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1- Strong stationary times

Consider a Markov process X = (Xt)t>0. A finite stopping time 7
(relative to the filtration generated by X and possibly some
independent randomness) is said to be strong if 7 and X; are
independent. If furthermore X is positive recurrent with p as
invariant probability and if X is distributed according to p, then 7
is called a strong stationary time. The notion was formally
introduced by in the context of finite
Markov chains, but an early example can be found in

, already for one-dimensional diffusions.



1- Dubins’ example

Consider for X the Brownian motion on [0, 1], reflected at 0 and 1
and starting from 1/2. It is positive recurrent with the restriction
of the Lebesgue measure as invariant probability. A strong
stationary time can be constructed as follows: let 71 be the first
time X hits 1/4 or 3/4. Next let 7, be the first time after 71 that
X7, £ 1/8 is reached. lIteratively, 7,11 is the first time after 7, that
X, £1/272 is hit. The limit 7 := lim,_,, 7, exists a.s. and is a
strong stationary time for X.

This construction can be extended to any initial distribution, by
first waiting that 1/2 is reached (not always smart, for instance if
Xo was already at equilibrium...).



1- Intertwining

In the finite framework, developed the tool
of intertwining with absorbed Markov chains to construct strong
stationary times. Intertwining of diffusions was also investigated by

and )
especially to deduce identities in law for particular processes.
Recently, studied some conditions
insuring that there exists an intertwining between two Markov
semi-groups and their article also provides a welcome survey of
applications of intertwining relations. Our goal is to come back to
the investigation of strong stationary times through intertwining,
but in the context of diffusions.



1- One-dimensional diffusions

Consider on R the Markovian generator
L = ad*+bo

with regular coefficients and introduce

VxeR, c(x) = Lx%dy

p(x) 200

(1 is the speed measure, the scale function is exp(—c)). We
assume that p has a finite mass (then it is renormalized into a
probability measure) and furthermore that the process X
associated to L is positive recurrent or ergodic:

0 0
j_ exp(—c(y))dy = +o and L exp(—c(y))dy = +oo



1- Main result

Define

I = f_ooo <fe><p(—6(y))dy> p(dx)

Lo [ ([} ewt=ctray) uton

0
max(/_, 1)

—
Il

Assume that X is positive recurrent. There exists a strong
stationary time for X, whatever its initial distribution, if and only if
| < 4o00.




1- Trace class

The same result holds for diffusions on the half-line R, just
replace | by /. In this context (but it should be also true on R),

have shown that the condition /; < 400 is
equivalent to the strong ergodicity of X:

3C,e>0:V LX), Vt=0, |[L(Xe) = pl,y, < Cexp(—et)

and to the centered Green operator G having a finite trace, where

+00

VFeB®R). Y xeRy, Gl = | EAFX) - ulfl]de
0

(namely L has no continuous spectrum and the sum of its non-zero

eigenvalues converges). Nevertheless this equivalence cannot be

true for general Markov processes.



1- Duality (1)

Transposing to the diffusion setting the program described by

, we are looking for a state space E*, a
Markov kernel A from E* to R and a Markovian generator L* on
E* satisfying the intertwining relation AL = L*A on a sufficiently
large domain of functions. In principle, this enables the
construction of strong times. To get strong stationary times, it is
required that the generator L* leads to an absorbed process Z*,
say at o0 € E*, and that A(w, ) = pu.
Indeed, if furthermore £(Xo) = L(Z§)A, then it should be possible
(always true for finite state spaces) to couple X and Z* through
an intertwining:



1- Duality (2)

(i) For any t > 0, the piece of trajectory Z[?),t] is constructed from
X[o,s] @and independent randomness. So that any stopping time 7
with respect to the filtration generated by the process Z* is also a
stopping time for X.

(ii) For any finite stopping time 7 with respect to the filtration
generated by the process Z*:

LXA|Zoq) = MZEL)

In particular, under the previous conditions, if we consider the
absorbing time 7* of Z*, then

L(Xrx|Zjo ) = 1

so that 7* is a strong stationary time for X.



1- A dual process (1)

Here
E*
E*
D*

is a solution: E™ is the set of extended segments

= {(X7y) PX Y E [_OO7+OO]7 X< y}\{(—OO, _00)7 (+007 +OO)}
= {(x,y)eR? : x <y}
= {(x,x) € E* : xe R}

N is the conditioning of 1 on these segments:

5X(A) if y=x
N(x,y),A) = ulxylnA) herwise
u(lxyl)

for any (x,y) € E* and for any Borelian set A.
The description of the diffusion generator L* is more frightening:



1- A dual process (2)

on E*,
= (Valy)dy, —v/a(x) ( )/2 = b(x))0x + (' (y)/2 — b(y))dy
+2 M([;yp Va8, ~ a1
on R x {+o0},
- - Julx a(x
(Va0 + (3 (/2 = b(x)ox ~ 2 N oGy,
on {—w} x R,
B Vauly)
(Valy)dy) y)/2 = by ))3y+2#((_oo’y])\/ (¥)dy

and a Dirichlet condition is put at o0 := (—00, +00).



1- A dual process (3)

It is not necessary to make precise the boundary condition on the
diagonal D*, because it is an entrance boundary:

Proposition

For any initial distribution on E*, there is a continuous Markov
process Z* = (Z;)=0:

- starting with this condition,

- whose generator is L* (in the sense of martingale problems),

- satisfying for all t > 0, Z} € E*\D*,

- which is absorbed at o (if it reaches it).

Furthermore the law of Z* is uniquely determined.

But the generator L* is not the uniquely one which can be
intertwined with L through A:



1- Other dual processes

This relation is also true if L* is replaced by

(v aly)dy++/a(x)0x) x)/2 = b(x))0x + (a'(y)/2 = b(y))dy

+2v “([va]) Julx «/ y)0y++/a(x)0x)

(on E* and its natural extensions on R x {+0} and {—c0} x R).
But D* is no longer an entrance boundary, because the drift
coefficient does not degenerate near D*: an associated process
starting in D* stays in D* ...

For any a € (0,1), the generator L* := (1 — a)L* + al* also
satisfies the intertwining relation and is elliptic. But this is not an
advantage, as it can be shown that the associated strong
stationary time (if it is finite) strictly stochastically dominates the
one corresponding to L* = L§.




1- Explosion

Consider the (complete) explosion time for Z*:
™ = inf{t=>0: Z} = (—o0, +0)}

Up to the construction of the intertwining between X and Z*, the
previous arguments, the fact for any initial probability mg on R, we
can find a distribution m§ on E* such that mg = m§A (take for
instance mf := {0, xy mo(dx)) and the next result provide the
direct implication in Theorem 1:

Proposition

The random time 7* is a.s. finite, whatever L(Zf), if and only if
| < +0o0. By consequence T* is a strong stationary time for the
positive recurrent diffusion X.




1- Separation discrepancy

The separation discrepancy s(v, 11) between two probability
measures v and p on E is defined by

dv
s(v,pu) = supl— —(x
( ) xeE d:u( )
The computations of show that for any
strong stationary time 7 for X, we have

V=0,  s(L(X),p) < Plr>t]

These inequalities may be equalities for all times t > 0 and such
times 7 are then stochastically minimal among all strong stationary
times. They are called sharp stationary times. The converse
implication in Theorem 1 relies on the fact that for initial
distributions of X of the form A((—0,x),-) and A((x, +0), -),
with x € R, the random time 7* defined is indeed a sharp
stationary time.



1- Langevin diffusions

When is this technique working? Consider Langevin diffusions:
a=1land b= —U’, where U : R — R is a smooth potential. The
(density of the) invariant measure p is then proportional to
exp(—U). The condition | < 400 writes down

0 1 400 1
max p((=00,x)) —— dx,f w((x, +0))—— dx> < 4o
U_oc n(x) " Jo p(x)
If for |x| large enough, U(x) = |x|%, with a > 0, the above
condition is satisfied if and only if & > 2, in particular, the
benchmark Ornstein-Uhlenbeck process is not covered. This could
also have been guessed from >, 1/n = +400.

We will see how to get around this difficulty by considering other
strong times 7.



2 - Evolving sets

L

Consider the generator given on E* by

= (Valy)dy = /a(x)0)? + (' (x)/2 = b(x))x + (3 (y)/2 = b(y))dy

(and its natural extensions on R x {+ o0} and {—o0} x R). The
diagonal is not an entrance boundary, impose Neumann boundary
condition there and Dirichlet condition on (—00, 4+0), (—00, —00)
and (400, +0), to define an associated process. It is the
continuous equivalent of the evolving sets introduced by

for denumerable Markov chains. Consider the
mapping h defined on E* by

Vz=(xy)eE*  h(z) = p(lxy])



2 - Doob transform

It is not difficult to check that L[h] = 0. N
It follows that the generator L* is the h-transform of L:

UL = Lk

where T is the carré du champ associated to L: for any smooth
functions f, g defined on E*,

rf,g] = Llfg] - fLlg] - gL[f]

In particular we get L*[1/h] = 0.



2 - Martingales

Thus if Z* is started with a condition zy € E*, then (1/h(Z;))e=0
is a positive (local) martingale. By the usual convergence theorem
for such a martingale, Z* cannot approach D* and it can only exit
E* through (R x {+0}) U ({—0} x R) L {(—0, +m0)}. So there
is no difficulty about the construction of Z*. Writing

Z* = (X*,Y*), it is given as the solution of the s.d.e.

. a(XF)(XE) ++/a(YE)u(YE) .
dxXy = -2 ( Rz Va(X; )) dt
(2 (X}) — b(XF))dt — \/2a(X}) dB:

b a(X)nXE) +alYEIu(Ye) s
dyy = 2( DG YT (Yt)> dt

+(3'(YF) = b(Y{))dt + \/2a(YF) dB,

where B = (B¢)t=0 is a standard Brownian motion.




2 - Bessel (1)

For z € E*, designate by P, the law on the set of trajectories
C(Ry, E*) of Z* starting from zp. We would like to define P(, .,
for (xo,x0) € D*, as the limit of P, _ . +e as €, > 0 go to zero.
Via a transformation of the trajectories from C(Ry, E*), all the
difficulties can be encapsulated into a Bessel process of

dimension 3: under PP, for some zg € E*, consider

¢ = 2 £< (X (XE) 1 A/a(YE)u(YE)2 ds € (0, +o0)]

and the time change (0).c[o,] given by

0
2 fo (VaO@(XE) + /AP (Ve ds = ¢



2 - Bessel (2)

We are interested in the process R := (R:):=0 given by

Vt=0, R: = h(Z; )

Otne

Proposition

Under P, with zg € E*, R has the law of a Bessel process of
dimension 3 starting from h(zy) € (0,1) and stopped at 1. In
particular < is distributed as the first reaching time of 1 for this
process.

The proof is based on usual stochastic calculus and on

1~

L*[h] = =(2hL[h] + T[h, h]) = £ [h. bl

> =



2 - Bessel (3)

By taking into account that

lim h(Z) = lim Ry = 1

t—>T¥— t—¢—

we get as a first consequence that (almost surely),

lim X = —oo
toT¥—
lim Yy = 4w
t—T¥*—

The question is now to determine if 7 < +00.

A little more involved manipulations of the trajectories enable to
deduce the existence and uniqueness of the law of Z* starting from
a point of D*, essentially due to the same result for the
3-dimensional Bessel process R starting from 0 and whose e.d.s. is
given by

dR; = —dt dw,
t R, + t



3 - Comparison (1)

Our next goal is to check that / < 4o0 implies that 7* < + 0
(a.s.).

By symmetry, it is sufficient to work with Y* and to show that
Tt =inf{t >0 : Y = +w} < +w if I, < +0o0. This leads to
consider on R the reflected diffusion

dUs = (3'(Ug) — b(Us) + 2a(Up)K'(Uy)) dt + +/2a(Uy) dB: + dix(U)

up to the explosion time 7(U) = inf{t > 0 : U; = + 0}, where
(It(U))t=0 is the local time of U at 0 and where k is the mapping
R 3 x — In(u((—00,x])). Indeed, a traditional comparison result
says that if Y* and U start from the same initial condition and are
driven with the same Brownian motion, then U stays below Y™ up
to the time when U reaches 0.



3 - Comparison (2)

It is then enough to obtain:

The explosion time 7(U) is finite almost surely if and only if
Iy < +00.

After symmetrization of U, the proof is based on the well-known
criterion: if V is a diffusion solution of

dVe = b(V)dt +/23(V;) dB;

with odd/even coefficients, then inf{t > 0 : lims_;_ |Vs| = +o0}
is a.s. finite if and only if

J:OO exp <— fox % dy) J: exp (

zh d
J ﬂdu)A—zdx<+oo

o a(u) ) a(z)



3 - Comparison (3)

The reverse part is important when the initial law of Z* is

(—o0, y*), with some y* > 0: in this case X* = —oo0 and Y*
coincides with U, up to its reaching time of 0. If follows easily that
7* < +0o0 if and only if I, < +o0.

In this particular situation, 7 is a sharp stationary time, because
L(Xe) = E[A(=o0, V), -)]

S(L(Xe)u) = supE [1 _ AN, Ye), ')<x>}

xeR d,u
- d/\((—OO, Yt*)7 )
= 1= XETOOE [ du (X)]

= 1-P[Y} = ]
= P[r* < t]

Thus if there exists a strong stationary time for X, 7% must be
finite a.s.



4 - Commutation relations for the generators (1)

All the previous considerations are relevant if there exists an
intertwining of X with Z*. We begin with

For any f € C2(R) such that f and L[f] belong to L.} (11), we have

Vze EX\(D* u{(-o0,+0)}),  AlL[f]I(z) = L*[A[f]l(2)

Indeed, in one hand, by definition,

where

vV (X,y") e E*, F(x',y") = j f(u) u(du)



4 - Commutation relations for the generators (2)

Since dxF(x,y) = —pu(x)f(x) and 0y F(x,y) = pu(y)f(y), it
follows that for (x,y) € E*,

CINEIGY) = oy GWIRMIEFY) — 20)u(02,F(x)

On the other hand, factorizing L under the form %8(3/16 -), we get

fy L[f])(u) p(du) = Jy 0(apof)(u) du
= a(y)u(y)of (y) — a(x)u(x)of (x)

The commutation relation follows on £*. Similar computations are
valid on {—o0} x R and R x {+o0}.



4 - Commutation relations for the semi-groups

Writing P: = exp(tL) and P; = exp(tL*), next result could seem
obvious:

Proposition

Assume that X is positive recurrent. Then for all T > 0 and all
bounded and continuous function f on R, we have

VzeE',  APr[fllz) = PTAIF]I(2)

But technically it was not so simple, since we did not find an
appropriate Banach setting for (P} )¢>o. Instead, we resorted to
the classical trick of investigating the evolution of

[0, T]at — PIAPT—[f]]]

and to the martingale problem satisfied by Z*.



4 - Skeletons (1)

Applied with T = 27N the previous result enables to adapt the
construction of , to obtain an intertwining
Markov chain ()?rsév,),\,, ZS;V,”:,)

L(Xo) = L(ZF)N:

)nez., , assuming that

° (X,E;V—)N)nez+ and (X,5-n)nez, have the same law

i (_,S;V—’Z))nea and (Z%,_w)nez, have the same law

e Y me Z,, the conditional law of )_(,57,\2/)

29 M 2 s Az

2=N > m2—N>

v knowing

e VY me Z,, the conditional law of (ZO(N’*), Zz(ﬁl,(,*), ,2,57/\2/3)1)
knowing (X,EQI_)N)neZ+ only depends on )_<(§N), _2(,_\[,\,, ...,)_(,(nl\zl)_,\,



4 - Skeletons (2)

Considering the natural extension to continuous time:

o(N) (N . (N 5(N,

vez0, (XM ZM) = (X Z )
we get that the sequence of the laws of (X(N), Z(N:¥)) for N e N,
on the Skorokhod space D(R,,R x E*), is relatively compact. We
can thus extract a subsequence converging to a probability
measure P which is necessarily supported by the set of continuous
trajectories. Under this law, the canonical coordinate process
(Xt, Z{)ter, is a coupling of X with Z* satisfying for all t e R,
is A(Z;k> )

e the conditional law of X; knowing Z[th]

e the conditional law of Z["(‘)’t] knowing X depends only on )_([O,t]

This is the wanted intertwining relation.



5 - Ornstein-Uhlenbeck process

An Ornstein-Uhlenbeck process X is a solution of
Vt>0, dX; = —X;dt+\2dB;
and the variation of parameters method gives:

t
Xe = exp(—t)Xo + \/§f exp(s — t) dBs
0

Let us deal with the case Xy = 0. Explicit computations furnish
the exponential rate for the convergence in total variation:

We have

(IeXe) =l) = =2

lim —In
t—+owo t




5 - Dual diffusion

Despite that there is no strong stationary time, can this result be
recovered with strong times? The previous constructions are still
valid and we get by symmetry that Z* = (= Y™, Y*), with

Vi>0, dYf = (YF+g(Y¥)dt++2dB,
where g is the mapping defined by

= W)
T )

X and Y* can be intertwined as before: let LT be the generator of
Y* and AT be the kernel given by AT(y*, ) := A((—y*, y*),) for
y* = 0. We have

LIAT = ATL



From the intertwining, we deduce that for any M > 0,
T = inf{t=0: Y} =M}

is a strong time for X. Let v[_pm, m) be the conditioning of v on
the interval [—-M, M]. We have

For all t = 0 and M > 0, we have

Ime =l < Plriy > ]+ Jy—mmg — 7,

The independence of 74, and XT;; is crucial in the proof: it is a
kind of stochastic renewal property, which enables to use after time
7* the non-increasingness of the mapping

Ryas — [L(Xs) =l



5 - A sub-optimal idea

The second term is easy to bound: for all M > 0,

2
hiwan =7l < —oagerw(-/2)

For the first term, we could use a comparison of Y* with |Y/|,
where

Vt=0 dYy = Y.dt++V2dB;
But this process is more lazy near 0 and this leads to the bound
Plry > t] < Plrm(]Y]) > ]
2

< N |————Mef
(1—e2t)r ¢

(the exponential order of the last inequality is optimal).



5 - 1.2 framework (1)

To recover the exponent 2, we resort to a .2 point of view. Note
that LT = exp(— V)0 exp(V)d, which makes it apparent that LT is
symmetric in L2(v), where v is the o-finite measure on R whose
density is exp(V/), with

y2

YyeRy, V) = Z+20((0y)

Thus LT can be extended into its Freidrich extension in L?(v). We
will denote (P,_T),_?o the associated semi-group. Consider (Hp)nez,
the Hermite polynomials defined by

VneZi,VxeR, Ho(x) = (=1)"exp(x?/2)0" exp(—x?%/2)
They form a orthogonal basis of I.?(+) and diagonalize L:

VneZs, L[H,] = —nH,



5 - 1.2 framework (2)

Note that H, is even (respectively odd) if n is even (resp. odd). It
follows that AT[H,] = 0 if n is even. Since Hy = 1, we get that
AT[Ho] = 1 and this function does not belong to IL?(v). For the
remaining Hermite polynomials, denote H;n = N[Ha,], for ne N,
These functions can be computed explicitly: they belong to
L2(v)\{0}, and satisfy LTH;n = —2nH;n. Furthermore (H;n),,eN is
an orthogonal Hilbertian basis of L.?(). Thus the spectrum of LT
is —2N. By self-adjointness, we deduce that

Vit= 07 Vfe L2(V)¢ HPt[f]HLQ(V) < exp(—2t) HfH]LQ(V)

This is the main ingredient in a series of classical computations
leading to the existence of a constant C > 0 such that

Vt>o, VM>1  Polrf>t] < CM?exp(—2t)



5 - Quasi-stationary measure

It remains to choose M = /2t to recover the rate 2 of exponential
convergence in total variation.

Another related approach consists in remarking that the o-finite
measure 1 which admits the density H; > 0 with respect to v is a
quasi-stationary measure for LT (1 admits the density

Ry 3y — yv([0, y]) with respect to the Lebesgue measure):

for any t > 0 and any measurable function f : Ry — R, we have
(in Ry u {+00}),

n[PI[f]] = exp(—2t)n[f]

Again up to a traditional series of computations, this can be
transformed in the same bound as before on the queues of 7y,.
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