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Random walks under consideration

Consider Z B (Zn)n∈N a random walk on the symmetric group
SN , starting from the identity and whose increments Z−1

n Zn+1
follow a law µ.
Let Z (1), ...,Z (K ) be K independent chains distributed as Z .
At any time n ∈ N, G(K )

n is the subgroup of SN generated by
Z (1)

n , ...,Z (K )
n . Two events concerning the action of G(K )

n on
J1,NK are of interest for us:

A(K )
n B {G(K )

n is transitive}
B(K )

n B {G(K )
n admits at least a fixed point}



First observations

Our goal: to study the mappings

N 3 n 7→ P[A(K )
n ] and N 3 n 7→ P[B(K )

n ]

for two particular choices of µ and especially to exhibit or not
cut-off phenomena.
Contrary to the study of convergence to equilibrium, we don’t
know if these mappings are monotonous and this is related to
the initial condition.
If Z is irreducible and aperiodic, a.s.,

lim inf
n→∞

1
A(K )

n
= 0 and lim sup

n→∞
1

A(K )
n

= 1

so it cannot be asserted in a deterministic way that G(K )
n

eventually becomes transitive (idem for fixed points).



Transition phenomena 1

Cut-off phenomenon relatively to some events CK ,n (typically
A(K )

n or (B(K )
n )c, if there exists a time T (N,K ) ∈ R+ such that

∀ α ∈ [0,1), lim
N→∞

P
[
CK ,αT (N,K )

]
= 0

∀ α ∈ (1,+∞), lim
N→∞

P
[
CK ,αT (N,K )

]
= 1

More generally, a transition phenomenon occurs at times of
order T (N,K ) ∈ R∗+, if

lim
α→0+

lim sup
N→∞

P
[
CK ,αT (N,K )

]
= 0

lim
α→+∞

lim inf
N→∞

P
[
CK ,αT (N,K )

]
= 1



Transition phenomena 2

At the opposite of cut-off: a transition at times of order
T (N,K ) ∈ R∗+ is flared if there exist 0 < α∗ < α∗ such that for
any α ∈ (α∗, α

∗),

lim inf
N→∞

P
[
CK ,αT (N,K )

]
> 0

lim sup
N→∞

P
[
CK ,αT (N,K )

]
< 1

There is still a possibility for a sharp transition in this situation, if
we can find a sequence (K ,T ) B (K (N),T (N)) such that

∀ α ∈ [0,1), lim
N→∞

P[CK (N),αT (N)] = 0

∀ α ∈ (1,+∞), lim
N→∞

P[CK (N),αT (N)] = 1



Uniform transposition model

It corresponds to

µ =
2

N(N − 1)

∑
i<j∈EN

δ(i,j)

and for this model we have:

Theorem 1

There is a cut-off for transitivity as well as for the non-existence
of fixed point at time

T (N,K ) B
1

2K
N ln(N)

This suggests that a fixed point is the last resort against
transitivity and this will be confirmed by simulations.



Before equilibrium

Theorem 1 also holds with µ replaced by

µ̃ B
1

N2

∑
i,j∈J1,NK

δ(i,j)

The cut-off phenomenon for convergence to equilibrium (in the
total variation sense) occurs at time 1

2N ln(N) for the
corresponding product chain (Z (1), ...,Z (K )), so the properties
of transitivity and of non-existence of fixed point appear strictly
before the equilibrium is reached.



Successive transposition model

It corresponds to

µ =
1
N

∑
i∈Z/(NZ)

δ(i,i+1)

The situation is now different:

Theorem 2

At least as soon as K ≥ 3, there is a flared transition for the
non-existence of fixed point in the model of successive
generating transpositions, at times of order

T (N,K ) B N1+ 2
K

We conjecture the same result holds for transtivity as it is
suggested by simulations.



Monte-Carlo procedures?

Both models can be seen as Monte-Carlo ways to sample
subgroups of the symmetric group without fixed point (and
hopefully of transitive semigroups). The complexity of these
algorithms is heuristically C B KT (N,K ).
For the uniform transposition model, C = N ln(N)/2, while
C = KN1+ 2

K for successive transposition model. Optimizing in
K , the better choice is K = 2 ln(N), so C is of the same order in
both cases. One may think that the first algorithm has the
advantage that it admits a cut-off phenomenon, but this is also
true for the second algorithm:



Sharp transition

For β > 0, let α(β) ∈ R∗+ be the unique value such that
J(α(β)) = exp(−1/β), with

J : R+ 3 α 7→
∫ 1

0
exp(−2α(1− cos(2πs))) ds

which is going from 1 to 0. Then we have

Theorem 3

In the model of successive generating transpositions, for any
β > 0, there is a (K ,T )-sharp transition for the non-existence of
fixed point with

K (N) B β ln(N)

T (N) B α(β)N

Again we conjecture this also holds for transitivity, as suggested
by simulations.



Motivation

Our motivation: the design of algorithms for bivariate
polynomials factorization. Very briefly, the zeros of a “generic”
bivariate polynomial of degree N defines a smooth Riemann
surface X ⊂ C2 and let π : X → C denote the first projection. X
has N(N − 1) points with a vertical tangent and let ∆ be their
projections by π. Suppose 0 6∈ ∆ and denote by E , the fiber
above 0. Next consider a loop γ ⊂ C \∆ starting and ending at
0, and lift it by π−1 to N paths in X . They lead to a permutation
pγ on E , only depending on the homotopical class of γ in C \∆.
γ can be decomposed into “small” loops each circling around
only one discriminant point, whose corresponding permutation
is a transposition. Then the question is to predict when a
subgroup generated by K permutations themselves generated
by the product of “small” loops has the same connecting effect
on E as the whole monodromy group.



An easy upper bound 1

We begin with the proof of

∀ α > 1, lim
N→∞

P[BαT (N,K )] = 0

For any x ∈ J1,NK, consider the event that x is a fixed point:

Bn(x) B {∀ i ∈ J1,K K, Z (i)
n (x) = x}

so that Bn = ∪x∈EN Bn(x) and

∀ n ∈ N, P[Bn] ≤
∑

x∈EN

P[Bn(x)]

= NP[Bn(1)]

= NP[Zn(1) = 1]K



An easy upper bound 2

Note that (Zn(1))n∈N is a Markov chain, starting from 1 and
whose transition matrix is P = 2

N−1M +
(

1− 2
N−1

)
Id where

where M is the transition matrix whose all entries are 1/N. So
we get

P[Zn(1) = 1] = Pn(1,1)

=
1
N

+
N − 1

N

(
1− 2

N − 1

)n

and we get

lim
N→∞

NP[ZαT (N,K )(1) = 1]K =


+∞ , if α < 1
1 , if α = 1
0 , if α > 1



A concentration result 1
We want to show now that

∀ α ∈ [0,1), lim
N→∞

P[BαT (N,K )] = 1

Consider the number of fixed points at time n ∈ N,

Sn =
∑

x∈EN

1Bn(x)

In the previous slide we computed E[Sn] and the above
convergence is based on the fact that for α ∈ [0,1),

lim
N→∞

Var(SαT (N,K ))

E[SαT (N,K )]2
= 0

Indeed, just write that, with nN = αT (N,K ),

P[Bc
nN

] = P[SnN = 0]

≤ P[|SnN − E[SnN ]| ≥ E[SnN ]]

≤
Var(SnN )

E[SnN ]2



A concentration result 2

Note that (Xm,Ym)m∈N = (Zm(1),Zm(2))m∈N is a Markov chain
starting from (1,2) and whose matrix transition is

P(2)((x , y), (x ′, y ′)) =



2
N(N−1) , if x ′ 6= x and y ′ = y

2
N(N−1) , if x ′ = x and y ′ 6= y

2
N(N−1) , if x ′ = y and y ′ = x
1− 4N−6

N(N−1) , if x ′ = x and y ′ = y
0 , otherwise

Its interest is that by symmetry, we have

Var(Sn) = N(N − 1)P[Xn = 1,Yn = 2]K + E[Sn]− E2[Sn]

Remove the exchange interaction by considering



A concentration result 3

P̃(2)((x , y), (x ′, y ′)) =


2

N(N−1) , if x ′ 6= x and y ′ = y
2

N(N−1) , if x ′ = x and y ′ 6= y
1− 4

N , if x ′ = x and y ′ = y
0 , otherwise

The only interaction between the two particles is now the share
of the time resource, in particular P̃(2)

n can be computed
explicitely and we have for large N,

P[X̃nN = 1, ỸnN = 2] ∼ N−2 α
K

The same is true for P[XnN = 1,YnN = 2], because a simple
coupling argument shows that∣∣∣P[XnN = 1,YnN = 2]− P[X̃nN = 1, ỸnN = 2]

∣∣∣ = O
(

ln(N)

N

)



A basic bound

The cut-off phenomena for fixed point already implies that

∀ α ∈ [0,1), lim
N→∞

P
[
AαT (N,K )

]
= 0

To get the opposite behavior for α > 1, we write

P[Ac
n] ≤

∑
R∈R

P[∀ k ∈ J1,K K, Z (k)
n (R) = R]

=
∑
R∈R

P[Zn(R) = R]K

=

bN/2c∑
r=1

(
N
r

)
P[Zn({1, ..., r}) = {1, ..., r}]K

where R is the set of nonempty subsets of J1,NK.



Exclusion process

Note that (Zn({1, ..., r}))n∈N is a Markov chain on the set of
subsets of J1,NK whose cardinal is r , starting from {1, ..., r}
and whose transition matrix is

P(r)(A,B) =


2

N(N−1) , if |A ∩ B| = r − 1
N(N−1)−2(N−r)r

N(N−1) , if A = B
0 , otherwise

We can write it in terms of the adjacency matrix M(r) of the
distance transitive Johnson graph J(N, r) as

P(r) =
2

N(N − 1)
M(r) +

N(N − 1)− 2(N − r)r
N(N − 1)

Id



Spectra 1

We deduce that the eigenvalues of P(r) are the
θl = 1− 2l(N−l+1)

N(N−1) for l ∈ J0, rK with multiplicities
(N

l

)
−
( N

l−1

)
.

Due to the strong symmetries of this model, we have

P[Zn({1, ..., r}) = {1, ..., r}]

=

(
N
r

)−1

tr(P(r)
n )

=

(
N
r

)−1 ∑
l∈J0,rK

((
N
l

)
−
(

N
l − 1

))
θn

l

≤
(

N
r

)−1 ∑
l∈J0,rK

((
N
l

)
−
(

N
l − 1

))
exp

(
−n

2l(N − l + 1)

N(N − 1)

)



Spectra 2

Next we divide the last sum in three terms, corresponding to
small, medium and large values of l (in a way depending on N),
to get, after some tedious computations, that

∀ α > 1, lim
N→∞

P
[
AαT (N,K )

]
= 1

Remark: this kind of cut-off phenomenon is relatively stable by
time-change, that is why it also holds for µ̃ defined after
Theorem 1 or in continuous time.



Expectation of number of fixed points 1

With the same notations as before,

E[Sn] =
∑

x∈EN

P[Bn(x)] =
∑

x∈EN

P[Zn(x) = x ]K = NP[Xn = 0]K

where (Xn)n∈N is a Markov chain on Z/(NZ), starting from 0
and whose transition matrix is

∀ x , y ∈ EN , P(x , y) B


1
N , if d(x , y) = 1
1− 2

N , if x = y
0 , otherwise

Its eigenvalues are known and we deduce

E[Sn] = N

 1
N

∑
l∈J0,N−1K

(
1 +

2
N

(
cos

(
2πl
N

)
− 1
))n

K



Expectation of number of fixed points 2

It follows that for any α ∈ (0,+∞),

lim
N→∞

E[S
αN1+ 2

K
] = IK (α)

with I(α) B 1
2
√
πα

, and thus

lim
α→+∞

lim sup
N→∞

P[B
αN1+ 2

K
] ≤ lim

α→+∞
IK (α) = 0

and for any α > α∗ B
1

4π

lim sup
N→∞

P[B
αN1+ 2

K
] < 1

This is the easy part of Theorem 2.



Variance of number of fixed points

To proceed, we need informations on the variance:

Proposition 4

Assume that K ≥ 3, then we have for α > 0,

lim
N→∞

Var(S
αN1+ 2

K
)

E2[S
αN1+ 2

K
]

= I−K (α)

As a consequence, we get

lim
α→0+

lim inf
N→∞

P[B
αN1+ 2

K
] ≥ lim

α→0+

1− 1
IK (α)

= 1



Two interacting particles

The proof of Proposition 4 is more involved than before
because of the lack of symmetry: the quantity
P[Zn(x) = x ,Zn(y) = y ] now depends on d(x , y). But the chain
(Zn(x),Zn(y))n∈N is again Markovian, with transition matrix

P(2)((x , y), (x ′, y ′)) =



1
N , if d(x , x ′) = 1 and y ′ = y
1
N , if x ′ = x and d(y , y ′) = 1
1
N , if d(x , y) = 1, x ′ = y and y ′ = x
1− 4

N , if d(x , y) > 1, x ′ = x and y ′ = y
1− 3

N , if d(x , y) = 1, x ′ = x and y ′ = y
0 , otherwise

Let P̃(2) be the corresponding transition matrix where the
exchange interaction has been removed.



Coupling

If P(2) could be replaced by P̃(2), Proposition 4 would follow
easily. This suggests to couple the corresponding chains and
we get that uniformly over x , y ∈ Z/(NZ) such that d(x , y) ≥ L,∣∣∣P(2)

n ((x , y), (x , y))− P̃(2)
n ((x , y), (x , y))

∣∣∣ ≤ 2cn
NL2

This leads to good estimates only if x , y ∈ Z/(NZ) are
sufficiently apart. To deal with the remaining terms, we need a
bound on P(2)

m ((x , y), (x , y)), not necessary sharp at the level of
constants.



Isoperimetric bounds

Indeed there exists a constant c > 0 such that

P(2)
n ((0, x), (0, x)) ≤ 1 ∧

(
c
(

N
1 + n

+
n

N3

))
To show this, we consider the set Z2 \ {(x , x) : x ∈ Z} (with
similar cross-diagonal links as those induced by P(2) on
(Z/(NZ))2 \ {(x , x) : x ∈ Z/(NZ)}) and we couple the
corresponding random walks, this leads to the term n/N3. Next
we apply a 2-dimensional isoperimetric inequality to get heat
kernel type bounds on the chain living in Z2 \ {(x , x) : x ∈ Z},
to deduce the term N/(1 + n).
The above bound is sufficient to end the proof of Proposition 4.



Bonferroni inequalities

To end the proof of Theorem 2, we use the general inequality

P[Bn] ≥
∑

x∈EN

P[Bn(x)]−
∑

x<y∈EN

P[Bn(x) ∩ Bn(y)]

=
3
2

E[Sn]− 1
2

E2[Sn]− 1
2

Var(Sn)

The above computations then imply that for α > 0,

lim inf
N→∞

P[B
αN1+ 2

K
] ≥ IK (α)

(
1− 1

2
IK (α)

)
and we get that lim infN→∞ P[B

αN1+ 2
K

] > 0 for

α > inf{α′ > 0 : IK (α′) ≤ 2} < α∗

Bonferroni inequalities enable to improve these estimate for
larger K .



Expectation and variance 1

As for Theorem 1, it is sufficient to show the

Proposition 5
The crude asymptotical behavior of the expectation of the
number S(N, α) of fixed points of the bβ ln(N)c chains at time
bαNc is

lim
N→∞

E[S(N, α)] =

{
+∞ , if α < α(β)
0 , if α > α(β)

Furthermore, in the case α < α(β), we have

lim
N→∞

Var(S(N, α))

E2[S(N, α)]
= 0 (1)



Expectation and variance 2

This comes from computations similar to ones presented
above, in particular the explicit formula for the expectation leads
to

lim
N→∞

ln(E[S(N, α)])

ln(N)
= 1 + β ln(J(α))

and this explains how the function J and the value α(β) enter
into the game. The proof for the variance is even easier than in
the previous case, no isoperimetric inequality is needed.



Uniform: cut-off for transitivity

Illustration of Theorem 1:
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K = 4, N = 30,50,100 and time is renormalized by
N ln(N)/(2K ).



Uniform: fixed point vs transitivity

Illustration of Theorem 1 and its proof:
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K = 4, N = 30 and time is renormalized by N ln(N)/(2K ).



Successive: flared transition for fixed point

Illustration of Theorem 2:

0.9

0.5

0.1

0.30.1

1.0

0.8

0.7

0.6

0.4

0.3

0.2

0.0

0.40.2 0.5

K = 4, N = 30,50,100 and time is renormalized by N1+ 2
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Successive: flared transition for transitivity

Illustration of conjecture relative to Theorem 2:
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Successive: fixed point vs transitivity

Illustration of the conjecture relative to Theorem 2:
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Uniform vs successive

Illustration of Theorem 3 and its conjecture:
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N = 50, K = 8 ≈ 2 ln(N) and time is renormalized by
0.26N ≈ N ln(N)/(2K ) ≈ α(2)N.
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