On the cut-off phenomenon for the transitivity of randomly generated subgroups

André Galligo and Laurent Miclo

April 21, 2010
（1）Introduction and results
（2）Fixed points for the uniform transposition model
（3）Transitivity for the uniform transposition model
4．Fixed points for the successive transposition model
（5）Sharp transition for the successive transposition model
（6）Simulations

Consider $Z:=\left(Z_{n}\right)_{n \in \mathbb{N}}$ a random walk on the symmetric group S_{N}, starting from the identity and whose increments $Z_{n}^{-1} Z_{n+1}$ follow a law μ.
Let $Z^{(1)}, \ldots, Z^{(K)}$ be K independent chains distributed as Z. At any time $n \in \mathbb{N}, G_{n}^{(K)}$ is the subgroup of S_{N} generated by $Z_{n}^{(1)}, \ldots, Z_{n}^{(K)}$. Two events concerning the action of $G_{n}^{(K)}$ on $\llbracket 1, N \rrbracket$ are of interest for us:
$A_{n}^{(K)}:=\left\{G_{n}^{(K)}\right.$ is transitive $\}$
$B_{n}^{(K)}:=\left\{G_{n}^{(K)}\right.$ admits at least a fixed point $\}$

Our goal: to study the mappings

$$
\mathbb{N} \ni n \mapsto \mathbb{P}\left[A_{n}^{(K)}\right] \quad \text { and } \quad \mathbb{N} \ni n \mapsto \mathbb{P}\left[B_{n}^{(K)}\right]
$$

for two particular choices of μ and especially to exhibit or not cut-off phenomena.
Contrary to the study of convergence to equilibrium, we don't know if these mappings are monotonous and this is related to the initial condition.
If Z is irreducible and aperiodic, a.s.,

$$
\liminf _{n \rightarrow \infty} 1_{A_{n}^{(K)}}=0 \quad \text { and } \quad \limsup _{n \rightarrow \infty} 1_{A_{n}^{(K)}}=1
$$

so it cannot be asserted in a deterministic way that $G_{n}^{(K)}$ eventually becomes transitive (idem for fixed points).

Cut-off phenomenon relatively to some events $C_{K, n}$ (typically $A_{n}^{(K)}$ or $\left(B_{n}^{(K)}\right)^{\mathrm{c}}$, if there exists a time $T(N, K) \in \mathbb{R}_{+}$such that

$$
\begin{aligned}
\forall \alpha \in[0,1), & \lim _{N \rightarrow \infty} \mathbb{P}\left[C_{K, \alpha T(N, K)}\right]
\end{aligned}=0
$$

More generally, a transition phenomenon occurs at times of order $T(N, K) \in \mathbb{R}_{+}^{*}$, if

$$
\begin{aligned}
& \lim _{\alpha \rightarrow 0_{+}} \limsup _{N \rightarrow \infty} \mathbb{P}\left[C_{K, \alpha T(N, K)}\right]=0 \\
& \lim _{\alpha \rightarrow+\infty} \operatorname{liminff}_{N \rightarrow \infty}\left[C_{K, \alpha T(N, K)}=1\right.
\end{aligned}
$$

At the opposite of cut-off: a transition at times of order $T(N, K) \in \mathbb{R}_{+}^{*}$ is flared if there exist $0<\alpha_{*}<\alpha^{*}$ such that for any $\alpha \in\left(\alpha_{*}, \alpha^{*}\right)$,

$$
\begin{aligned}
\operatorname{limininf}_{N \rightarrow \infty}\left[C_{K, \alpha T(N, K)}\right] & >0 \\
\limsup _{N \rightarrow \infty} \mathbb{P}\left[C_{K, \alpha T(N, K)}\right] & <1
\end{aligned}
$$

There is still a possibility for a sharp transition in this situation, if we can find a sequence $(K, T):=(K(N), T(N))$ such that

$$
\begin{aligned}
\forall \alpha \in[0,1), & \lim _{N \rightarrow \infty} \mathbb{P}\left[C_{K(N), \alpha T(N)}\right]
\end{aligned}=0
$$

Uniform transposition model

It corresponds to

$$
\mu=\frac{2}{N(N-1)} \sum_{i<j \in E_{N}} \delta_{(i, j)}
$$

and for this model we have:

Theorem 1

There is a cut-off for transitivity as well as for the non-existence of fixed point at time

$$
T(N, K):=\frac{1}{2 K} N \ln (N)
$$

This suggests that a fixed point is the last resort against transitivity and this will be confirmed by simulations.

Theorem 1 also holds with μ replaced by

$$
\widetilde{\mu}:=\frac{1}{N^{2}} \sum_{i, j \in \llbracket 1, N]} \delta_{(i, j)}
$$

The cut-off phenomenon for convergence to equilibrium (in the total variation sense) occurs at time $\frac{1}{2} N \ln (N)$ for the corresponding product chain $\left(Z^{(1)}, \ldots, Z^{(K)}\right)$, so the properties of transitivity and of non-existence of fixed point appear strictly before the equilibrium is reached.

Successive transposition model

It corresponds to

$$
\mu=\frac{1}{N} \sum_{i \in \mathbb{Z} /(N \mathbb{Z})} \delta_{(i, i+1)}
$$

The situation is now different:

Theorem 2

At least as soon as $K \geq 3$, there is a flared transition for the non-existence of fixed point in the model of successive generating transpositions, at times of order

$$
T(N, K):=N^{1+\frac{2}{K}}
$$

We conjecture the same result holds for transtivity as it is suggested by simulations.

Both models can be seen as Monte-Carlo ways to sample subgroups of the symmetric group without fixed point (and hopefully of transitive semigroups). The complexity of these algorithms is heuristically $C:=K T(N, K)$.
For the uniform transposition model, $C=N \ln (N) / 2$, while $C=K N^{1+\frac{2}{K}}$ for successive transposition model. Optimizing in K, the better choice is $K=2 \ln (N)$, so C is of the same order in both cases. One may think that the first algorithm has the advantage that it admits a cut-off phenomenon, but this is also true for the second algorithm:

Sharp transition

For $\beta>0$, let $\alpha(\beta) \in \mathbb{R}_{+}^{*}$ be the unique value such that $J(\alpha(\beta))=\exp (-1 / \beta)$, with

$$
J: \mathbb{R}_{+} \ni \alpha \mapsto \int_{0}^{1} \exp (-2 \alpha(1-\cos (2 \pi s))) d s
$$

which is going from 1 to 0 . Then we have

Theorem 3

In the model of successive generating transpositions, for any $\beta>0$, there is a (K, T)-sharp transition for the non-existence of fixed point with

$$
\begin{aligned}
K(N) & :=\beta \ln (N) \\
T(N) & :=\alpha(\beta) N
\end{aligned}
$$

Again we conjecture this also holds for transitivity, as suggested by simulations.

Our motivation: the design of algorithms for bivariate polynomials factorization. Very briefly, the zeros of a "generic" bivariate polynomial of degree N defines a smooth Riemann surface $X \subset \mathbb{C}^{2}$ and let $\pi: X \rightarrow \mathbb{C}$ denote the first projection. X has $N(N-1)$ points with a vertical tangent and let Δ be their projections by π. Suppose $0 \notin \Delta$ and denote by E, the fiber above 0 . Next consider a loop $\gamma \subset \mathbb{C} \backslash \Delta$ starting and ending at 0 , and lift it by π^{-1} to N paths in X. They lead to a permutation p_{γ} on E, only depending on the homotopical class of γ in $\mathbb{C} \backslash \Delta$. γ can be decomposed into "small" loops each circling around only one discriminant point, whose corresponding permutation is a transposition. Then the question is to predict when a subgroup generated by K permutations themselves generated by the product of "small" loops has the same connecting effect on E as the whole monodromy group.

An easy upper bound 1

We begin with the proof of

$$
\forall \alpha>1, \quad \lim _{N \rightarrow \infty} \mathbb{P}\left[B_{\alpha} T(N, K)\right]=0
$$

For any $x \in \llbracket 1, N \rrbracket$, consider the event that x is a fixed point:

$$
B_{n}(x):=\left\{\forall i \in \llbracket 1, K \rrbracket, \quad Z_{n}^{(i)}(x)=x\right\}
$$

so that $B_{n}=\cup_{x \in E_{N}} B_{n}(x)$ and

$$
\begin{aligned}
\forall n \in \mathbb{N}, \quad \mathbb{P}\left[B_{n}\right] & \leq \sum_{x \in E_{N}} \mathbb{P}\left[B_{n}(x)\right] \\
& =N \mathbb{P}\left[B_{n}(1)\right] \\
& =N \mathbb{P}\left[Z_{n}(1)=1\right]^{K}
\end{aligned}
$$

An easy upper bound 2

Note that $\left(Z_{n}(1)\right)_{n \in \mathbb{N}}$ is a Markov chain, starting from 1 and whose transition matrix is $P=\frac{2}{N-1} M+\left(1-\frac{2}{N-1}\right)$ Id where where M is the transition matrix whose all entries are $1 / N$. So we get

$$
\begin{aligned}
\mathbb{P}\left[Z_{n}(1)=1\right] & =P_{n}(1,1) \\
& =\frac{1}{N}+\frac{N-1}{N}\left(1-\frac{2}{N-1}\right)^{n}
\end{aligned}
$$

and we get

$$
\lim _{N \rightarrow \infty} N \mathbb{P}\left[Z_{\alpha T(N, K)}(1)=1\right]^{K}= \begin{cases}+\infty & , \text { if } \alpha<1 \\ 1 & , \text { if } \alpha=1 \\ 0 & , \text { if } \alpha>1\end{cases}
$$

A concentration result 1

We want to show now that

$$
\forall \alpha \in[0,1), \quad \lim _{N \rightarrow \infty} \mathbb{P}\left[B_{\alpha T(N, K)}\right]=1
$$

Consider the number of fixed points at time $n \in \mathbb{N}$,

$$
S_{n}=\sum_{x \in E_{N}} 1_{B_{n}(x)}
$$

In the previous slide we computed $\mathbb{E}\left[S_{n}\right]$ and the above convergence is based on the fact that for $\alpha \in[0,1$),

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{Var}\left(S_{\alpha T(N, K)}\right)}{\mathbb{E}\left[S_{\alpha T(N, K)}\right]^{2}}=0
$$

Indeed, just write that, with $n_{N}=\alpha T(N, K)$,

$$
\begin{aligned}
\mathbb{P}\left[B_{n_{N}}^{\mathrm{c}}\right] & =\mathbb{P}\left[S_{n_{N}}=0\right] \\
& \leq \mathbb{P}\left[\mid S_{n_{N}}-\mathbb{E}\left[S_{n_{N}}\right] \geq \mathbb{E}\left[S_{n_{N}}\right]\right] \\
& \leq \frac{\operatorname{Var}\left(S_{n_{N}}\right)}{\mathbb{E}\left[S_{n_{N}}\right]^{2}}
\end{aligned}
$$

A concentration result 2

Note that $\left(X_{m}, Y_{m}\right)_{m \in \mathbb{N}}=\left(Z_{m}(1), Z_{m}(2)\right)_{m \in \mathbb{N}}$ is a Markov chain starting from $(1,2)$ and whose matrix transition is

$$
P^{(2)}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)= \begin{cases}\frac{2}{N\left(\frac{2-1)}{}\right.} & , \text { if } x^{\prime} \neq x \text { and } y^{\prime}=y \\ \frac{2}{N(N-1)} & , \text { if } x^{\prime}=x \text { and } y^{\prime} \neq y \\ \frac{2}{N(N-1)} & \text {, if } x^{\prime}=y \text { and } y^{\prime}=x \\ 1-\frac{4 N-6}{N(N-1)} & , \text { if } x^{\prime}=x \text { and } y^{\prime}=y \\ 0 & \text { otherwise }\end{cases}
$$

Its interest is that by symmetry, we have

$$
\operatorname{Var}\left(S_{n}\right)=N(N-1) \mathbb{P}\left[X_{n}=1, Y_{n}=2\right]^{K}+\mathbb{E}\left[S_{n}\right]-\mathbb{E}^{2}\left[S_{n}\right]
$$

Remove the exchange interaction by considering

$$
\tilde{P}^{(2)}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)= \begin{cases}\frac{2}{N(N-1)} & , \text { if } x^{\prime} \neq x \text { and } y^{\prime}=y \\ \frac{2}{N(N-1)} & , \text { if } x^{\prime}=x \text { and } y^{\prime} \neq y \\ 1-\frac{4}{N} & , \text { if } x^{\prime}=x \text { and } y^{\prime}=y \\ 0 & , \text { otherwise }\end{cases}
$$

The only interaction between the two particles is now the share of the time resource, in particular $\widetilde{P}_{n}^{(2)}$ can be computed explicitely and we have for large N,

$$
\mathbb{P}\left[\widetilde{X}_{n_{N}}=1, \widetilde{Y}_{n_{N}}=2\right] \sim N^{-2 \frac{\alpha}{\kappa}}
$$

The same is true for $\mathbb{P}\left[X_{n_{N}}=1, Y_{n_{N}}=2\right]$, because a simple coupling argument shows that

$$
\left|\mathbb{P}\left[X_{n_{N}}=1, Y_{n_{N}}=2\right]-\mathbb{P}\left[\widetilde{X}_{n_{N}}=1, \widetilde{Y}_{n_{N}}=2\right]\right|=\mathcal{O}\left(\frac{\ln (N)}{N}\right)
$$

The cut-off phenomena for fixed point already implies that

$$
\forall \alpha \in[0,1), \quad \lim _{N \rightarrow \infty} \mathbb{P}\left[A_{\alpha T(N, K)}\right]=0
$$

To get the opposite behavior for $\alpha>1$, we write

$$
\begin{aligned}
\mathbb{P}\left[A_{n}^{c}\right] & \leq \sum_{R \in \mathcal{R}} \mathbb{P}\left[\forall k \in \llbracket 1, K \rrbracket, Z_{n}^{(k)}(R)=R\right] \\
& =\sum_{R \in \mathcal{R}} \mathbb{P}\left[Z_{n}(R)=R\right]^{K} \\
& =\sum_{r=1}^{\lfloor N / 2\rfloor}\binom{N}{r} \mathbb{P}\left[Z_{n}(\{1, \ldots, r\})=\{1, \ldots, r\}\right]^{K}
\end{aligned}
$$

where \mathcal{R} is the set of nonempty subsets of $\llbracket 1, N \rrbracket$.

Exclusion process

Note that $\left(Z_{n}(\{1, \ldots, r\})\right)_{n \in \mathbb{N}}$ is a Markov chain on the set of subsets of $\llbracket 1, N \rrbracket$ whose cardinal is r, starting from $\{1, \ldots, r\}$ and whose transition matrix is

$$
P^{(r)}(A, B)= \begin{cases}\frac{2}{N(N-1)} & , \text { if }|A \cap B|=r-1 \\ \frac{N(N-1)-2(N-r) r}{N(N-1)} & , \text { if } A=B \\ 0 & , \text { otherwise }\end{cases}
$$

We can write it in terms of the adjacency matrix $M^{(r)}$ of the distance transitive Johnson graph $J(N, r)$ as

$$
P^{(r)}=\frac{2}{N(N-1)} M^{(r)}+\frac{N(N-1)-2(N-r) r}{N(N-1)} \mathrm{Id}
$$

We deduce that the eigenvalues of $P^{(r)}$ are the
$\theta_{l}=1-\frac{2(N-l+1)}{N(N-1)}$ for $I \in \llbracket 0, r \rrbracket$ with multiplicities $\binom{N}{1}-\binom{N}{I-1}$.
Due to the strong symmetries of this model, we have

$$
\begin{aligned}
\mathbb{P} & {\left[Z_{n}(\{1, \ldots, r\})=\{1, \ldots, r\}\right] } \\
& =\binom{N}{r}-1 \operatorname{tr}\left(P_{n}^{(r)}\right) \\
& =\binom{N}{r}^{-1} \sum_{l \in[0, r]}\left(\binom{N}{I}-\binom{N}{I-1}\right) \theta_{l}^{n} \\
& \leq\binom{ N}{r}^{-1} \sum_{l \in[0, r]}\left(\binom{N}{I}-\binom{N}{I-1}\right) \exp \left(-n \frac{2 I(N-I+1)}{N(N-1)}\right)
\end{aligned}
$$

Next we divide the last sum in three terms, corresponding to small, medium and large values of (in a way depending on N), to get, after some tedious computations, that

$$
\forall \alpha>1, \quad \lim _{N \rightarrow \infty} \mathbb{P}\left[A_{\alpha T(N, K)}\right]=1
$$

Remark: this kind of cut-off phenomenon is relatively stable by time-change, that is why it also holds for $\widetilde{\mu}$ defined after Theorem 1 or in continuous time.

Expectation of number of fixed points 1

With the same notations as before,
$\mathbb{E}\left[S_{n}\right]=\sum_{x \in E_{N}} \mathbb{P}\left[B_{n}(x)\right]=\sum_{x \in E_{N}} \mathbb{P}\left[Z_{n}(x)=x\right]^{K}=N \mathbb{P}\left[X_{n}=0\right]^{K}$
where $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a Markov chain on $\mathbb{Z} /(N \mathbb{Z})$, starting from 0 and whose transition matrix is

$$
\forall x, y \in E_{N}, \quad P(x, y):= \begin{cases}\frac{1}{N} & , \text { if } d(x, y)=1 \\ 1-\frac{2}{N} & , \text { if } x=y \\ 0 & , \text { otherwise }\end{cases}
$$

Its eigenvalues are known and we deduce

$$
\mathbb{E}\left[S_{n}\right]=N\left(\frac{1}{N} \sum_{l \in[0, N-1]}\left(1+\frac{2}{N}\left(\cos \left(\frac{2 \pi I}{N}\right)-1\right)\right)^{n}\right)^{K}
$$

Expectation of number of fixed points 2

It follows that for any $\alpha \in(0,+\infty)$,

$$
\lim _{N \rightarrow \infty} \mathbb{E}\left[S_{\alpha N^{1+\frac{2}{K}}}\right]=I^{K}(\alpha)
$$

with $I(\alpha):=\frac{1}{2 \sqrt{\pi \alpha}}$, and thus

$$
\lim _{\alpha \rightarrow+\infty} \limsup _{N \rightarrow \infty} \mathbb{P}\left[B_{\alpha N^{1+\frac{2}{K}}}\right] \leq \lim _{\alpha \rightarrow+\infty} I^{K}(\alpha)=0
$$

and for any $\alpha>\alpha_{*}:=\frac{1}{4 \pi}$

$$
\limsup _{N \rightarrow \infty} \mathbb{P}\left[B_{\alpha N^{1+\frac{2}{K}}}\right]<1
$$

This is the easy part of Theorem 2.

Variance of number of fixed points

To proceed, we need informations on the variance:

Proposition 4

Assume that $K \geq 3$, then we have for $\alpha>0$,

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{Var}\left(S_{\alpha N^{1+\frac{2}{K}}}\right)}{\mathbb{E}^{2}\left[S_{\alpha N^{1+\frac{2}{K}}}\right]}=I^{-K}(\alpha)
$$

As a consequence, we get

$$
\lim _{\alpha \rightarrow 0_{+}} \liminf _{N \rightarrow \infty} \mathbb{P}\left[B_{\alpha N^{++}}{ }^{\frac{2}{K}}\right] \geq \lim _{\alpha \rightarrow 0_{+}} 1-\frac{1}{I^{K}(\alpha)}=1
$$

The proof of Proposition 4 is more involved than before because of the lack of symmetry: the quantity $\mathbb{P}\left[Z_{n}(x)=x, Z_{n}(y)=y\right]$ now depends on $d(x, y)$. But the chain $\left(Z_{n}(x), Z_{n}(y)\right)_{n \in \mathbb{N}}$ is again Markovian, with transition matrix

$$
P^{(2)}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)= \begin{cases}\frac{1}{N} & , \text { if } d\left(x, x^{\prime}\right)=1 \text { and } y^{\prime}=y \\ \frac{1}{N} & \text {, if } x^{\prime}=x \text { and } d\left(y, y^{\prime}\right)=1 \\ \frac{1}{N} & \text {, if } d(x, y)=1, x^{\prime}=y \text { and } y^{\prime}=x \\ 1-\frac{4}{N} & \text { if } d(x, y)>1, x^{\prime}=x \text { and } y^{\prime}=y \\ 1-\frac{3}{N} & , \text { if } d(x, y)=1, x^{\prime}=x \text { and } y^{\prime}=y \\ 0 & \text {, otherwise }\end{cases}
$$

Let $\widetilde{P}^{(2)}$ be the corresponding transition matrix where the exchange interaction has been removed.

If $P^{(2)}$ could be replaced by $\widetilde{P}^{(2)}$, Proposition 4 would follow easily. This suggests to couple the corresponding chains and we get that uniformly over $x, y \in \mathbb{Z} /(N \mathbb{Z})$ such that $d(x, y) \geq L$,

$$
\left|P_{n}^{(2)}((x, y),(x, y))-\widetilde{P}_{n}^{(2)}((x, y),(x, y))\right| \leq \frac{2 c n}{N L^{2}}
$$

This leads to good estimates only if $x, y \in \mathbb{Z} /(N \mathbb{Z})$ are sufficiently apart. To deal with the remaining terms, we need a bound on $P_{m}^{(2)}((x, y),(x, y))$, not necessary sharp at the level of constants.

Indeed there exists a constant $c>0$ such that

$$
P_{n}^{(2)}((0, x),(0, x)) \leq 1 \wedge\left(c\left(\frac{N}{1+n}+\frac{n}{N^{3}}\right)\right)
$$

To show this，we consider the set $\mathbb{Z}^{2} \backslash\{(x, x): x \in \mathbb{Z}\}$（with similar cross－diagonal links as those induced by $P^{(2)}$ on $\left.(\mathbb{Z} /(N \mathbb{Z}))^{2} \backslash\{(x, x): x \in \mathbb{Z} /(N \mathbb{Z})\}\right)$ and we couple the corresponding random walks，this leads to the term n / N^{3} ．Next we apply a 2 －dimensional isoperimetric inequality to get heat kernel type bounds on the chain living in $\mathbb{Z}^{2} \backslash\{(x, x): x \in \mathbb{Z}\}$ ， to deduce the term $N /(1+n)$ ．
The above bound is sufficient to end the proof of Proposition 4.

Bonferroni inequalities

To end the proof of Theorem 2, we use the general inequality

$$
\begin{aligned}
\mathbb{P}\left[B_{n}\right] & \geq \sum_{x \in E_{N}} \mathbb{P}\left[B_{n}(x)\right]-\sum_{x<y \in E_{N}} \mathbb{P}\left[B_{n}(x) \cap B_{n}(y)\right] \\
& =\frac{3}{2} \mathbb{E}\left[S_{n}\right]-\frac{1}{2} \mathbb{E}^{2}\left[S_{n}\right]-\frac{1}{2} \operatorname{Var}\left(S_{n}\right)
\end{aligned}
$$

The above computations then imply that for $\alpha>0$,

$$
\liminf _{N \rightarrow \infty} \mathbb{P}\left[B_{\alpha N^{1+\frac{2}{K}}}\right] \geq I^{K}(\alpha)\left(1-\frac{1}{2} I^{K}(\alpha)\right)
$$

and we get that $\liminf _{N \rightarrow \infty} \mathbb{P}\left[B_{\alpha N^{1+\frac{2}{K}}}\right]>0$ for

$$
\alpha>\inf \left\{\alpha^{\prime}>0: I^{K}\left(\alpha^{\prime}\right) \leq 2\right\}<\alpha_{*}
$$

Bonferroni inequalities enable to improve these estimate for larger K.

Expectation and variance 1

As for Theorem 1，it is sufficient to show the

Proposition 5

The crude asymptotical behavior of the expectation of the number $S(N, \alpha)$ of fixed points of the $\lfloor\beta \ln (N)\rfloor$ chains at time $\lfloor\alpha N\rfloor$ is

$$
\lim _{N \rightarrow \infty} \mathbb{E}[S(N, \alpha)]= \begin{cases}+\infty & , \text { if } \alpha<\alpha(\beta) \\ 0 & , \text { if } \alpha>\alpha(\beta)\end{cases}
$$

Furthermore，in the case $\alpha<\alpha(\beta)$ ，we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\operatorname{Var}(S(N, \alpha))}{\mathbb{E}^{2}[S(N, \alpha)]}=0 \tag{1}
\end{equation*}
$$

This comes from computations similar to ones presented above, in particular the explicit formula for the expectation leads to

$$
\lim _{N \rightarrow \infty} \frac{\ln (\mathbb{E}[S(N, \alpha)])}{\ln (N)}=1+\beta \ln (J(\alpha))
$$

and this explains how the function J and the value $\alpha(\beta)$ enter into the game. The proof for the variance is even easier than in the previous case, no isoperimetric inequality is needed.

Uniform：cut－off for transitivity

Illustration of Theorem 1：

$K=4, N=30,50,100$ and time is renormalized by $N \ln (N) /(2 K)$ ．

Uniform: fixed point vs transitivity

Illustration of Theorem 1 and its proof:

$K=4, N=30$ and time is renormalized by $N \ln (N) /(2 K)$.

Successive：flared transition for fixed point

Illustration of Theorem 2：

$K=4, N=30,50,100$ and time is renormalized by $N^{1+\frac{2}{K}}$ ．

Successive: flared transition for transitivity

Illustration of conjecture relative to Theorem 2:

$K=4, N=30,50,100$ and time is renormalized by $N^{1+\frac{2}{K}}$.

Successive: fixed point vs transitivity

Illustration of the conjecture relative to Theorem 2:

$K=4, N=30$ and time is renormalized by $N^{1+\frac{2}{K}}$.

Uniform vs successive

Illustration of Theorem 3 and its conjecture:

$N=50, K=8 \approx 2 \ln (N)$ and time is renormalized by $0.26 N \approx N \ln (N) /(2 K) \approx \alpha(2) N$.

