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Nonreversibility, why?

- Nonreversible Markov chains can avoid diffusive effects and go
faster to equilibrium: [Diaconis, Holmes and Neal, 2000]

- The asymptotic variance of empirical estimators based on
nonreversible Markov chains can be smaller: [Neal 2004]

- Typically nonreversible second order Markov chains enable better
modelisations of physical dynamics: [Bacallado and Pande, 2009]



Second order Markov chains

V finite state space
Stochastic chain (Xn)n∈N on V is second order iff

L((Xm)m≥n+1|(Xm)m∈J0,nK) = L((Xm)m≥n+1|Xn,Xn−1)

Corresponding (time-homogeneous) kernel:

M(x , x ′; x ′′) ≔ P[Xn+1 = x ′′|Xn = x ′,Xn−1 = x ]

Initial law: m = L(X0,X1). It is said to be “trajectorially”
reversible if

L(X0,X1, · · · ,Xn) = L(Xn,Xn−1, · · · ,X0)



Trajectorial reversibility

Sufficient to check for n = 1 and n = 2. In particular, m is
symmetrical and can be written

m(x , x ′) = ν(x)L(x , x ′)

with L Markov kernel reversible with respect to ν.
Let (X̃n)n∈N be a Markov chain associated to L. Usually, whatever
the initial distributions,

lim
n→∞

L(Xn,Xn+1) = m = lim
n→∞

L(X̃n, X̃n+1)

(by trajectorial reversibility, m is also invariant). Which
convergence is faster?



Spectral gap

See M as an operator on F(V 2,C), via

M[F ](x , x ′) ≔
∑

x ′′∈V

M(x , x ′; x ′′)F (x ′, x ′′)

The subspace F∗(m,C) ≔ {F ∈ F(V 2,C) : m[F ] = 0} is stable
by M, let Θ∗(M) ⊂ C be the spectrum of the restriction of M to
F∗(m,C) and define

λ(M) ≔ 1−max{|θ| : θ ∈ Θ∗(M)} ∈ [0, 1]

It is the asymptotical rate of convergence: whatever the norm ‖·‖
on M(V 2),

max
m0∈P(V 2)

lim
n→∞

1

n
ln (‖m0M

n −m‖) = ln(1− λ(M))



Questions

Assume that L is given (reversible wrt ν). Let λ(L) be the usual
spectral gap of L.

- Can we find M as above, with λ(M) > λ(L)?

- Are there some heuristic guidelines to construct such M?

- How much can λ(M) be better than λ(L)?



Extension of L

L can be naturally extended into a “second order” Markov kernel
M(0): take

∀ x , x ′, x ′′ ∈ V , M(0)(x , x ′; x ′′) ≔ L(x ′, x ′′)

It may be that M(0) is not diagonalizable, but anyway
Spectrum(M(0)) = spectrum(L) ∪ {0}, so

λ(L) = λ(M(0))

To answer the previous questions, we will consider perturbations of
M(0):

∀ a ∈ [0, 1], M(a)
≔ (1− a)M(0) + aM(1)

where M(1) is trajectorially reversible wrt m and we will study
a 7→ λ(M(a)).



Answer 1

Let M(1) be trajectorially reversible wrt m and satisfying

M(1)(x , x ′; x ′′) > L(x ′, x ′′)

if x ′′ 6= x , L(x , x ′) > 0 and L(x ′, x ′′) > 0. Namely, M(1) has less
tendency to come back where it just came from than M(0).

Theorem

Assume that L is irreducible, that L 6= ν and that L is aperiodic.
The mapping [0, 1] ∋ a 7→ λ(M(a)) is differentiable at 0 and we
have

dλ(M(a))

da
(0) > 0



Answer 2

In fact, initially the whole spectrum outside 0 is improving under
the above perturbation: important to get quantitative bounds on
the distance to equilibrium in chi-square distance.

It is sometimes (for instance if L is the random walk on a regular
graph), to find the best perturbation to improve (initially) only the
spectral gap. An heuristic (answer 2) is to keep going
(symmetrically) in the direction indicated by the first eigenvector...



Homogeneous framework

V Abelian group, “speeds” given by Yn = Xn+1 − Xn. Change of
variables:

(x , x ′) ↔ (x , y = x ′ − x) (and y ′ = x ′′ − x ′)

leads to

M(x , x ′; x ′′) ↔ δx+y (x
′)Kx ′(y , y

′)

where Kx ′(y , y
′) is the change of speeds from y to y ′ above the

(intermediate) position x ′. Homogeneous setting: Kx ≡ K does
not depend on x and is a Markov kernel on S , generating set for
V . Trajectorial reversibility leads to L being a random walk
transition whose increments are distributed on S (according to a
distribution µ which is symmetric).



A well-understood example

(V ,S) given and take µ ≡ 1/|S | on S (symmetric). Then,
K (0) = µ and consider K (1) on S forbidding to reverse speed and
transfering the weight to all the other directions:

∀ y , y ′ ∈ S , K (1)(y , y ′) ≔

{ 1
|S|−1 , if y ′ 6= −y

0 , if y ′ = −y

Define the interpolating kernel K (a), for a ∈ [0, 1], as well as the
corresponding second order kernels M(a). They are trajectorially
reversible wrt

∀ x , x ′ ∈ V , m(x , x ′) ≔

{ 1
|V ||S| , if x ′ − x ∈ S

0 , otherwise



Answer 3

Theorem

Let λ ≔ λ(L) and define

a0 ≔ (|S | − 1)
1 −

√
λ(2− λ)

1 +
√
λ(2− λ)

≥ 0

Then λ(M(a)) is nondecreasing for a ∈ [0, a0 ∧ 1] and nonincreasing
on [a0 ∧ 1, 1]. Furthermore, with Λ ≔ maxa∈[0,1] λ(M

(a)), if a0 ≤ 1,

Λ =

√
1−

√
λ(2 − λ)

1 +
√
λ(2 − λ)

while if a0 > 1,

Λ = 1− |S |
2(|S | − 1)


1− λ+

√( |S | − 2

|S |

)2

− λ(2− λ)






Conjecture

This result is interesting if |S | = 2, but not so good if |S | > 2.
K (1) defined above is not the appropriate perturbation and a more
relevant one would be K (1) = Id (which forces to keep going
always with the same speed). What we believe for the associated
second order Markov chains (trajectorially reversible wrt the same
m as before): There exists a0 ∈ [0, 1] such that λ(M(a)) is
nondecreasing for a ∈ [0, a0] and nonincreasing on [a0, 1].
Furthermore there exists two values 0 < c1 < c2 (maybe depending
on |S |), such that

c1
√
λ(L) ≤ λ(M(a0)) ≤ c2

√
λ(L)

(true if |S | = 2, as a consequence of Theorem 2).



M
(0)

The first task is to get the spectral decomposition of M(0):

Proposition

The spectrum of the transition operator M(0) is equal to the
spectrum of L with the same multiplicities, except for the
eigenvalue 0, whose multiplicity is |V |2 − |V |. In particular M(0) is
diagonalizable if and only if 0 is not an eigenvalue of L. When 0 is
an eigenvalue of L, let d be the dimension of the corresponding
eigenspace. Then the canonical form of M(0) contains d

2× 2-Jordan blocks

(
0 1
0 0

)
.

Idea: consider the functions F (x , x ′) ≔ f (x ′) (f eigenvector of L),
F (x , x ′) ≔ δx0(x)f (x

′) (with L[f ](x0) = 0) and F (x , x ′) ≔ f (x)
(with L[f ] = 0).



Perturbations, according to Kato

Opening The Book at the right pages:

Lemma

There exists a0 ∈ (0, 1) such that the number s of distinct
eigenvalues of M(a) does not depend on a ∈ (0, a0). It is possible
to parameterize these eigenvalues by (θl(a))l∈JsK in such a way
that for any l ∈ JsK, the mapping (0, a0) ∋ a 7→ θl(a) is analytical.
Furthermore these mappings admit continuous extension to [0, a0)
and the set {θl(0) : l ∈ JsK} coincides with the spectrum of M(0)

(note nevertheless that the cardinal of this spectrum can be stricly
less than s, when occurs a splitting phenomenon of some
eigenvalues at 0). Moreover for any l ∈ JsK, we can find a
continuous mapping [0, a0) ∋ a 7→ Fl(a) ∈ F(V 2,C) \ {0} such
that for any a ∈ [0, a0), Fl is an eigenfunction associated to the
eigenvalue θl(a) of M

(a), and such that the mapping
(0, a0) ∋ a 7→ Fl(a) ∈ F(V 2,C) \ {0} is analytical.



The main ingredient

Proposition

Let l ∈ JsK be such that θl(0) 6= 0. Then the limit lima→0+ θ
′
l(a)

exists and belongs to R. Furthermore if |θl(0)| 6= 1, then the sign
of θ′l(0) is the opposite sign of θl(0).

Begin by differentiating M(a)Fl(a) = θl(a)Fl(a) to get

(M(1) −M(0))Fl(a) +M(a)F ′
l (a) = θ′l(a)Fl (a) + θl(a)F

′
l (a)

To eliminate F ′
l (a), multiply by F̃l(a), an eigenvector of (M(a))∗

(the dual operator of M(a) in L2(m)) associated to the eigenvalue
θl(a) and integrate with respect to m:

m[F̃l(a)(M
(1) −M(0))Fl(a)] = θ′l(a)m[F̃l(a)Fl(a)]



Duality

M trajectorially reversible wrt to m and M∗ its dual. Define the
tilde operation on F(V 2) as the exchange of coordinates:

∀ F ∈ F(V 2), ∀ x , x ′ ∈ V , F̃ (x , x ′) ≔ F (x ′, x)

Then we have

∀ F ∈ F(V 2), M∗[F ] =
˜
M[F̃ ]

(in general not a second order Markov kernel).
Thus if F is an eigenvector associated to θ, wrt M, then F̃ is an
eigenvector associated to θ, wrt M∗. As a consequence, we know
how to compute F̃l(a) in the previous equation, especially when
a = 0 ...



Singular values

There are completely useless here:
Let M and M∗ be as above. The spectrum of the Markovian
operator M∗M in L2(m) is the union, with multiplicities, of the
spectra of the M2

x ′ , for x
′ ∈ V , where Mx ′ is the transition kernel

on Vx ′ = {x ∈ V : L(x ′, x) > 0} defined by

∀ x , x ′′ ∈ Vx ′ , Mx ′(x , x
′′) ≔ M(x , x ′; x ′′)

Unfortunately, the information contained in the Mx ′ , for x
′ ∈ V , is

of a local nature (it just describes how the “speed” evolves above
the point x ′ ∈ V ) and is not sufficient to deduce the global rate of
convergence to equilibrium.



Links with the works of Neal?

Let (Xn)n∈N be a second order trajectory reversible Markov chain
whose transition kernel is M and let f ∈ F(V ) be a function
satisfying ν[f ] = 0. For n ∈ N large, the variance of the random
variable (f (X1) + · · ·+ f (Xn))/

√
n admits a limit σ(M, f ). Under

the assumption

∀ x ′′ 6= x ∈ V , M(x , x ′; x ′′) ≥ L(x ′, x ′′)

Neal has proven that

σ(M, f ) ≤ σ(M(0), f ) (= σ(L, f ))

His proof is based on a clever decomposition of trajectories and
also gives a probabilistic proof of Peskun’s theorem. But the link
with our results is not clear!



Best improvement of spectral gap

We are looking for the perturbation signed kernel D† leading to the
best gap improvement:

d

dǫ
λ(M(0) + ǫD†)

∣∣∣∣
ǫ=0

= sup
D∈D

d

dǫ
λ(M(0) + ǫD)

∣∣∣∣
ǫ=0

where D imposes normalization and trajrev conditions.
Assume that L is the transition kernel of a rw on a n-regular graph
and that, up to a factor, there is only one eigenfunction f
associated to ±(1− λ(L)). For x ′ ∈ V , let
{x1, x2, ..., xn} ≔ {x : L(x ′, x) > 0} ordered such that
f (x1) ≤ f (x2) ≤ · · · ≤ f (xn). Then a maximizer D† is given by

D†(xi , x
′; xj) = J(i , j) − I (i , j)

where I and J are the identity and reverse diagonal matrices.



A general observation

Let S and V be finite sets with cardinals s and v . Let K be a
S × S matrix and for any y ∈ S , let Qy be a V × V matrix.
consider P the (V × S)× (V × S) matrix defined by

∀ (x , y), (x ′, y ′) ∈ V × S , P((x , y), (x ′, y ′)) = K (y , y ′)Qy (x , x
′)

Assume there is a basis (ϕl )l∈JvK of F(V ,C) consisting of
eigenfunctions for Qy , independent of y ∈ S . The corresponding
eigenvalues are allowed to depend on y ∈ S and are denoted by
(σl (y))l∈JvK. For fixed l ∈ JvK, consider Kl the S × S matrix
defined by

∀ y , y ′ ∈ S , Kl (y , y
′) ≔ σl(y)K (y , y ′)

Assume that it is diagonalizable (in C) and denote by (θl ,k)k∈JsK

and (ψl ,k)k∈JsK its eigenvalues and corresponding eigenvectors.
Then P is diagonalizable, its eigenvalues are the θl ,k for
(l , k) ∈ JvK × JsK and a corresponding family of eigenvectors is
(ϕl ⊗ ψl ,k)(l ,k)∈JvK×JsK .



Abelian groups

Homogeneous setting: Qy (x , x
′) ≔ δx+y(x

′)
Joint diagonalizability equivalent to the commutation relations

∀ y , y ′ ∈ S , QyQy ′ = Qy ′Qy

and this leads to the Abelianness of V . It is isomorphe to a group
product

∏
l∈J1,rK ZNl

and consider V ∗ the set of mappings
ρ : V → T of the form,

∀ x = (xl)l∈J1,rK ∈ V , ρ(x) = exp


2πi

∑

l∈J1,rK

klxl/Nl




For such representations, Qy [ρ] = ρ(y)ρ and thus we are led to
introduce Aρ ≔ △(ρ)K , where △(ρ) is the (ρ(y))y∈S diagonal
matrix: if all these matrices are diagonalizable, then M is
diagonalizable and its spectrum is the union of the spectra of the
Aρ, with ρ ∈ V ∗ (with multiplicities).



Centro-Hermitian matrices

The trajectorial reversibility is equivalent to the reversibility of K̂
defined by K̂ (y , y ′) ≔ K (y−1, y ′) (say wrt µ). Then µ is invariant
for K and if in addition we assume that K is reversible wrt µ (as in
our examples), it is interesting to consider

Bρ ≔ △(
√
µρ−1/2)Aρ△(ρ1/2/

√
µ)

This matrix is centro-Hermitian

∀ y , y ′ ∈ S , Bρ(y , y
′) = Bρ(−y ,−y ′)

and furthermore symmetric if µ is uniform.



A simple example

V = ZN and S = {−1,+1} (N ≥ 2). The natural state space: set
of nearest neighbors. Consider for a ∈ [0, 1],

M(a)(x , x ′; x ′′) ≔





(1 + a)/2 , if x ′ = x + 1 and x ′′ = x ′ + 1
(1 + a)/2 , if x ′ = x − 1 and x ′′ = x ′ − 1
(1− a)/2 , if x ′ = x + 1 and x ′′ = x ′ − 1
(1− a)/2 , if x ′ = x − 1 and x ′′ = x ′ + 1
0 , otherwise

This is a homogeneous situation with

K (a) =

(
1+a
2

1−a
2

1−a
2

1+a
2

)

We have V ∗ ↔ {exp(2πikx/N) : k ∈ J0,N − 1K} and we must
study for ρ ∈ V ∗,

B (a)
ρ ≔

(
1+a
2 ρ 1−a

2
1−a
2

1+a
2 ρ̄

)



Eigenvalues of B
(a)
ρ

Writing ρ ≕ C + iS , we get with a0(ρ) ≔
1−|S|
1+|S| ∈ [0, 1],

• If a ∈ [0, a0(ρ)), the matrix B
(a)
ρ is diagonalizable in R and its

eigenvalues are

θ
(a)
ρ,± =

1 + a

2
C ±

√
(1− a)2 − S2(1 + a)2

2

• If a ∈ (a0(ρ), 1], the matrix B
(a)
ρ is diagonalizable in C and its

eigenvalues are

θ
(a)
ρ,± =

1 + a

2
C ± i

√
S2(1 + a)2 − (1− a)2

2

Define

θ
(a)
ρ,∗ ≔ max

{∣∣∣θ(a)ρ,−

∣∣∣ ,
∣∣∣θ(a)ρ,+

∣∣∣
}

We have

λ(M(a)) = 1−max({θ(a)ρ,∗ : ρ ∈ V ∗ \ {1}} ∪ {a})



Basic computations

• Let ρ ∈ T \R be given. On [0, a0(ρ)] the mapping a 7→ θ
(a)
ρ,∗ is

strictly concave and decreasing. For a ∈ [a0(ρ), 1], we have

θ
(a)
ρ,∗ =

√
a. In particular, we get θ

(a)
ρ,∗ ≥

√
a ≥ a, so

λ(M(a)) = 1−max{θ(a)ρ,∗ : ρ ∈ V ∗ \ {1}}

• Let ρ, ρ′ ∈ T be such that their respective real parts satisfy
C > C ′ ≥ 0. Then for any a ∈ [0, 1] we have,

θ
(a)
ρ,∗ ≥ θ

(a)
ρ′,∗

Symmetry implies

λ(M(a)) = 1− θ
(a)
ρ0,∗

with ρ0 = exp(2πi⌊N/2⌋/N)



Behavior of the spectral gap

• N even: ρ0 = −1 and λ(L) = 0, as well as λ(M(a)) = 0, for any
a ∈ [0, 1] (by periodicity).

• N odd: let CN ≔ cos(π/N) and aN =
1−
√

1−C2
N

1+
√

1−C2
N

. The evolution

of the spectral gap of λ(M(a)) is given by

λ(M(a)) =

{
1− 1+a

2 CN −
√

(1+a)2C2
N
−4a

2 , if a ∈ [0, aN ]
1−√

a , if a ∈ [aN , 1]

The largest spectral gap of M(a) correspond to the choice a = aN
and we get

λ(M(aN )) ∼ π

N

(to be compared with λ(L) ∼ π2

2N2 ).



Behavior of the whole spectrum

For N odd. For any a ∈ [0, 1], the spectrum of M(a) is included
into [−1, 1] ∪ C(√a). The eigenvalues go by pairs. At a = 0, one
starts from zero and the other one from an eigenvalue of L and
they go in the direction of each other (except for the pair
containing 1). When they meet, they begin to leave the real line
and go on the circle C(√a) ⊂ C. They will keep on moving on the
circle, in a conjugate way. Putting aside the exceptional pair, the
last pair to leave the real line is the one containing the eigenvalue
corresponding to the spectral gap. Once this pair has left the
interval [−1, 1], all the eigenvalues (except the two exceptional
ones) have the same modulus and so all of them correspond to the
spectral gap. At a = 1, all eigenvalues are regularly distributed on
the unit circle C(1) and are all of multipicity 2 (M(1) has two
irreducible classes).



Spectral problem of Theorem 2

V =
∏

l∈J1,rK ZNl
is a finite Abelian group generated by the

symmetric subset S . For a ∈ [0, 1], consider the homogeneous
speed transition kernel

K (a)(y , y ′) ≔

{ (
1 + a

s−1

)
1
|S| , if y ′ 6= −y

(1− a)/|S | , if y ′ = −y

For ρ ∈ V ∗, we want to find the spectral decomposition of the

centro-Hermitian matrix A
(a)
ρ ≔ △(ρ)K (a).

Note that ρ ∈ V ∗ can be identified with the vector
(ρ(y))y∈S ∈ TS .



A first reduction

Proposition

Let a ∈ [0, 1] and ρ ∈ V ∗ be fixed and assume that ρ as a vector is
not proportional to 1. Denote b(a) ≔ a/(|S | − 1),

c
(a)
ρ ≔ (1 + b(a))|S |−1

∑
y∈S ρ(y) and consider the matrix

C (a)
ρ ≔

(
0 −b(a)

1 c
(a)
ρ

)

The matrix A
(a)
ρ is in the same conjugacy class as a block diagonal

matrix whose diagonal blocks are the 2× 2 block C
(a)
ρ , with

multiplicity one, complemented with some 1× 1 block(s) (b(a))
and/or (−b(a)).

Idea: Vect(1, ρ) and {f ∈ F(S ,C) : µ[f ] = 0 and µ[ρ̄f ] = 0} are

stable by A
(a)
ρ .



A second reduction

Lemma

Let a′ = b(a) ∈ [0, 1] and ρ′ ∈ T be such that its real part is given

by s−1
∑

y∈S ρ(y). Then C
(a)
ρ is in the same conjugacy class as

B̂
(a′)
ρ′ ≔

(
1+a′

2 ρ′ 1−a′

2
1−a′

2
1+a′

2 ρ′

)

This comes from applying the above reduction to the previous ZN

example. Theorem 2 follows, essentially because the largest

modulus of the eigenvalues of A
(a)
ρ is just θ

(a′)
ρ′,∗, at least if 1 are ρ

are not proportional.
The evolution of the spectrum of M(a) can also be described in a
similar fashion as before.



Bad news!

Theorem 2 does not provide great improvements of the spectral
gap, except if |S | = 2. Consider a family of examples parametrized
by N belonging to a set N , endowed with a filter so that the notion
N → ∞ has a meaning. Put N to all the notations introduced.

Proposition

Assume that there exists s ∈ N \ {0, 1, 2} such that for any
N ∈ N , |SN | = s. Under the assumption that limN→∞ λN = 0, we
have as N → ∞,

ΛN = λ(M(1))

∼ s

2(s − 1)

(
1 +

(
s

s − 2

)2
)
λN



Example 1

We add 0 to the generating set S of the previous cyclic example:
Let N = N \ {0, 1, 2} and for N ∈ N , we take VN = ZN and
SN = {−1, 0, 1}, so that s ≔ |SN | = 3.
For N ∈ N large,

λN ∼ 4π2

3N2

and Proposition 8 gives us

ΛN ∼ 15

2
λN

∼ 10π2

N2



Example 2

This family of examples corresponds to the nearest neighbor
multidimensional torus models. Let r ∈ N \ {0, 1} be fixed. We
denote N = (N \ {0, 1, 2})r and for N = (N1, ...,Nr ) ∈ N ,
consider the group VN =

∏
l∈J1,rK ZNl

and the generating set
SN ≔ {±el : l ∈ J1, rK} where el = (δl (k))k∈J1,rK. Let us say that
N → ∞ if all its coordinates N1, ..., Nr go to infinity. Then as
N → ∞, we have

λN ∼ π2

2r

∑

l∈lN

1

N2
l

where lN ≔ {l ∈ J1, rK : Nl is odd}. In particular limN→∞ λN = 0
and Proposition 8 implies that as N → ∞,

ΛN ∼ r

2r − 1

(
1 +

(
r

r − 1

)2
)
λN



Example 3

The third family of examples comes back to the cyclic group, but
with a different set of generators, of cardinal 4. We take

N ≔ {n2 : n ∈ N \ {0, 1} and n odd}

so that
√
N is an odd integer for N ∈ N. The notion N → ∞ is

the usual one.
For N ∈ N, we consider VN ≔ ZN and SN ≔ {±1,±

√
N}. It

appears that

λN ∼ π2

4N

for N large. Again Proposition 8 shows only a modest
improvement for the spectral gap of M(1): for N large,

ΛN ∼ 10

3
λN ∼ 5π2

6N



Hope...

The conjecture would lead to more serious improvements of the
spectral gap.
Theoretically, Examples 1 and 3 (or Example 2 with r=2) could be
used to check this hope, since third and fourth algebraic equations
admit explicit solutions ...
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