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The classical Metropolis algorithm

Very popular algorithm for simulation.

• S finite set endowed with a Markovian kernel K
• π positive probability measure on S

Goal : construct Kπ Markov kernel reversible wrt π.

Kπ(x , y) B

{
min

{
K (x , y), π(y)

π(x)K (y , x)
}

, if x 6= y
1−

∑
z∈S\{x} Kπ(x , z) , if x = y

If it is furthermore ergodic, use a corresponding Markov chain
(X̃n)n∈N.



Billera and Diaconis’ characterization

K set of Markov kernels, K(π) subset of those reversible wrt π,
K(π,K ) subset of K(π) consisting of Markov matrices M whose
off-diagonal entries are less or equal than those of K .

∀ K ,K ′ ∈ K, d(K ′,K ) B
∑
x∈S

π(x)
∑

y∈S\{x}

∣∣K ′(x , y)− K (x , y)
∣∣

Theorem 1 (Billera and Diaconis [2001])
With respect to d, the Metropolis kernel Kπ minimizes the
distance from K to K(π) and it is the unique minimizer of the
distance from K to K(π,K ).



Our purpose

Extension to continuous time framework ?

Immediate for finite jump processes ! What for diffusion
processes ?

How to recover the well-know fact : the Metropolis algorithm
associated to 4/2 and π# exp(−U) is

(4 · − 〈∇U,∇·〉)/2

Incantation : use entropy.
First work with S finite set endowed with a generator L, Markov
process X (µ) B (X (µ)(t))t≥0 starting from µ (M other generator,
Markov process Y (µ)).



Entropy

Recall that for any probability measures µ, ν,

Ent(µ|ν) B

{ ∫ dµ
dν ln

(
dµ
dν

)
dν ≤ +∞ , if µ� ν

+∞ otherwise

Interpretation for simulation ?

Proposition 2
If π is invariant for M, for any T ≥ 0, we have

Ent(L(Y (π)([0,T ]))|L(X (π)([0,T ]))) = T d̃(M,L) ≤ +∞

where is the discrepancy d̃(M,L) is given by∑
x∈S

π(x)
∑

y∈S\{x}

M(x , y) ln
(

M(x , y)

L(x , y)

)
−M(x , y) + L(x , y)



Another Metropolis generator

Disturbing the initial distribution π ?

lim
T→+∞

Ent(L(Y (µ)([0,T ]))|L(X (µ)([0,T ])))/T = d̃(M,L)

Definition of another Metropolis algorithm :

Theorem 3

The mapping L(π) 3 M 7→ d̃(M,L) admits a unique minimizer
L̃π which is given by

L̃π(x , y) B


√

π(y)
π(x)

√
L(x , y)L(y , x) , if x 6= y

−
∑

z∈S\{x} L̃π(x , z) , if x = y



ϕ-relative entropy

ϕ : R+ → R+ convex function satisfying ϕ(1) = 0, ϕ′(1) = 0
and whose growth is at most of polynomial order

Entϕ(µ|ν) B

{ ∫
ϕ
(

dµ
dν

)
dν , if µ� ν

+∞ otherwise

Proposition 4

Without any assumption on M, we have

lim
T→0+

Entϕ(L(Y (π)([0,T ]))|L(X (π)([0,T ])))/T = dϕ(M,L)

where the discrepancy dϕ(M,L) is given by{ ∑
x∈S π(x)

∑
y∈S\{x} L(x , y)ϕ

(
M(x ,y)
L(x ,y)

)
, if M � L

+∞ otherwise



Even more Metropolis generators...

Proposition 5
If ϕ is furthermore assumed to be strictly convex then the
mapping L(π) 3 M 7→ dϕ(M,L) admits a unique minimizer Lϕ,π.

Example of a kind of Huber loss function : for ε ∈ (0,1/2], let ϕε
satisfy ϕε(x) = (x − 1)2 for any x ∈ [1− ε,1 + ε], ϕ′ε = −1 on
[0,1− ε) and ϕ′ε = 1 + ε on (1 + ε,+∞). Then there is a unique
minimizer Lϕε,π and

lim
ε→0+

Lϕε,π = Lπ

This “definition” can be extended to the diffusion situation.



Martingale problems

S finite set, two generators L and L̃, µ initial distribution,
corresponding trajectorial laws Pµ,[0,T ] and P̃µ,[0,T ] on the
canonical probability space.
Natural martingale associated to a function f :

M(f )
t B f (X (t))− f (X (0))−

∫ t

0
L[f ](X (s)) ds

Extension for functions on S2 : if F = f ⊗ g :

M(F )
t B

∫ t

0
f (X (µ)(s−)) dM(g)

s

For x 6= y and t ≥ 0,

M(x ,y)
t = N(x ,y)

t −
∫ t

0
L(x , y)1x (X (s)) ds

where N(x ,y)
t = number of jumps from x to y up to time t ≥ 0.



Girsanov’s formula

Theorem 6

Under the assumption that L̃� L, for any initial condition µ and
any finite time horizon T ≥ 0, we have P̃µ,[0,T ] � Pµ,[0,T ] and
the corresponding Radon-Nikodym derivative is given by

d P̃µ,[0,T ]

dPµ,[0,T ]
= exp

(
M(V )

T +

∫ T

0
v(X (s)) ds

)

= exp

 ∑
x 6=y∈S

V (x , y)N(x ,y)
T +

∫ T

0
g(X (s)) ds





Formulas...

where

V (x , y) B ln

(
L̃(x , y)

L(x , y)

)
v(x) B

∑
y 6=x

L(x , y)(V (x , y)− exp(V (x , y)) + 1)

g(x) B L̃(x , x)− L(x , x)

This comes from a more general abstract formulation :
Under technical conditions, the Markov process X̃ is absolutely
continuous on compact time interval with respect to X iff there
exists a (pseudo-)function V of two variables such that

L̃· = L ·+Γ[exp(V ), ·]

where Γ is the carré du champ associated to L (acting on the
second variable).



exponentielle du champ

This corresponds to modify the intensity of jumps and adding
drifts in the directions permitted by the diffusion coefficients
(result due to Kunita [1969]).
The Radon-Nikodym density is given on the time interval [0,T ]
by

exp

(
M(V )

T +

∫ T

0
I[V ](X (s)) ds

)

where I is a kind of exponentielle du champ :

I[V ](x) B exp(−V (x , x))L[exp(V (x , ·)](x)− L[V (x , ·)](x)

(it coincides with Γ[V ,V ](x)/2 for diffusions processes).



Relative entropy computation

Let µt the law of Y (µ)
t and

F (x) B
∑

y∈S\{x}

M(x , y) ln
(

M(x , y)

L(x , y)

)
−M(x , y) + L(x , y)

Using that (N(x ,y)
t −

∫ t
0 M(x , y)1x (Y (µ)(s)) ds)t∈[0,T ] is a

martingale, we get (if M � L)

Ent(L(Y (µ)([0,T ]))|L(X (µ)([0,T ]))) =

∫ T

0
µt [F ] dt

Proposition 2 follows from π[F ] = d̃(M,L).



Minimization of d̃(·,L) on L(π)

Let � be a total ordering on S, using the reversibility of M wrt π,

d̃(M,L) =
∑
x≺y

π(x)M(x , y) ln
(

(π(x)M(x , y))2

π(x)L(x , y)π(y)L(y , x)

)
−2π(x)M(x , y) + π(x)L(x , y) + π(y)L(y , x)

and each summand can be minimized independently, to prove
Theorem 3.
Note due to the inequality ∀ a,b ≥ 0, min(a,b) ≤

√
ab,

L̃π makes the corresponding process go faster to the
equilibrium π than Lπ.



Jumps rate

The probabilistic description of X (µ) leads to

lim
t→0+

t−1Eµ

ϕ
exp

 ∑
(x ,y)∈S(2)

a(x , y)N(x ,y)
t


=

∑
(x ,y)∈S(2)

µ(x)L(x , y)ϕ(exp(a(x , y)))

for any function ϕ locally bounded and whose growth is at most
of polynomial order and any a(x , y) ∈ R t {−∞}.
Proposition 4 follows, because the addition of a term∫ t

0 h(X (µ)(s)) ds doesn’t change this behavior if ϕ′(1) = 0.



Convex minimization

As in the entropy case, we are led to minimize in α the convex
expression (with β = π(x)L(x , y), β′ = π(y)L(y , x), for x ≺ y ),

Φβ,β′(α) B βϕ

(
α

β

)
+ β′ϕ

(
α

β′

)
and there is a unique solution if “there is no opposite slopes of
flat parts of ϕ”.
Not the case for |· − 1| : M is minimizing for d(·,L) on L(π) iff
∀ x ≺ y , π(x)M(x , y) = π(y)M(y , x) ∈ [π(x)L(x , y), π(y)L(y , x)]
and we get the announced convergence of Lϕε,π.



Diffusion generators

S smooth compact manifold of dimension n ∈ N∗

L[f ](x) B
1
2

∑
i,j∈J1,nK

ai,j(x)∂i,j f (x) +
∑

i∈J1,nK

bi(x)∂i f (x)

in any chart, a and b smooth and a invertible.

X (µ) corresponding diffusion process and X̃ (µ̃) associated to
another generator of the same kind L̃.

Ellipticity and iterated logarithm law enable to show that for any
T > 0,

L(X̃ (µ̃)([0,T ]))� L(X (µ)([0,T ])) ⇒ ã = a



Riemannian setting

Since we will be interested in absolute continuous diffusions,
consider the Riemannian structure generated by a−1. Usual
notations : |·|, ∇, 4, λ etc.

Intrinsic writting : L· = 4/2 ·+〈b,∇·〉, with b a vector field.

The traditional Girsanov’s formula can be formally recovered by
the same approach as in the finite set case, using a two
variables function F such that

∀ x ∈ S, ∇yF (x , y)|y=x = b̃(x)− b(x)



Girsanov’s formula

For any initial distribution µ and any finite time horizon T ≥ 0,
the law L(X̃ (µ)([0,T ])) is absolutely continuous with respect to
L(X (µ)([0,T ])) and the corresponding Radon-Nikodym density
is equal to

L(X̃ (µ)([0,T ]))

L(X (µ)([0,T ]))
= exp

(
M(b̃−b)

T − 1
2

∫ T

0

∣∣∣b̃ − b
∣∣∣2 (X (µ)(t)) dt

)

where (M(b̃−b)
t )t≥0 is a martingale whose bracket is given by

∀ t ≥ 0, 〈M(b̃−b)〉t =

∫ t

0

∣∣∣b̃ − b
∣∣∣2 (X (µ)(s)) ds



Discrepancy on the set of generators

For the behavior of ϕ-relative entropies, we need that ϕ′′(1)
exists :

lim
T→0+

Entϕ(L(X̃ (π)([0,T ]))|L(X (π)([0,T ])))/T =
ϕ′′(1)

2
d(L̃,L)

where the discrepancy d(L̃,L) doesn’t depend on ϕ :{ ∫ ∣∣∣b̃ − b
∣∣∣2 (x)π(dx) , if L̃ ∼ L

+∞ , otherwise



Entropy minimization

Let π a probability measure with a smooth and positive density
wrt λ. The Metropolis algorithm associated to L and π should
be the minimizer M of L(π) 3 L̃ 7→ d(L̃,L). This is
M = (4 · − 〈∇ ln(π),∇·〉)/2, since it is the unique generator of
the form L̃· = 4/2 ·+〈b̃,∇·〉 which is reversible wrt π.



Are you not fed up yet ?

Jumps can be added by considering generator of the kind
H = L + Q with

Q[f ](x) B

∫
(f (y)− f (x)) q(x , y)λ(dy)

where q a smooth and positive function on S2.
Using that diffusive and jump parts don’t interact (diffusive and
jump martingales are orthogonal, Girsanov density splits into
distinct factors, H is reversible wrt π iff L and Q are reversible
wrt π), similar computations can be done ...
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