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Motivation

The barycentric subdivision cuts a given triangle among its
medians to produce six new triangles.
Choose uniformly one of them and iterate : we obtain a Markov
chain (4(n))n∈N.

Anti-motivation : this is not a good procedure to obtain nice
triangularizations, because the triangles have a tendency to
become flatter and flatter.
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Very incomplete history

Blackwell was very interested in this problem and found,
through a trial and error approach with the help of the computer,
a martingale argument to show that the above triangle-valued
chain becomes flatter and flatter exponentially fast.

Diaconis and McMullen and Hough also gave results in this
direction, through dynamical system arguments.

Our goal : to propose another probabilistic approach and to go
further in the description of the asymptotic behavior.
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Normalization

Up to similitude, we can assume that the longest edge of the
triangles is given by [(0,0), (1,0)], that (0,0) is also adjacent to
shortest edge and that the triangles are included into the upper
plane. We denote by (Xn,Yn)n∈N the coordinates of the other
vertex.
If Y0 = 0, the initial triangle is said to be flat. Then Yn = 0 for all
n ∈ N, and we denote (Zn)n∈N the Markov chain of the
abscissas in this situation.
Let also (An)n∈N be the greatest angles.
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Results (1)

We begin by recovering a result of Blackwell, confirming the
tendency to flatness :

Theorem 1
Almost surely (a.s.) the stochastic sequence (Yn)n∈N converges
to zero exponentially fast : there exists a constant χ > 0 such
that a.s. :

lim sup
n→∞

1
n

ln(Yn) ≤ −χ

We will numerically estimate that we can take χ ≈ 0.07.
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Results (2)

Next we give a new proof of a result due to McMullen and
Diaconis :

Theorem 2
The sequence (An)n∈N is converging to π in probability.

Despite the convergence in probability, this result will be more
difficult to deduce than Theorem 1, because the abscissa chain
is not converging :

Theorem 3
Almost surely, the limit set of (Xn)n∈N is [0,1/2].
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The isoperimetric functional

The isoperimetric value of a (non-trivial) triangle 4 is

I(4) B
P(4)√
A(4)

B
perimeter√

area

It is related to the characteristic coordinates (x , y) of 4
through :

√
y/3 ≤ (I(4))−1 ≤

√
y

Proposition 4

Almost surely, we have lim supn→∞ I(4(n)) = +∞.
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A simple geometrical idea

The proof is very simple : let L1, L2 and L3 the lengths of the
edges of a triangle4 and l1, l2 and l3 the lengths of its medians.
Then l1+l2+l3

L1+L2+L3
is minimal for 4 equilateral. We deduce that

Lemma 5

For any n ∈ N, we have, with α B
√

3+1−
√

6√
6

> 0,

E[I(4(n + 1))|4(n)] ≥ (1 + α) I(4(n))

This comes from the fact that the areas of the triangles obtained
by the barycentric subdivision of 4 are the same and that the
total sum of the perimeters is L1 + L2 + L3 + 2(l1 + l2 + l3).

9/ 26



Introduction and results
Attraction to flatness

The limit flat Markov chain Z
Almost sure convergence to flatness

Ergodicity of Z
Asymptotic behavior of X

Numerical simulation

No martingale argument

From the above inequality we cannot deduce the a.s.
divergence of (I(4(n)))n∈N, but, taking into account the
isoperimetric inequality, we get

∀ n,m ∈ N, P[In+m ≥ (1 + α)m2
√
π|4(n)] ≥ 1

6m

Thus by stochastic comparison with an independent Bernoulli
sequence of parameter 1/6m, we get the above proposition
saying that the triangle chain always comes as close as we
want to the set of flat triangles.
Another simple computation shows the following preliminary
bound : there exist 0 < a < b < +∞ such that

∀ n ∈ N, aI(4(n)) ≤ I(4(n + 1)) ≤ bI(4(n))
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Kernels (1)

The Markov kernels Q and M of (Xn,Yn)n∈N and (Zn)n∈N can
be naturally coupled and written under the following iterated
random function form,

Q((x , y), · ) =
1
6

∑
i∈J1,6K

δ(xi ,yi )

M(x , · ) =
1
6

∑
i∈J1,6K

δzi (x)

As y → 0+, they are close in the sense that
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Kernels (2)

Lemma 6
There exists a constant K > 0 such that for any characteristic
point (x , y),

∀ i ∈ J1,6K,
{
|xi(x , y)− zi(x)| ≤ Ky

|yi(x , y)| ≤ K
√

y
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In the neighborhood of flat triangles (1)

The isporimetry value of flat triangles is +∞, nevertheless, for
i ∈ J1,6K, the ratios I(4i)/I(4) admit a limit as y → 0+ “and x
remains fixed”, denoted G(i , x), with

G(1, x) =
√

2
3(1 + x), G(2, x) =

√
1
6(2− x)

G(3, x) =
√

3
2(1− x), G(4, x) =

√
2
3(2− x)

G(5, x) =
√

2
3(2− x), G(6, x) =

√
3
2

So to get E[ln(I(4(n + 1)/I(4(n))|4(n) = 4] > 0 for nearly flat
triangles 4, it is sufficient to show that the mapping
[0,1/2] 3 x 7→

∑
i∈J1,6K ln(G(i , x)) only takes positive values.
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In the neighborhood of flat triangles (2)

Unfortunately, this is wrong and we need to iterate :

Proposition 7
There exist a constant γ > 0 and a neighborhood N of the set
of the flat triangles, such that for any n ∈ N,

∀ 4 ∈ N , E[ln(I(4(n + 2))/I(4(n)))|4(n) = 4] ≥ γ

Indeed, it is sufficient to check that the mapping

[0,1/2] 3 x 7→ 1
36

∑
i,j∈J1,6K

ln(G(j , zi(x))G(i , x))

is positive. We used the computer to show that numerically.
Since the exponential of this function is a polynomial mapping
by pieces, this can be done algebraically via Sturm sequences.14/ 26
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A martingale argument (1)

Let γ > 0 and A > 0 be two given constants. Assume that for
any R large enough, we are given a stochastic chain (V (R)

n )n∈N
and a martingale (N(R)

n )n∈N, satisfying V (R)
0 = R, N(R)

0 = 0 and
such that for any time n ∈ N,∣∣∣N(R)

n+1 − N(R)
n

∣∣∣ ≤ A

V (R)
n+1 − V (R)

n ≥ γ + N(R)
n+1 − N(R)

n

Lemma 8
There exists a constant A′ > 0 only depending on A and γ :

P[∃ n ∈ N : V (R)
n < R/2] ≤ exp(−γR/A′)

1
1− exp(−γ2/(4A′))
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A martingale argument (2)

Furthermore, we have a.s.

lim inf
n→∞

V (R)
n

n
≥ γ

These results follow from standard considerations, via
exponential martingale bounds and the iterated logarithm law.

The latter lemma is applied with V (R) a sequence of the kind
(ln(I(4(2n)))n∈N, appropriately started and stopped. Choosing
conveniently R (corresponding to a neighborhood of the set of
flat triangles), we get from our preliminary bounds :
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A.s. convergence

Proposition 9

Let N ′ B {4 : ln(I(4)) > R1}. There exists a large enough
constant R2 ≥ 2R1 such that for any finite stopping time T
satisfying ln(I(4(T ))) ≥ R2, we have

P[∃ n ∈ N : 4(T + n) 6∈ N ′|TT ] < 1/2

Furthermore on the event {∀ n ∈ N : 4(T + n) ∈ N ′}, we have
a.s.

lim inf
n→∞

ln(In)
n

≥ γ/2

Then Theorem 1 with χ = γ/2 follows from Proposition 4.
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Ergodicity

To go further, we need to show that Z is ergodic : M admits a
unique attracting invariant probability µ, namely satisfying
µM = µ and for any probability ν on [0,1/2], limn→∞ νMn = µ.
We also would like an estimation of the speed of convergence
in Wasserstein distance (because in the end we will need to
couple X and Z ).
Barnsley and Elton (1988) gave such results under the
assumption that there exists r < 0 such that

∀ x 6= y ∈ [0,1/2],
∑

i∈J1,6K

1
6

ln
(
|zi(y)− zi(x)|
|y − x |

)
≤ r
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Iterated random functions
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FIG.: Graphs of the zi , for i ∈ J1,6K
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On Barnsley and Elton’s criterion

This criterion implies that

sup
x∈[0,1/2]

∑
i∈J1,nK

1
6

ln(|z ′i |(x)) ≤ r

but in general this is not a sufficient condition for ergodicity.
Nevertheless, taking into account that our random functions are
piecewise homographical mappings, we can go back.
Except that we have to apply these considerations to the
iterated mappings zi ◦ zj , for i , j ∈ J1,6K. Curiously, we end up
with a computation already encountered, since

∀ i ∈ J1,6K, ∀ x ∈ [0,1/2],
∣∣z ′i ∣∣ (x) =

1
G2(i , x)
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On the invariant probability µ

We need two other facts :

Proposition 10

The probability µ contains no atom, in particular µ({0}) = 0.
The support of µ is the whole segment [0,1/2].

The second assertion is an immediate consequence of a result
due to Dubins and Freedman (1966), saying that the support of
µ is the whole state space if it can be covered by the images of
the functions zi which are strict contractions.
The first assertion would be a consequence of the same paper,
if the iterated random functions were one-to-one. A more
careful investigation is necessary in our case.
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Couplings

The criterion of Barnsley and Elton applied in our situation
implies that there exist q ∈ (0,1] and ρ ∈ (0,1) such that for
any n ∈ N, we can construct a coupling such that

E[|Zn+2 − Z ′n+2|q|Zn,Z ′n] ≤ ρ|Zn − Z ′n|q

where Z and Z ′ are Markov chains with M as kernel.
A similar coupling gives, for a constant K ′ > 0,

E[|Zn+2 − Xn+2|q|Zn,Xn,Yn] ≤ ρ|Zn − Xn|q + K ′Y q/2
n

It follows easily that the random variable |Xn − Zn| converges in
probability to zero for large time n ∈ N.
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Convergence in probability

Due to our renormalization and to Theorem 1, the convergence
in probability of the angle An is equivalent to the convergence of
Yn/Xn toward zero. Let ε, η > 0 be given and write for any
n ∈ N,

P[Yn/Xn ≥ ε] ≤ P[Yn ≥ 2εη] + P[Xn ≤ 2η]
≤ P[Yn ≥ 2εη] + P[|Xn − Zn| ≤ η] + P[Zn ≤ η]

Taking into account that the attractive probability µ of Z is
continuous, we get by letting n going to infinity

lim sup
n→∞

P[Yn/Xn ≥ ε] ≤ µ([0, η])

and the wanted result follows by letting η going to zero.
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Limit set of X

The bounds obtained on the ergodicity of Z implies that for any
open set included in [0,1/2], we can find η > 0 and N ∈ N∗
such that

inf
z∈[0,1/2]

Pz [ZN ∈ O] ≥ η

Using what we have already seen, this can be translated into
the fact that there exist η′ > 0 and N ′ ∈ N∗ such that

inf
(x ,y)∈D

P(x ,y)[XN′ ∈ O′] ≥ η′ (1)

where D is the set of characteristic points.
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Simulation of µ

Here is an approximation of µ using the strong law of large
numbers with (Zn)0≤n≤100000. The following histogram uses 100
bars.
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FIG.: An approximation of µ
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Evaluation of χ

Instead of iterating twice the kernel M, we can iterate it N times
and in the limit as N goes to infinity, we get an evaluation of the
constant χ of Theorem 1 :

χ ≈ lim
N→∞

1
N

∑
n∈J0,N−1K

Ex [ln(G(In+1,Zn))]

=
1
6

∑
i∈J1,6K

∫
ln(G(i , x))µ(dx)

Using the above simulation of µ, we get χ ≈ 0.07.
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