {F∞,l > 0} where the
quotient Ē(�

A(k)l
F∞,l)/π(�A(k)l

F2∞,l) is the smallest among all possible choices of

such a component. Then we have that �
A(k)l

F∞,l ∈ F(V̄ ) and that

λ̄0(A
(k)
l ) ≤

Ē(�
A(k)l

F∞,l)

π(�
A(k)l

F2∞,l)

≤ Ē(F∞,l)

π(F2∞,l)

≤ �k

We note that these sets A(k)l , 0 ≤ l ≤ k, are disjoint, because for any 0 ≤ l �= l ′ ≤ k,
F∞,l F∞,l ′ = limn→∞ Fn,l Fn,l ′ = 0, connected and open. Thus considering A(k) �
(A(k)0 , . . . , A(k)k ) ∈ Ak , it appears that

�(A(k)) ≤ �k

and then equality necessarily holds. �
One can go further in this direction, but not much:

Remark 5 Let us recall the definition of Hausdorff topology. We denote by d the natural
distance on V̄ and if A is a subset of V̄ , then for t ≥ 0, At � {x ∈ V̄ : d(x, A) ≤ t}
designates the t-enlargement of A. Next we consider the pseudo-metric D which
associates to nonempty subsets A, B ⊂ V̄ , the nonnegative number

D(A, B) � inf{t ≥ 0 : A ⊂ Bt , B ⊂ At }

Even restricted to A0, D is not yet a “true” metric because it does not separate different
elements (except if the underlying graph is a tree): assume that A ∈ A0 contains a
cycle, namely all the edge-segments [x0, x1], [x1, x2], …, [x p, x0], where p ≥ 2 and
the xi , 0 ≤ i ≤ 2 are distinct elements of V . Then for any z ∈ (x0, x1), A\{z} still
belongs to A0 and D(A, A\{z}) = 0. Nevertheless, we can circumvent this drawback,
by replacing A0 by Ã0, the set of elements of A0 which are equal to the interior of their
closure. This operation is harmless when trying to minimize λ̄0, because for A ∈ A0,
we have λ̄0( Ã) ≤ λ̄0(A), where Ã is the interior of the closure of A (the inequality is
even strict if Ã �= A, by Lemma 3). One can easily check that D is a distance on Ã0
and the corresponding topology is Hausdorff (except that traditionally one considers
collections of compact subsets). The arguments of the proof of Lemma 4 can then be
adapted to show that λ̄0 is lower semi-continuous on Ã0. But this does not really help
to deduce at once Lemma 4 from a more abstract principle, because it can be shown
that the sublevel sets of λ̄0 (i.e. the sets of the form {A ∈ Ã0 : λ̄0(A) ≤ t} for some
t ≥ 0) are not compact as soon as the underlying graph is not a path (this is related to
the fact we had to consider connected components at the end of the proof of Lemma 4,
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indeed one would have to relax the requirement of connectedness for the elements of
Ã0). It is more immediate to see that Ã0 is not compact, since λ̄0 is not bounded there
(consider elements of Ã0 converging to a point of V ). We also point out that λ̄0 is not
continuous at any A ∈ Ã0 which contains a cycle, as it can be observed by removing
smaller and smaller closed intervals centered at a fixed virtual point of the cycle.

Despite the previous remark, it is possible to get some partial continuity results
on λ̄0. Let A ∈ A0 be given, a point on its boundary is said to be good (and bad
otherwise) if it also belongs to the boundary of the complementary set of A (in
particular boundary points of elements of Ã0 are all good). If x ∈ ∂A is good, we
define for t ∈ R,

Ax,t �

⎧
⎨

⎩

A ∪ B(x, t), if t > 0
A, if t = 0
A\B̄(x, |t |), if t < 0

where B(x, s) (respectively B̄(x, s)) is the open (resp. closed) ball of radius s > 0
centered at x . Then we have

Lemma 6 For good boundary points x of A ∈ A0, the mapping

R � t �→ λ̄0(Ax,t )

is continuous at 0.

The following argument shows indeed that the above mapping is continuous in a
neighborhood of 0.

Proof We consider only the case where x ∈ V and where t goes to zero from above,
the other situations are less embarrassing and are left to the reader. Coming back
to the notations of Lemma 2, we define W (t) � Ãt,x\ Ã. Let r be the number of
edge-segments [x, y] such that Ac ∩ [x, y] is a neighborhood of x in [x, y]. Then for
t > 0 small enough, W (t) consists of exactly r points escaping from x in the direction
of these particular edge-segments. To simplify notation, we write λ̄0(t) � λ̄0(Ax,t ),
L̃ t � L̃ Ax,t and ft � f Ãx,t

. Thus we have

∑

y∈W (t)

L̃ t (x, y) ft (x) = λ̄0(t) ft (x)+
∑

y∈ Ã

L̃ A(x, y)( ft (y)− ft (x))

and this shows that the l.h.s. is bounded for t in a right neighborhood of 0 (recall that
ft takes its values in [0, 1] and that λ̄0(t) ≤ λ̄0(A) for t ≥ 0). Since we have

lim
t→0+

∑

y∈W (t)

L̃ t (x, y) = +∞

it follows that

lim
t→0+

ft (x) = 0
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This limit implies that if (tn)n∈N is a decreasing sequence converging to zero such that
λ̄0(tn) and the restriction of ftn to Ã converge, say respectively to l and f , then we
must have L̃ A[ f ] = −l f on A ∩ V and f must vanish on ∂A. By a new invocation of
Perron–Frobenius theorem, we get that l = λ̄0(A) and f = f Ã, and through a usual
compactness argument, that

lim
t→0+

λ̄0(t) = λ̄0(A)

�
We can now give a first result about a minimizing pseudo-partition as in Lemma 4,

which will be important for the construction of eigenvectors of birth and death processes.
It also serves as a justification of the introduction of the continuous space V̄ .

Proposition 7 For 0 ≤ k ≤ N, let A(k) � (A(k)0 , . . . , A(k)k ) ∈ Ak be such that
�k = �(A(k)). Assume that the intersection of the boundaries of any three distinct
domains of this pseudo-partition is empty. Then we have

∀ 0 ≤ l ≤ k, λ̄0(A
(k)
l ) = �k

For instance this is always true if k = 1. Another way to insure the above intersection
property is to check that for 0 ≤ l ≤ k, we have ∂A(k)l ∩ V3 = ∅, where V3 stands for
the set of vertices of the graph (V, E) whose degree is larger than or equal to 3. In
particular, this is satisfied when (V, E) is either a path or a cycle.

Proof So let A(k) satisfy the above hypotheses. We define I as the collection of indices
0 ≤ l ≤ k such that λ̄0(A

(k)
l ) = �(A(k)) and let us assume that I �= {0, 1, . . . , k}. If

I is reduced to a singleton {i}, then a contradiction follows easily: let x ∈ ∂A(k)i , two

cases are possible. Either x does not belong to any of the other boundaries ∂A(k)l , for

0 ≤ l �= i ≤ k, and we can extend a little A(k)i by moving x toward the exterior, if x is

good, or just add x to A(k)i if x is bad. As a result, �(A(k)) = λ̄0(A
(k)
i ) will decrease

(either continuously if x is good or by a jump downward if x is bad), in contradiction
with the fact that A(k) is a minimizer. If x was to belong to another boundary, say
to ∂A(k)j , with 0 ≤ j �= i ≤ k, then x is good and j is necessary unique by our

assumption. Thus we can still extend a little A(k)i by moving the boundary x toward
the exterior (maybe in several directions as in the proof of Lemma 6 if x was to belong
to V ), this will also reduce a little A(k)j , but since we started with λ̄0(A

(k)
i ) > λ̄0(A

(k)
j ),

by Lemma 6 the initial tendency will again be that�(A(k)) has to decrease. If I is not
a singleton, we can reduce it by changing a little A(k) in the following way (keeping it
as a minimizer). By irreducibility, there exists an index i ∈ I such that one of the good
boundary point x of ∂A(k)i does not belong to the boundaries ∂A(k)l , for l ∈ I\{i},
by our main assumption. Then as above, we can push outward a little x so that i
get out of I , without changing the relation �k = �(A(k)) and keeping satisfied our
assumption about three by three intersections. Repeating this operation, we end up
with I equal to a singleton and to a contradiction as before.

123



On eigenfunctions of Markov processes on trees 573

Thus we must have I = {0, 1, . . . , k}, which is the first announced result. The end of
the proposition is immediate. �

Let us emphatize that the condition on three by three empty intersections is not just
technical.

Example 8 Consider the following generator with N = 3

L =

⎛

⎜
⎜
⎝

−10 4 4 2
4 −4 0 0
4 0 −4 0
2 0 0 −2

⎞

⎟
⎟
⎠

The corresponding graph is a star, with 0 at the center, 1 and 2 are a distance 1 of
0 and 3 is at distance 2 of 0. Then for k = 2, we have �2 = 4 and a minimizing
pseudo-partition is given by ([1, 0), [2, 0), [3, 0)) but we have λ̄0([1, 0)) = 4 =
λ̄0([2, 0)) > λ̄0([3, 0)) = 2. Nevertheless we can find a minimizing pseudo-partition
whose elements have the same λ̄0, it suffices to consider ([1, 0), [2, 0), [3, x)) where
x is the middle of [3, 0]. This is a general fact, as it is stated below.

Let say that A = (A0, . . . , Ak) ∈ Ak is isospectral or well-balanced if we have
λ̄0(Al) = �(A) for any 0 ≤ l ≤ k.

Proposition 9 Let 0 ≤ k ≤ N be given, there always exists a minimizing A ∈ Ak for
� which is well-balanced.

Proof Since it will not be useful for us in this paper, we will only sketch the proof
of the existence of well-balanced pseudo-partitions. The idea is that given A ∈ A0,
we can find a decreasing family (At )0≤t<1 with A0 = A, such that the mapping
[0, 1) � t �→ λ̄0(At ) is continuous and such that limt→1− λ̄0(At ) = +∞. Indeed, we
choose x ∈ ∂A and y ∈ A ∩ V such that (x, y] is included into an edge-segment. We
begin by replacing the part [y, x) of A by [y, z) with z going from x to y. Using the
arguments of the proof of Lemma 6, this can be done continuously for λ̄0. If A ∩ V
was reduced to y, then λ̄0 goes to +∞ when z goes to y. Otherwise, when z attains y,
two situations are possible. Either the set B obtained by removing [y, x) from A is no
longer connected, then we replace it by the connected component with the smaller λ̄0,
this does not induce a jump for λ̄0, because if we decompose a set S into its connected
components, say the (Si )1≤i≤r , then we have λ̄0(S) = min1≤i≤r λ̄0(Si ). Otherwise,
if B is connected, we just keep it. In both cases, y becomes a boundary point of the
current set and we can iterate the previous procedure.

Next let a minimizing A = (A0, . . . , Ak) ∈ Ak for� be given. If 0 ≤ l ≤ k is such
that λ̄0(Al) < �(A), using the above property we can reduce Al until its λ̄0 increase
to �(A). Doing so for all such indices 0 ≤ l ≤ k, we end up with a well-balanced
pseudo-partition still minimizing �. �

There is another interesting kind of pseudo-partitions: for 0 ≤ k ≤ N , call A ∈ Ak

a quasi-partition if V̄ is covered by the closure of the union of the Al , for 0 ≤ l ≤ k.
Contrary to well-balanced pseudo-partitions, such a pseudo-partition may not exist,

123



574 L. Miclo

for instance consider Example 8 with k = 1. Up to a change of order, there is a unique
minimizer for�1, which is ([1, 0), [2, 0)) and if one try to extend one of its elements,
one has to diminish the other to keep satisfied the openness requirement. Nevertheless,
there is a simple criterion insuring that a pseudo-partition is a quasi-partition.

Proposition 10 For 0 ≤ k ≤ N, let A(k) � (A(k)0 , . . . , A(k)k ) ∈ Ak be such that

�k = �(A(k)) and verifying that for 0 ≤ l ≤ k, we have ∂A(k)l ∩ V3 = ∅. Then
A(k) is a quasi-partition. In particular when the graph (V, E) is a path or a cycle, a
minimizing pseudo-partition is always a well-balanced quasi-partition.

Proof By Proposition 7, we already know that A(k) is well-balanced. But if V̄ was
not covered by the closure of the union of the A(k)l , for 0 ≤ l ≤ k, then one could
extend a little one of them, without disturbing the others elements, because of our
assumption. By this procedure we would get a new minimizing partition (if k ≥ 1,
otherwise the result is trivial anyway), which is no longer well-balanced. But if the
extension is small enough, the assumption is also preserved and we get a contradiction
with Proposition 7. �

Another result we will need to obtain the shape of the eigenvectors associated to
birth and death processes is that for A ∈ A0, the “landscape” of FA is that of hills
without lake.

Proposition 11 Let A ∈ A0 and x ∈ A ∩ V be given and assume that N (x), the set
of neighbors of x in the graph (V, E), is included into the closure of A. Then we have

min
y∈N (x)

FA(y) ≤ FA(x)

and the inequality is strict if A �= V̄ .

Proof Let f A designate the restriction of FA to V . Then for x as above, the relation
given in Lemma 2 can be rewritten as

L[ f A](x) = −λ̄0(A) f A(x)

So if we had miny∈N (x) f A(y) > f A(x), the l.h.s. would be positive, while the r.h.s. is
nonpositive, a contradiction. Indeed, if A �= V̄ , we have λ̄0(A) > 0 (because Ē(FA)

cannot be null) and the r.h.s. is positive and thus it must exist some y ∈ N (x) satisfying
FA(y) < FA(x). �

To finish this section, even it will not be useful for this paper, let us mention a
general comparison between the eigenvalues and the quantities introduced above.

Proposition 12 For any 0 ≤ k ≤ N, we have

λk ≤ �k
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Proof It is based on the variational principle asserting that

λk = min
H : dim(H)=k+1

max
f ∈H\{0}

E( f )

π( f 2)

where the minimum is over all subspace of F(V ) of dimension k + 1. So let A(k) �
(A(k)0 , . . . , A(k)k ) ∈ Ak be as in Lemma 4, consider for 0 ≤ l ≤ k, Fk,l � F

A(k)l
and

denote by fk,l its restriction to V . Next let H the subspace of F(V ) generated by the
functions fk,l , for 0 ≤ l ≤ k, which are clearly linearly independent. For any h ∈ H ,
there exist coefficients a0, . . . , ak ∈ R, such that h = ∑

0≤l≤k al fk,l , which is also
the restriction to V of the function F = ∑

0≤l≤k al Fk,l . Thus it appears that

E(h) ≤ Ē(F)
=

∑

0≤l≤k

a2
l E(Fk,l)

On the other hand, we have

π(h2) =
∑

0≤l≤k

a2
l π( f 2

k,l)

=
∑

0≤l≤k

a2
l π(F

2
k,l)

It follows that

E(h)
π(h2)

≤ max
0≤l≤k

E(Fk,l)

π(F2
k,l)

= �k

and by consequence

λk ≤ max
f ∈H\{0}

E( f )

π( f 2)

≤ �k

�

Conversely, assume that for some 0 ≤ k ≤ N , there exists an eigenfunction ϕ
associated to λk which has k + 1 nodal domains. Let ϕ̄ be the extension of ϕ on
V̄ which is affine on any edge-segment. Let A be a nodal domain of ϕ̄, resorting to
Perron–Frobenius theorem as in the proof of Lemma 2, one shows that the restriction
of ϕ̄ to A (extended by zero outside) is proportional to FA, so that λ̄0(A) = λk (see
also Sect. 2 of Friedman [12]). Thus by considering the pseudo-partition made of the
nodal domains of ϕ̄, we get that �k ≤ λk and thus �k = λk . In particular, we always
have �1 = λ1. In next sections, we will directly prove that the equality �k = λk

holds for any 0 ≤ k ≤ N , if the graph (V, E) is a tree. Alternatively, one can use a
result of Bıyıkoğlu [2] saying that generically, the previous nodal property is satisfied
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by a generator whose associated graph is a tree (if it is a path, a stronger property
is true, since all eigenfunctions associated to λk have k + 1 nodal domains by the
result of Gantmacher and Krein [14] recalled at the beginning of the introduction).
Nevertheless, the equality �k = λk cannot be general, for instance it is not verified
with k = 2 for the generator corresponding to the simple random walk on the cycle
Z/(N + 1)Z, as soon as N ≥ 1. But we believe the following is true.

Conjecture 13 There exists an universal constant χ > 1 such that for any finite
irreducible and reversible generator on V , we have

∀ 0 ≤ k ≤ N , �k ≤ χλk

A maybe more interesting conjecture is to allow χ to depend on k ∈ N, because in this
kind of questions the partial sums (λ0 + · · · + λk)0≤k≤N are in general “more robust”
than the eigenvalues themselves. But one reason which induced us to believe in the
stronger version of Conjecture 13, is that it can be shown that it is satisfied by generator
of the form L = π − Id (namely, for any x, y ∈ V , L(x, y) = π(y) − δx=y), with
χ = 2. Our concern about this question comes from higher order Cheeger inequalities,
as we explain it now.

If A ⊂ V is nonempty, we associate to it the quantity

ι(A) �
π(�Ac L[�A])

π(A)

and we introduce the kth-order isoperimetric constant as

Ik � max
(A0,...,Ak )∈Ak (V )

min
0≤l≤k

ι(Al)

(where Ak(V ) is defined as Ak , but on V instead of V̄ ). Then Conjecture 13 would
imply that there exists an universal constant χ ′ > 0 such that

∀ 0 ≤ k ≤ N , χ ′ I 2
k

|L| ≤ λk ≤ 2Ik (4)

where |L| � maxx∈V |L(x, x)|. The case k = 1 is well-known and corresponds to the
traditional discrete Cheeger inequality (with χ ′ = 1/2, see Lawler and Sokal [17]).
It was first obtained on compact Riemannian manifolds by Cheeger [4]. But it would
not be very difficult, through appropriate approximations, to extend (4) back to this
continuous setting.

3 Construction and shape of eigenvectors

Here we return to the situation of birth and death processes. Using results of previ-
ous section, we provide a direct construction of the corresponding eigenvectors. The
description given in the introduction will follow.
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So let L be a generator given on V as in (1). We fix 1 ≤ k ≤ N and we consider
a corresponding well-balanced quasi-partition A(k) � (A(k)0 , . . . , A(k)k ) ∈ Ak which
is minimizing for �, namely �(A(k)) = �k . Without loss of generality, we assume
that this quasi-partition is naturally ordered: for 0 ≤ i < j ≤ N , all elements of A(k)i

are smaller than all elements of A(k)j . For all 0 ≤ l ≤ k ≤ N , let fk,l designate the

restriction of the minimizer F
A(k)l

to Ak,l , which will denote A(k)l ∩ V . Next, to any

k-tuple (rk,1, . . . , rk,k) ∈ R
k , we associate the function ψk ∈ F(V ) defined by

∀ x ∈ V, ψk(x) �

⎧
⎨

⎩

fk,0(x), if x ∈ Ak,0
rk,l fk,l(x), if x ∈ Ak,l , for some 1 ≤ l ≤ k
0, otherwise

Then we have

Theorem 14 There exists a unique choice of (rk,1, . . . , rk,k) ∈ R
k such that L[ψk] =

−�kψk .

Proof Since A(k) is well-balanced, Lemma 2 shows that

∀ 0 ≤ l ≤ k, ∀ x ∈ Ak,l , L̃
A(k)l

[ψk](x) = −�kψk(x)

where ψk has been extended by zero at the virtual points of the boundaries of the
elements of the quasi partition (note that on boundary points belonging to V ,ψk already
vanishes by definition), and this is true independently of the choice of (rk,1, . . . , rk,k) ∈
R

k . In particular, if a point x ∈ V and its nearest neighbor(s) belong to Ak,l for some
0 ≤ l ≤ k, then we get L[ψk](x) = −�kψk(x). We will now see how to choose
successively rk,1, rk,2,… up to rk,k so that the latter relation is true on V .

Let Bk,1 � A(k)0  {ck,0}  A(k)1 , where ck,0 is the right-most boundary point of

A(k)0 . Since A(k) is a quasi-partition, this point is also the left-most boundary point

of A(k)1 and Bk,1 is an element of A0. We want to find rk,1 ∈ R such that L̃ Bk,1[ψk]
coincides with L̃

A(k)0
[ψk] on Ak,0 and with L̃

A(k)1
[ψk] on Ak,1 (in these expressions,

ψk is extended by zero on virtual boundary points, it there are some).
Let a+

k,0 be the largest point of Ak,0 and a−
k,1 be the smallest point of Ak,1. We first

consider the case where a−
k,1 = a+

k,0 + 1. The previous requirement on rk,1 ∈ R is just
asking that

L̃
A(k)0

[ψk](a+
k,0) = L̃ Bk,1[ψk](a+

k,0) (5)

L̃
A(k)1

[ψk](a−
k,1) = L̃ Bk,1[ψk](a−

k,1) (6)

Indeed, the first equation is asking for

L̃
A(k)0
(a+

k,0, ck,0)(0 − fk,0(a
+
k,0)) = L(a+

k,0, a−
k,1)(rk,1 fk,1(a

−
k,1)− fk,0(a

+
k,0)) (7)
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This gives

rk,1 = fk,0(a
+
k,0)

fk,1(a
−
k,1)

⎛

⎝1 −
L̃

A(k)0
(a+

k,0, ck,0)

L(a+
k,0, a−

k,1)

⎞

⎠

In a similar fashion, the second equation leads to

rk,1 = fk,0(a
+
k,0)

fk,1(a
−
k,1)

⎛

⎝
L(a−

k,1, a+
k,0)

L(a−
k,1, a+

k,0)− L̃
A(k)1
(a−

k,1, ck,0)

⎞

⎠

This is indeed the same solution as before, because

1

π(a+
k,0)L(a

+
k,0, a−

k,1)
= 1

π(a+
k,0)L̃ A(k)0

(a+
k,0, ck,0)

+ 1

π(a−
k,1)L̃ A(k)1

(a−
k,1, ck,0)

which comes from the fact that in V̄ , the length from a+
k,0 to a−

k,1 is the length

from a+
k,0 to ck,0 added to the length from ck,0 to a−

k,1. Then using that π(a−
k,1) =

π(a+
k,0)L(a

+
k,0, a−

k,1)/L(a−
k,1, a+

k,0), one gets the equality of the above expressions for
rk,1.

To have a better picture of what we have just done, let us isometrically embed V̄
into R+ by ι. Furthermore requiring that ι(0) = 0, we get in particular that

∀ 1 ≤ k ≤ N , ι(k) =
∑

0≤l<k

1

π(l)L(l, l + 1)

Then, multiplying (7) by π(a+
k,0), interpreting the inverse of the quantities π(a+

k,0)

L̃
A(k)0
(a+

k,0, ck,0) and π(a+
k,0)L(a

+
k,0, a−

k,1) as the distances
∣
∣
∣ι(a+

k,0)− ι(ck,0)

∣
∣
∣ and

∣
∣
∣ι(a+

k,0)− ι(a−
k,1)

∣
∣
∣ and resorting to Thales’ theorem, it appears that the above equations

are just asking for the three points

(ι(a+
k,0), fk,0(a

+
k,0)) (ι(ck,0), 0) (ι(a−

k,1), rk,1 fk,1(a
−
k,1)) (8)

to be on a same line in R
2 (in particular rk,1 has to be negative).

We now come to the situation where a−
k,1 = a+

k,0 + 2, which means that the point

ck,0 at the intersection of ∂A(k)0 and ∂A(k)1 belongs to V . Then the conditions (5) and
(6) are already satisfied, independently of rk,1, but what we want is that

L̃ Bk,1[ψk](ck,0) = 0

since ψk(ck,0) = 0. But again this amounts to asking for the three points (8) to be on
a same line, which leads to a unique choice of rk,1.
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To summarize, by the above adjustment of rk,1, the relation L[ψk] = −�kψk is
true on Bk,1 ∩ V , except on its right most point a+

k,1 (if the right-hand side boundary

of A(k)1 does not belong to V ). But, by considering the set Bk,l , for l ∈ �2, k�, which is

the interior of the union of the closures of the A(k)j , for j ∈ �0, l�, the above procedure
can be iterated to choose rk,2, rk,3,…up to rk,k , to extend the relation L[ψk] = −�kψk

on the whole state space V . For instance, with obvious notations, the choice of rk,2 is
such that the three points

(ι(a+
k,1), rk,1 fk,1(a

+
k,1)) (ι(ck,1), 0) (ι(a−

k,2), rk,2 fk,2(a
−
k,2))

are on a same line in R
2. �

To be convinced we get all the eigenvalues of −L in this way, it is sufficient to
check that all the �k , for 0 ≤ k ≤ N , are distinct:

Lemma 15 The finite sequence (�k)0≤k≤N is increasing.

Proof We have already seen in Sect. 2 that in general the finite sequence (�k)0≤k≤N

is nondecreasing. Assume now that there exists 0 ≤ k < N such that �k = �k+1

and let A(k) � (A(k)0 , . . . , A(k)k ) and A(k+1) � (A(k+1)
0 , . . . , A(k+1)

k+1 ) be correspond-

ing minimizing ordered quasi-partitions. Note that 0 belongs to A(k)0 , otherwise by

adding 0 to A(k)0 , we would get a minimizing partition which is not well-balanced, a

contradiction. This argument also implies that 0 ∈ A(k+1)
0 .

As in the proof of Theorem 14, we identify isometrically V̄ and [0, ι(N )] through ι.
Then Lemmas 3 and 6 enable to see that the mapping

(0, ι(N )) � t �→ λ̄0([0, t))

is continuously decreasing. Thus there is a unique 0 < c < ι(N ) such that λ̄0([0, c)) =
�k = �k+1, which means that A(k)0 = [0, c) = A(k+1)

0 . Next considering the mapping

(ι(c), ι(N )) � t �→ λ̄0((ι(c), t))

we deduce that A(k)1 = A(k+1)
1 and iteratively, we get that for any 0 ≤ l ≤ k, A(k)l =

A(k+1)
l . It would follow that A(k+1)

k+1 = ∅, but this is forbidden, so �k < �k+1. �
The same proof shows that for birth and death processes, the ordered pseudo-

partition A(k) ∈ Ak minimizing � is unique, for any 0 ≤ k ≤ N , since we have
already seen that it is necessarily a quasi-partition. So from now on, the meaning of
A(k), A(k)l and Ak,l will no longer be ambiguous and as in the introduction, we will
write Ak,l � �a−

k,l , a+
k,l�.

By Lemma 15, we must have

∀ 0 ≤ k ≤ N , �k = λk
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and even

∀ 0 ≤ k ≤ N , ψk = ϕk

because of our conventions of normalization and next result.

Lemma 16 For any 1 ≤ k ≤ N, fk,0 is decreasing on Ak,0, so fk,0(0) = maxAk,0

fk,0 = 1.

Proof If Ak,0 is reduced to a singleton, there is nothing to prove. Otherwise, by
Proposition 11 applied to x = 0, we have f (0) > f (1). Furthermore, this proposition
also shows that it cannot exist x − 1, x and x + 1, all three of them in Ak,0, such that
fk,0(x − 1) > fk,0(x) ≤ fk,0(x + 1). It is then easy to deduce that fk,0 has to be
decreasing on Ak,0. �

Similar arguments based on Proposition 11 show that fk,k is increasing on Ak,k

and that for 0 < l < k, there exist two successive or equal point(s) e−
k,l , e+

k,l in Ak,l ,

so that, fk,k is increasing on �a−
k,l , e−

k,l� and decreasing on �e+
k,l , a+

k,l� and fk,l(e
−
k,l) =

fk,l(e
+
k,l). This implies the monotonicity results announced in the introduction, since

one would have noticed that the parameters (rk,1, . . . , rk,k) ∈ R
k appearing in Theo-

rem 14 have to be alternated: rk,l is negative for odd 1 ≤ l ≤ k and positive otherwise.
We now come to the interlacing property presented in the introduction. By the above

considerations, we have that for 0 < k ≤ N , the finite sequence (ck,l)0≤l<k corre-
sponds to the boundary points of the elements of A(k). By the pigeonhole principle, if
the interlacing property was not true, we could find 0 < k < N and −1 ≤ l < k such
that (ck,l , ck,l+1) does not contain any point from (ck+1,l)0≤l<k+1 (with the convention
that ck,−1 = 0 and ck,k = N ). But this would mean that A(k)l+1 is included into some

set A(k+1)
l ′ , with 0 ≤ l ′ ≤ k + 1, and thus that �k+1 = λ̄0(A

(k+1)
l ′ ) ≤ λ̄0(A

(k)
l ) = �k ,

which is not possible.
To finish this section, let us mention that the presented construction can be translated

into an algorithm to compute the eigendecomposition of L .

Remark 17 We begin by noticing that given A ∈ A0, it is not difficult to approximate
λ̄0(A) and f Ã. For instance, this can be done by iterating, for any ε > 0, the sub-
Markovian operator Id + L̂ A/(|L̂ A| + ε) on A ∩ V , where L̂ A was introduced in
the proof of Lemma 2 and where we recall that |L̂ A| � maxx∈A∩V |L̂ A(x, x)|. More
precisely, let f be a positive function on A ∩ V , by an eigen-expansion, we get that
there exists a constant c > 0 such that for large n ∈ N,

∀ x ∈ A ∩ V,

(

Id + L̂ A

|L̂ A| + ε

)n

f (x) ∼ c

(

1 − λ̄0(A)

|L̂ A| + ε

)n

f Ã(x)

The parameter ε > 0 can be dispensed with, if there is no “periodicity” problem,
namely if λ̄0(A) is strictly larger than the absolute values of the other Dirichlet eigen-
values.

But there exist other ways to do it, especially in higher dimension or in continuous
setting, see for instance [9] for an interacting particle approach. Note also that in the
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linear setting of birth and death chains, once λ̄0(A) is known, it is very easy to deduce
f Ã, recursively by letting x going from the left to the right of the discrete interval
A ∩ V in the relation of Lemma 2. Let write A = (c−, c+) and A ∩ V = �a−, a+�,
one can show that

∂c+ λ̄0(A) = −π
2(a+)L̃2

A(a+, c+) f 2
Ã
(a+)

π( f 2
Ã
)

(9)

at least if c+ is virtual and where ∂c+ is the differentiation with respect to c+ in the
natural length structure of V̄ . Indeed, taking into account the minimizing feature of
FA and the relation between FA and f Ã, we get that, with the notations of Remark 1,

∂c+ λ̄0(A) = (∂c+ ẼA)( f̃ A)

π( f̃ 2
A)

On the other hand, since 1/π(a+)L̃ A(a+, c+) is the length of (a+, c+), we have
∂c+π(a+)L̃ A(a+, c+) = −π2(a+)L̃2

A(a+, c+) and (9) follows from these observa-
tions. See also Theorem 2.6 of Friedman [12].

These are the necessary ingredients to apply usual optimization algorithms to find
the global minima of � over the subset of Ak consisting of ordered quasi-partitions,
for a given 1 ≤ k ≤ N . One can also look for the global minima of the functional H
defined on ordered quasi-partitions A = (A0, . . . , Ak) by

H(A) �
∑

0≤l<k

(λ̄0(Al)− λ̄0(Al+1))
2

since we have seen that it is attained at A(k). But this property is not true for more
general graphs than paths.

For practical implementation, it is certainly convenient to represent a quasi-partition
by its boundary points. If one has already computed λk and ϕk , the interlacing property
can be used to a priori initialize the algorithm approximating λk+1 and ϕk+1.

It could be interesting to understand how such kind of algorithms work on more
general graphs, even if a minimizing pseudo-partition for �k is no longer directly
linked with ϕk (for instance, the �k with k even are not very relevant for cycles).
But if Conjecture 13 was to be true, �k could serve as an estimator for λk , up to the
universal factor χ .

4 Generical properties

To end the proof of the results announced in the introduction, we will consider here
generical properties of eigenvectors associated to birth and death processes. But we
will also be interested in the more case of generators whose underlying graph is a
tree, because the previous constructions can be generically extended to them. As a
consequence, we will see that the identity �k = λk always holds for them, for any
0 ≤ k ≤ N .
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So here the generators L will be random, in a birth and death process setting, to
begin with. There are several ways to device distributions on them, for instance that
we alluded to in the introduction, by sampling all the rates independently according
to laws absolutely continuous with respect to the Lebesgue measure on (0,+∞). But
from a technical point of view, this is not very convenient, it is better first to fix the
reversible probability π and next to sample independently the birth rates (the death
rates being then imposed by π ). Indeed, one is even getting more general results
in this way (as long as a.s. behaviors are concerned, via Fubini’s theorem), because
it is easy to check that if all the rates are chosen independently, then conditionally
on the reversible probability π (which is now random, but it only depends on the
quantities (bx/dx+1)0≤x<N ), the birth rates are independent. Furthermore, all their
laws are absolutely continuous with respect to the Lebesgue measure on (0,+∞), if
that property was verified by the laws of the rates (which were not assumed to be the
same for all the rates). Thus from now on, we will assume that

(H)

{
the birth rates (bx )0≤x<N are independent and their laws are
absolutely continuous with respect to the Lebesgue measure on (0,+∞)

The reversible probability π is fixed (and positive on V ), so that the death rates are
given by

∀ 0 < x ≤ N , dx = π(x − 1)

π(x)
bx−1

In fact the hypothesis (H) could be slightly relaxed, because our first main tool will
be the next simple result.

Lemma 18 Letµ be a probability absolutely continuous with respect to the Lebesgue
measure on (0,+∞)n, with n ∈ N

∗, and let H be a measurable homogenous mapping
from (0,+∞)n to (0,+∞). Then the image of µ by H does not contain atoms.

Proof Let us recall that homogeneous means that there exists α > 0, called the degree,
such that for any x ∈ (0,+∞)n and any t > 0, we have H(t x) = tαH(x).

To prove the above result, it is sufficient to replace µ by ν the Lebesgue measure
on (0,+∞)n , it does not matter that it is not a probability. Assume that u ∈ (0,+∞)

is an atom of H(ν), namely that ν({x : H(x) = u}) > 0. Then for any v ∈ (0,+∞),
we have

ν({x : H(x) = v}) = ν({x : H((u/v)1/αx) = u})
= ν({(v/u)1/αx : H(x) = u})
= (v/u)n/αν({x : H(x) = u})
> 0

This would imply that ν is not σ -finite, a contradiction. �
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The other elementary fact we will use is that if Y and Z are two independent random
variables, the law of Y containing no atom, then P[Y = Z ] = 0 (where P will always
denote the underlying probability).

We can now consider the first generical behavior pointed out in the introduction.

Proposition 19 Under assumption (H), we have

P[∃ 0 ≤ l < k ≤ N : ck,l ∈ V ] = 0

Proof Let fix 0 ≤ l < k ≤ N and v ∈ V \{0, N }. Of course, we just have to prove that
P[ck,l = v] = 0. Let Ak−l−1([v, N ]) be the subset of pseudo-partitions from Ak−l−1
which form a quasi-partition of [v, N ]. We define

�k−l−1([v, N ]) = min
A∈Ak−l−1([v,N ])

�(A)

Indeed, if ck,l = v, we have �k−l−1([v, N ]) = �k and the minimum is attained in
A = (A(k)l+1, . . . , A(k)k ), as it is easily checked.

Let us define �l([0, v]) in a symmetric way, where Ak−l−1([v, N ]) is replaced by
Al([0, v]), the subset of pseudo-partitions from Al which form a quasi-partition of
[0, v]. Under the condition ck,l = v, it appears equally that �l([0, v]) = �k .

But as a random variable, Y � �k−l([v, N ]) (respectively Z � �l([0, v])) only
depends on (bx )v≤x≤N−1 (resp. (bx )0≤x≤v−1) and is homogeneous of degree 1 in
them. Thus Lemma 18 shows that under (H) the laws of Y and Z are without atom.
Since furthermore Y and Z are independent, we get that P[ck,l = v] ≤ P[Y = Z ] = 0.

�
Our second and last generical result about birth and death processes follows from

similar arguments. But we need first a preliminary observation.

Lemma 20 Let A ∈ A0 such that the restriction f A to A ∩ V of the minimizer FA (in
the definition of λ̄0(A)) is maximum at two points, say e− and e+ = e− + 1. Consider
V̄+ � [e+, N ] and the Dirichlet form EV̄+ on F(V̄+) given by

∀ F ∈ F(V̄+), EV̄+(F) �
∑

x∈�e+,N−1�

∫

[x,x+1]
(F ′)2 dλ

and define for any B ∈ A0 and B ∩ V̄+ �= ∅,

λV̄+,0(B ∩ V̄+) � inf
f ∈FV̄+,0(B)\{0}

EV̄+( f )

π( f 2)

where FV̄+,0(B) is the set of functions from F(V̄+) which vanish on V̄+\B. Then we
have

λV̄+,0(A ∩ V̄+) = λ̄0(A)
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Of course, there is a symmetric result on the left of e−: λV̄−,0(A ∩ V̄−) = λ̄0(A), with
a self-explaining notation.

Proof One would have noticed that the objects introduced in this lemma are not
really new. Let consider on V+ � {e+, e+ + 1, . . . , N } and the generator L+ whose
off-diagonal entries coincide with those of L . It is reversible with respect to π+,
the restriction to V+ of π/π(V+). Then λV̄+,0(·) just corresponds to the functional

λ̄0(·), but computed relatively to the reduced setting (V+, L+, π+) (in particular the
continuous extension of V+ is V̄+).

Due to the assumption that fA(e+) = f A(e+−1), we get that the relation of Lemma
2 is also satisfied if the underlying L is replaced by L+ and f Ã is replaced by its
restriction to V+. By a Perron–Frobenius argument, it follows that the latter is equally
the restriction to V+ of the minimizer F+,A∩V̄+ in the definition of λV̄+,0(A ∩ V̄+),
and that λV̄+,0(A ∩ V̄+) = λ̄0(A). �

We can now proceed to the

Proposition 21 Under assumption (H), we have

P[∃ 0 < l < k ≤ N : e−
k,l �= e+

k,l ] = 0

Proof Again, let fix 0 < l < k ≤ N and 1 < v < N , we want to show that
P[e−

k,l = v − 1, e+
k,l = v] = 0.

So let us assume that e+
k,l = v = e−

k,l + 1. As in the proof of Lemma 20, we

define V+ � �e+
k,l , N�, we endow it with the natural generator L+ inherited from L ,

and we put a + in subscript of all notations relative to this setting. In particular we
define �+,k−l , which is smaller than the quantity �k−l([v, N ]) considered in proof
of Proposition 19, because in the latter case we put a Dirichlet condition at v, while
we are now rather imposing a Neumann condition.

The important point is that the hypothesis e+
k,l = v = e−

k,l + 1 implies that
�+,k−l = �k . Indeed, through Lemma 20, we get that �+,k−l ≤ �k by consid-
ering the restriction to [v, N ] of the ordered quasi-partition A(k), which belongs to
A+,k−l . But working symmetrically on [0, v − 1], it appears that �−,l ≤ �k . So let
an ordered A− � (A−,0, A−,1, . . . , A−,l) ∈ A−,l be minimizing for �−,l and an
ordered A+ � (A+,l , A+,l+1, . . . , A+,k) ∈ A+,k−l be minimizing for �+,k−l . We
define

∀ 0 ≤ j ≤ k, A′
j �

⎧
⎨

⎩

A−, j , if j < l
A−,l  (v − 1, v)  A+,l , if j = l
A+, j , if j > l

One would have remarked that v−1 ∈ A−,l and v ∈ A+,l , so in fact A′ � (A′
j )0≤ j≤k

belongs to A0. Furthermore, we have

λ̄0(A
′
l) ≤ λ̄−,0(A−,l) ∨ λ̄+,0(A+,l)
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as it is checked by considering the function F ∈ F0(A′
l) given by

∀ x ∈ V̄ , F(x) �

⎧
⎨

⎩

F−,A−,l (x), if x ≤ v − 1
1, if x ∈ (v − 1, v)
F+,A+,l (x), if x ≥ v

(by our conventions and the facts that F−,A−,l is nondecreasing on [0, v − 1] and
F+,A+,l is nonincreasing on [v, N ], we have F−,A−,l (v−1) = F+,A+,l (v) = 1). Since
furthermore, we have λ̄−,0(A−, j ) = �−(A−) for 0 ≤ j ≤ l, and λ̄+,0(A+, j ) =
�+(A+) for l ≤ j ≤ k, it appears that

�(A′) ≤ �−(A−) ∨�+(A+)
≤ �k

namely A′ is a minimizing pseudo-partition for �k . If follows that �−(A−) ∨
�+(A+) = �k and necessarily

�−(A−) = �k = �+(A+)

because A′ must be well-balanced. So as we announced it above, the assumption
e+

k,l = v = e−
k,l + 1 implies that �+,k−l = �k = �−,l . Now the end of the proof is

similar to that of Proposition 19, since under (H), �+,k−l and �−,l are independent
random variables and homogeneous respectively in (bx )v≤x<N and (bx )0≤x≤v−2. �

We now leave the framework of birth and death processes to consider irreducible
generators L whose associated unoriented graph (V, E) is a tree T . They also admit
a unique invariant probability π which is positive and reversible. As above we will
assume that it is fixed. To put a distribution on irreducible generators L which are
reversible with respect to π and whose associated graph is T , we choose an orientation
of T , i.e. any edge of E gets an orientation and we call

−→
E their set. Since next

hypothesis is an immediate extension of (H), we give it the same name:

(H)

{
the birth rates (L(x, y))

(x,y)∈−→
E are independent and their laws are

absolutely continuous with respect to the Lebesgue measure on (0,+∞)

Of course, if (x, y) ∈ −→
E , we define L(y, x) = π(x)L(x, y)/π(y). We have an

extension of Proposition 19:

Proposition 22 For 0 ≤ k ≤ N, let A(k) � (A(k)0 , . . . , A(k)k ) ∈ Ak be such that

�k = �(A(k)). Let V3(A(k)) � V3 ∩ ∂A(k), with ∂A(k) � ∪0≤l≤k∂A(k)l , and assume
that A(k) has been chosen so that the cardinal of V3(A(k)) is minimal among all
minimizers of � in Ak . Then under assumption (H), we have

P[card(V3(A
(k))) �= 0] = 0
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The following arguments also show that if the minimizing A(k) was chosen among
the well-balanced pseudo-partitions, as it is possible by Proposition 9, then the same
conclusion holds.

Proof Let x ∈ V3 be a given vertex and denote by x1, . . . , xn its neighbors in T ,
with n ∈ N\{0, 1, 2}. For 1 ≤ i ≤ n, we consider Ti the subtree rooted in x going
in the direction of xi : its vertex set is the subset of elements y of V whose unique
nonintersecting path going from x to y has to pass through xi . Let T̄i be the union of
edge-segment of V̄ whose boundary vertices belong to Ti . For 0 ≤ l ≤ card(Ti )− 2,
we consider Al(T̄i ) the collection of pseudo-partitions from Al whose elements are
included into T̄i . Note they are in fact included into T̄i\{x}, the interior of Ti , so that
in what follows, one should keep in mind that a Dirichlet condition is put on x . Next,
as in the proof of Proposition 19, we consider

�l(T̄i ) = min
A∈Al (T̄i )

�(A)

We say that x is a splitting point if there 1 ≤ i �= j ≤ n, 0 ≤ li ≤ card(Ti ) − 2 and
0 ≤ l j ≤ card(Tj )− 2 such that �li (T̄i ) = �l j (T̄ j ).

Now let A(k) be as in the previous proposition. The main step of its proof consists
in showing that if ∂A(k) ∩ V3 �= ∅, then one can find a splitting point.

Indeed, let assume that x ∈ ∂A(k)∩V3 and let the subtrees rooted in x be constructed
as above. For 1 ≤ i ≤ n, let li + 1 ∈ �1, card(Ti )− 1� be the number of elements of
A(k) included into T̄i . Considering these elements, we get that�k ≥ max1≤i≤n �li (T̄i )

and since the reverse inequality is always true (by considering the pseudo-partition
formed by the union of the minimizing pseudo-partitions for �li (T̄i ), 1 ≤ i ≤ n), it
appears that

�k = max
1≤i≤n

�li (T̄i )

If this maximum is attained at two indices 1 ≤ i �= j ≤ n, then x is a splitting point.
Otherwise, up to changes of indices, assume that the maximum is attained at i = 1,
that A(k)0 is included into T̄1 and that x is a boundary point of A(k)0 . Then starting from

x , we can extend a little A(k)0 in the directions of x2,…, xn (in the same time reducing
a little the other elements of A(k) which had x as a boundary point), so that the slightly
modified pseudo-partition we obtain in this way is still minimizing for�k , but has less
boundary points belonging to V3, which is a contradiction with our choice of A(k).

The end of the proof is similar to that of Proposition 19, since for any 1 ≤ i ≤ n
and l ∈ �0, card(Ti ) − 2�, �l(T̄i ) depends only on (L(v,w))

(v,w)∈−→
E ∩Ti ×Ti

and is
homogeneous. Thus for any x ∈ V3, any associated 1 ≤ i �= j ≤ n and any 0 ≤ li ≤
card(Ti )− 2 and 0 ≤ l j ≤ card(Tj )− 2, we have

P[�li (T̄i ) = �l j (T̄ j )] = 0 (10)

�
Remark 23 We did not investigate measurability questions, in particular the existence
of a measurable choice of A(k) as in the statement of the previous proposition (or at least
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that the mapping min{card(V3(A)) : A ∈ Ak,�(A) = �k} is measurable). So to be
more precise, the probability there should be understood as its completion with respect
to negligible sets. Note nevertheless that (10) is rigorous, since the event {�li (T̄i ) =
�l j (T̄ j )} is obviously measurable with respect to the rates (L(x, y))

(x,y)∈−→
E .

Proposition 22 associated with Propositions 7 and 10, shows that a.s. there exists a
minimizing pseudo-partition A(k) for�k which is a well-balanced quasi-partition, for
any 0 ≤ k ≤ N . But one can go further. Let L be the set of leaves of T . If A(k) ∈ Ak

is minimizing for �k and satisfies ∂A(k) ∩ V3 = ∅, then we must have

L ⊂ 0≤l≤k A(k)l (11)

Indeed, for 0 ≤ l ≤ k, let Ã(k)l � A(k)l ∪ {x ∈ L ∩ Ā(k)l }, where Ā(k)l is the closure

of A(k)l . These sets are still open and connected, so Ã(k) � ( Ã(k)l )0≤l≤k belongs to Ak

and since λ0( Ã
(k)
l ) ≤ λ0(A

(k)
l ) for 0 ≤ l ≤ k, Ã(k) is also a minimizer for �k . The

relation ∂ Ã(k) ∩ V3 = ∅ equally holds, so Ã(k) has to be well-balanced. But if (11)
was not true, it would mean that for some 0 ≤ l ≤ k, we have λ0( Ã

(k)
l ) < λ0(A

(k)
l )

and thus �( Ã(k)) < �(A(k)), a contradiction.
Then the procedure presented in Theorem 14 can also be applied to A(k), to construct

a eigenvector ψk corresponding to the eigenvalue �k . One begins with one of the
elements A(k)l of A(k) which contains a leaf from L. On A(k)l , one takes ψk = f

A(k)l
,

the restriction of F
A(k)l

on V ∩ A(k)l . Next one considers another domain A(k)l ′ admitting

a boundary point x in common with A(k)l (since V̄ is a continuous tree there is only one

such a common boundary point between A(k)l ′ and A(k)l ). Then one can find a negative

factor r such that by taking ψk = r f
A(k)

l′
on A(k)l ′ , we get L̃ B[ψk] = �kψk on V ∩ B,

with B � A(k)l  {x}  A(k)l ′ , except on the leaves of this subtree which do not belong
to L (because of (11)). But this construction can be iterated, by choosing one of the
boundary point of A(k)l {x} A(k)l ′ which is not a leaf from L. Having a closer look at
this construction, it appears that one always gets the same function ψk , up to a factor
and indeed the obtained function only depends on the initial choice of A(k)l . Thus we
can normalize ψk by fixing a root among the leaves (say 0, up to reordering of V ) and
by beginning the previous construction with the domain A(k)l containing 0. Next result
shows that (�k, ψk)0≤k≤N is a.s. a spectral decomposition of L under (H).

Proposition 24 Under (H), we have a.s. that all the �k , for 0 ≤ k ≤ N, are distinct.
It follows that �k = λk for all 0 ≤ k ≤ N.

Proof Let 0 < k < N be fixed and assume that �k = �k+1. Under (H) we can a.s.
find a well-balanced quasi-partition A(k) (respectively A(k+1)) which is minimizing
for�k (resp.�k+1). One can put a tree structure on {A(k)l : 0 ≤ l ≤ k} by saying that

A(k)l and A(k)l ′ are neighbors if they have a boundary point in common. Up to a change

of indices, assume that A(k)0 is a leaf of this tree. Then, because of (11), it admits a
unique boundary point x0 ∈ V̄ (note that we only considered nontrivial cases where
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k > 0) and we have x0 �∈ L. Let denote by L0 the set of leaves from L belonging to
A(k)0 . It appears by our choice of A(k)0 , that L0 �= ∅, so let x1 ∈ L0. Resorting again

to (11) applied to A(k+1), there exist 0 ≤ l ≤ k + 1 such that x1 ∈ A(k+1)
l and up to a

change of indices, assume that l = 0. We are going to show that

A(k+1)
0 = A(k)0 (12)

Indeed, assume that A(k)0 \A(k+1)
0 is not empty. Then one of its connected components

must either contain an element of L0 or admits x0 as boundary point. The latter
situation implies that A(k+1)

0 is strictly included into A(k)0 and so by well-balancedness
we would conclude that �k+1 > �k , in contradiction with our working assumption.
We can now assume that x0 belongs to the closure of A(k+1)

0 and so we are in the

former situation where (A(k)0 \A(k+1)
0 ) ∩ L0 �= ∅. Let x2 ∈ (A(k)0 \A(k+1)

0 ) ∩ L0, there

exists 0 ≤ l ≤ k + 1, with l �= 0, such that x2 ∈ A(k+1)
l . We must have that A(k+1)

l is

strictly included into A(k)0 and we are thus led to a new contradiction. So it appears that

A(k)0 ⊂ A(k+1)
0 . This inclusion cannot be strict, otherwise our assumption�k = �k+1

would be broken again. This ends the proof of the validity of (12).
But this procedure can be iterated on V̄ \A(k)0 (with the slight difference that a

Dirichlet condition is put on x0, but the above arguments can be extended to this situa-
tion), with respect to the collections (A(k)l )1≤l≤k and (A(k+1)

l )1≤l≤k+1. The conclusion

is that there exist 1 ≤ l ≤ k and 1 ≤ l ′ ≤ k+1 such that A(k)l = A(k+1)
l ′ . In this way we

show that any A(k)l , for 0 ≤ l ≤ k, is equal to some A(k+1)
l ′ , which means there exists

0 ≤ m ≤ k + 1 such that A(k+1)
m = ∅. This contradiction implies that it is impossible

that�k = �k+1, so that the�k , for 0 ≤ k ≤ N are all distinct. But we have seen they
are eigenvalues of L , which are thus all attained by the above constructions. �

Proposition 24 shows that under its assumption, the minimizing well-balanced
quasi-partitions are uniquely determined (up to a change of indices): they correspond
to the nodal domains of the piecewise affine extensions to V̄ of the eigenvectors, as it
was explained after the proof of Proposition 12. From now on, we will refer to these
quasi-partitions by (A(k)l )0≤l≤k (ordered by their minimal elements, say).

Under (H), more a.s. informations can be deduced for the eigenvectors (ψk)0≤k≤N ,
by adapting the arguments given in the setting of birth and death processes (Proposition
19 for the first point and Lemma 20 and Proposition 21 for the second one):

• The eigenvectors do not vanish: ψk(x) �= 0 for any 0 ≤ k ≤ N and any x ∈ V .
• For any 0 ≤ k ≤ N and {x, y} ∈ E , we have ψk(x) �= ψk(y).

But we can no longer deduce from this property that for any 0 < k ≤ N and 0 ≤ l ≤ k,
|ψk | attains its maximum on A(k)l ∩ V at a unique point. In fact it is not true that a.s.

there is a unique local extremum on A(k)l ∩ V (namely a point x ∈ A(k)l ∩ V such that

|ψk(x)| > |ψk(y)| for any neighbor y ∈ A(k)l ∩ V of x), see for instance Lemma 27
in next section. To finish this section, we prove a result announced in Sect. 2.
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Theorem 25 Let L be any irreducible generator whose associated graph is a tree.
Then for any 0 ≤ k ≤ N, we have

�k = λk

Proof Again let the tree T and the reversible probability π be fixed, so that the
quantities �k and λk , for 0 ≤ k ≤ N , can be seen as functions of the parameters

(L(x, y))
(x,y)∈−→

E ∈ (R∗+)
−→
E . We begin by showing that these functions are continuous.

Indeed, let (L ′(x, y))
(x,y)∈−→

E ∈ (R∗+)
−→
E be another collection of parameters such

that for some a > 0,

∀ (x, y) ∈ −→
E , L(x, y) ≤ aL ′(x, y)

Then we have that the corresponding Dirichlet forms satisfy E ≤ aE ′ and it follows
straightfowardly that

∀ 0 ≤ k ≤ N ,

{
�k ≤ a�′

k
λk ≤ aλ′

k

Optimizing in a, we deduce from these relations that for 0 < k ≤ N , we have

ln(�k)− ln(�′
k) ≤ max

(x,y)∈−→
E

ln(L(x, y))− ln(L ′(x, y))

ln(λk)− ln(λ′
k) ≤ max

(x,y)∈−→
E

ln(L(x, y))− ln(L ′(x, y))

and by symmetry that

∣
∣ln(�k)− ln(�′

k)
∣
∣ ≤ max

(x,y)∈−→
E

∣
∣ln(L(x, y))− ln(L ′(x, y))

∣
∣

∣
∣ln(λk)− ln(λ′

k)
∣
∣ ≤ max

(x,y)∈−→
E

∣
∣ln(L(x, y))− ln(L ′(x, y))

∣
∣

The wanted continuity properties follow at once.
But we have seen that the relations �k = λk , for 0 ≤ k ≤ N , are verified a.s.

if (L(x, y))
(x,y)∈−→

E is distributed according to the tensor product of the exponential

law of parameter 1, in particular they are satisfied on a dense subset of (R∗+)
−→
E . The

previous continuity properties then allow to extend these relations �k = λk over the

whole set (R∗+)
−→
E , namely for any irreducible generator L whose reversible probability

is π and whose associated graph is T . �
Remark 26 Even when the ordered pseudo-partitions are unique, they are not neces-
sarily continuous as functions of the rates (L(x, y))

(x,y)∈−→
E , for instance in the sense

of Hausdorff topology. Coming back to Example 8, let us diminish a little the edge
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[0, 1] by considering for small ε > 0,

L =

⎛

⎜
⎜
⎝

−10 − ε 4 + ε 4 2
4 + ε −4 − ε 0 0

4 0 −4 0
2 0 0 −2

⎞

⎟
⎟
⎠

Then we get that

lim
ε→0+

A(1)(ε) = ([1, 0] ∪ [0, 3], [2, 0))

which is different from A(1)(0) = ([1, 0), [2, 0)).

5 Spectral gap eigenfunctions on trees

We will investigate here the shape of the eigenfunctions corresponding to the spectral
gap of generators L whose associated graph is a tree T . More precisely, our goal is to
prove the next two results.

• There exists a center point x0 ∈ V̄ in the following sense:

– If x0 �∈ V , let us write V̄ \{x0} = A1  A2, with A1, A2 ∈ A0. Then the eigenspace
corresponding to λ1 is one-dimensional and is generated by the function ϕ1 given by

∀ x ∈ V, ϕ1(x) �
{

f1(x), if x ∈ V ∩ A1
r f2(x), if x ∈ V ∩ A2

(13)

for an appropriate choice of r < 0, where for i = 1, 2, fi designates the restriction to
V ∩ Ai of the minimizer FAi for λ̄0(Ai ).

– If x0 ∈ V , let us write V̄ \{x0} = 1≤i≤n Ai with Ai ∈ A0 for 0 ≤ i ≤ n. Assume
they are ordered such that the finite sequence (λ̄0(Ai ))1≤i≤n is nondecreasing and let
1 ≤ m ≤ n be the number of these sets with the smallest λ̄0, so that λ̄0(A1) = · · · =
λ̄0(Am) < λ̄0(Am+1) ≤ · · · ≤ λ̄0(An) (we will see that m ≥ 2). For 1 ≤ i ≤ m, let
xi be the neighbor of x0 belonging to Ai and denote by fi the restriction of FAi on
V ∩ Ai , extended by 0 on V \Ai . Then the eigenspace associated to −λ1 is

⎧
⎨

⎩
ϕ ∈ F(V ) : ϕ =

∑

1≤i≤m

ri fi , with
∑

1≤i≤m

ri L(x0, xi ) fi (xi ) = 0

⎫
⎬

⎭
(14)

which is of dimension m − 1 (recall that fi (xi ) > 0).

• Let ϕ be any eigenfunction associated to −λ1. Then there exists a partial order �
on V compatible with T (this means that, on one hand, for any edge {x, y} ∈ E ,
we have either x � y or y � x and on the other hand, for any x, y, z ∈ V , if
x � y � z, then y must lay on the nonintersecting path going from x to z), such
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that ϕ is nondecreasing. But contrary to the center point x0, this order is not unique
and depends on the chosen eigenfunction ϕ. Note that the hot spot conjecture (cf.
the review of Burdzy [3]) is satisfied in this situation: any eigenvector associated
to the spectral gap attains its extrema on leaves.

We start with the existence of the center point. To find it, let us consider A(1) �
(A(1)0 , A(1)1 ) a minimizing pseudo-partition for �1. By Proposition 7, it is necessarily

well-balanced. Furthermore any boundary point of A(1)0 must also be a boundary point

of A(1)1 , otherwise we could extend a little A(1)0 to be led to a contradiction. Since T is
a tree, this common boundary point is unique, let us call it x0. We now consider two
cases.

– If x0 �∈ V , then by Proposition 10, A(1) is also a quasi-partition and as in Theorem
14 or in the discussion after Remark 23, we can use it to construct an eigenvector
ϕ1 of the form (13) associated to −λ1 = −�1 (by Theorem 25). Next consider any
other eigenvector ϕ associated to −λ1. Let A1, . . . , Ap be the p ≥ 2 nodal domains
of its affine extension to V̄ . As it was explained after the proof of Proposition 12,
we have λ̄0(Ai ) = λ1 for 1 ≤ i ≤ p. But since A(1) is a quasi-partition formed
of two (continuous) subtrees, necessarily there exist i ∈ {0, 1} and j ∈ {1, . . . , p}
such that A j ⊂ A(1)i . Indeed we must have A j = A(1)i , otherwise we would have

λ̄0(A j ) > λ̄0(A
(1)
i ). The same kind of argument implies next that p = 2 and that

A(1) = (A1, A2), up to a change of order. It follows that up to factors, the restrictions
of ϕ to A1 and A2 coincide with the restrictions of the minimizers F

A(1)0
and F

A(1)1
to

V ∩ A(1)0 and V ∩ A(1)1 , respectively. By the uniqueness of the appropriate choice of
r in (13), we get that ϕ is proportional to ϕ1 and it appears that −λ1 is of multiplicity
one.

– If x0 ∈ V , let construct A1, . . . , An and 1 ≤ m ≤ n as in the beginning of this
section. Obviously there exist 1 ≤ i �= j ≤ n such that A(1)0 ⊂ Ai and A(1)1 ⊂ A j .
In fact we must even have equality, otherwise it would be possible to extend a little
A(1)0 or A(1)1 . Then by definition of A(1), we have �(A(1)) = �((A1, A2)) and since
any minimizing pseudo-partition for �1 is well-balanced, it follows that λ̄0(A1) =
λ̄0(A2) = �1 = λ1, in particular m ≥ 2.

Let ϕ be a function belonging to the space defined in (14). Then for any 1 ≤ i ≤ m
and any x ∈ Ai ∩ V , we have, by virtue of the characterization given in Lemma 2

L[ϕ](x) = −λ̄0(Ai )ϕ(x)

= −λ1ϕ(x)

The condition
∑

1≤i≤m ri L(x0, xi ) fi (xi ) = 0 insures that

L[ϕ](x0) = 0

= −λ1ϕ(x0)

so the relation L[ϕ] = −λ1ϕ holds everywhere on V andϕ is an eigenvector associated
to −λ1.
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Conversely, let ϕ be any eigenvector associated to −λ1 and consider the nodal
domains of its affine extension to V̄ , say D1, . . . , Dp, with p ≥ 2. As it has already
been observed several times, we must have λ1 = λ̄0(D1) = · · · = λ̄0(Dp). By
the geometry of the tree T rooted in x0, at least one of the Di , with 1 ≤ i ≤ p
is included into one of the A j , with 1 ≤ j ≤ n. If m < j ≤ n, we would have
λ̄0(Di ) ≥ λ̄0(A j ) > λ1, a contradiction. So 1 ≤ j ≤ m and Di must be equal to
A j , otherwise we would end up with a contradiction again. This implies that x0 is a
boundary point of Di , so each of the Di ′ , with 1 ≤ i ′ �= i ≤ p, is included into some
A j ′ , with 1 ≤ j ′ �= j ≤ n. The previous arguments show that these indices j ′ must
be less or equal to m and that in fact we have equality, not only inclusion, between
those sets. Thus p ≤ m and there is a one-to-one mapping σ : �1, p� → �1,m� such
that for any 1 ≤ i ≤ p, Di = Aσ(i). It is now easy to deduce that ϕ belongs to the set
(14), since we know that ϕ(x0) = 0. This ends the proof that (14) coincides with the
eigenspace associated with −λ1.

To study the monotonicity properties of the eigenvectors associated with −λ1, we
need to come back to minimizer functions for λ̄0.

Lemma 27 Let A ∈ A0 admitting a unique boundary point x0. The subset A  {x0}
can be seen as a continuous tree rooted in x0 and this endows A  {x0} with a partial
order � by deciding that for any x, y ∈ A  {x0}, x � y if and only if x is on the
(continuous) nonintersecting path going from x0 to y. Then the restriction to A  {x0}
of the minimizer FA is increasing.

Proof Since we know that FA is affine on each of the edge-segment (and on [x0, x1],
where x1 is the closest element to x0 in V ∩ A, note also that FA(x1) > 0, so we already
get that F is increasing on [x0, x1]), it is sufficient to prove that for any {x, y} ∈ E
with x, y ∈ V ∩ A, we have FA(x) < FA(y) if x � y. We begin by showing that
FA(x) ≤ FA(y). Indeed, if it is not true, consider the function f defined by

∀ z ∈ (V ∩ A)  {x0}, f (z) �
{

FA(z)+ 2(FA(x)− FA(y)), if y � z
FA(z), otherwise

Next we extend affinely (on each edge-segment and on [x0, x1]) f into F on A {x0}.
Let also F vanish outside A, so that F ∈ F0(A). It appears that Ē(F) = Ē(FA), but
since we already know that FA ≥ 0, we have π(F2) > π(F2

A). This is in contradiction
with the definition of FA as a minimizer. Thus we get that FA(x) ≤ FA(y) and it
follows that FA is nondecreasing on A  {x0}. The fact that it is indeed increasing is
a consequence of Proposition 11. �

We can now investigate the second feature of eigenvectors associated to spectral
gap mentioned in the beginning of this section. Again we consider two cases.

– If the center point x0 does not belong to V . It is enough to consider the eigenvector
ϕ1 defined in (13). Let � be the binary relation which coincides on (V ∩ A1)  {x0}
(respectively on (V ∩ A2) {x0}) with the (resp. reverse) partial order � presented in
the previous lemma with A = A1 (resp. A = A2). We complete � into a partial order
by asking that for any x ∈ V ∩ A2 and any y ∈ V ∩ A1, x � y. It is easy to verify
that � is compatible with T and that ϕ1 is increasing with respect to it.
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– If the center point x0 belongs to V . Let ϕ be a function from the eigenspace (14).
We denote I+ � {1 ≤ i ≤ m : ri > 0}, I− � {1 ≤ i ≤ m : ri < 0} and
I0 � {1 ≤ i ≤ m : ri = 0}�m +1, n�. Let � be the binary relation which coincides
on (V ∩ Ai )  {x0}, for i ∈ I+  I0 (respectively for i ∈ I−) with the (resp. reverse)
partial order � presented in Lemma 27 with A = Ai . We complete � into a partial
order by asking that for any x ∈ V ∩ Ai and any y ∈ V ∩ A j , with i ∈ I− and
j ∈ I+  I0, we have x � y. Then � is compatible with T and ϕ1 is nondecreasing
with respect to it. But in general � is not the unique partial order which satisfies
these properties with respect to ϕ, because on (V ∩ Ai )  {x0} with i ∈ I0, we could
also have chosen the reverse partial order (one would have noticed that ϕ vanishes on
{x0}  ∪i∈I0 V ∩ Ai ).
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