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Consider a Markov generator L admitting a reversible probability p.

Let (Pt)s=0 be the associated semi-group and denote by || - || the
operator norm in IL2(1). For any time t > 0, we have
[P —ull = exp(=At) (1)

where A = 0 is the spectral gap of —L.

Goal of this talk: to investigate what may happen when p is only
assumed to be an invariant probability of L.



Hypocoercivity

Traditionally, corresponds to a hypoelliptic diffusion generator L,
with nevertheless an exponentially fast convergence to equilibrium:
at least for nice functions f € IL?(u), with u[f] =0,

Vt=0, |P:f| < C(f)exp(—ct)

where ¢ > 0 is independent from f.



Kinetic evolution equations

Simple example:
L = yox—U(x)d, + 05— yd,

where x € T (position) and y € R (speed) and where U : R — R
is a regular potential.
Probabilistic description:

dXt - Yt dt
dYt = _U/(Xt) dt+\/§dBt— Yt— dt

where (Bt)t>0 is a Brownian motion, not enabling to explore “at
once” the whole space space T x R.



Invariant measure

p(dx, dy) = 7EXP(_ZU(X)) dx ® y(dy)
where Z is the normalizing constant and -y is the standard
Gaussian distribution.
Not reversible: y(dy) is reversible for the Ornstein-Uhlenbeck
generator 02 — yd,, but the vector field yd, — U'(x)d, is turning
around the level sets of the energy U(x) + y?/2.



References
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Analytical (hypoellipticity, pseudo-differential operators ...):
Eckmann and Hairer [00], Desvillettes and Villani [01], Rey-Bellet
and Thomas [02], Hérau and Nier [04], Hérau [07], Villani [09],
Dolbeault, Mouhot and Schmeiser [10], Ottobre, Pavliotis and
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Probabilistic (Liapounov functions):
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These works give no clue about how ||P; — u| is decreasing for
small times and even the asymptotical rate c is never optimal.

For global optimization, we would like to resort to
time-inhomogeneous stochastic algorithms which are
instantaneously hypocoercive. This leads to the question of seeing
how instantaneously these processes starts their convergence. The
usual changes of norms (from IL? to appropriately weighted Hl)
are not convenient in this direction.

Hope: toy models will help the understanding.



First toy model

Corresponds to U = 0: (X;)¢>0 is the integral of a
Ornstein-Uhlenbeck rounded around the circle. Let us add a
parameter a > 0:

Ly = yox+ad,—yd,
It is possible to get a formula for the associated semi-group P,_Sa)
t > 0, but it does not help to compute || Pt(a) — Wal|, where the
invariant measure is (1, = A ® v,, with A the normalized Lebesgue

measure on T and ~, the centered Gaussian distribution of
variance a.



First result

For any a> 0 and t > 0, we have

IPE = pall = max (exp<‘f>’exp [“"(‘“‘2%)])

1+ exp(—t)

The fact that the rhs has not the form of an exponential function
reflects that the functions where the norm is attained depend on
time.

For small times t > 0,

a
In < P ) ~ 2
Initially, the convergence is quite slow with respect to that of
reversible evolutions (1). The power 3 should be interpreted as a
degree of hypocoercivity, it indicates how far is the evolution from
an “immediate exploration”.



Hypocoercive behavior

As t goes to +0,

a(lt—2+0(et Jifa<g1
0 (1P~ al) = {t< (™) ifa<

This kind of hypocoercive bound seems to be new, the
asymptotical rate was not obtained in the literature.



Scale changes

Up to scalings in time and in the speed variable and to a change of
direction in position:

Corollary

For any a,c > 0 and b € R\{0}, consider

Lope = byox+ 36}2, —cyoy
which admits p,)c as invariant probability. For the corresponding
[ (a,b,C)
semi-group (P; )t=0,
7b7
ve20, 1P — poellizg, oo

- o ont-aen |25 (2722 )

ot



Comparison with reversible MCMC

It is instructive to compare with the heat semi-group generated by
the operator K, := ad2, injecting the same amount a of
randomness per unit of time as the generators L, .. The
probability X is reversible for — K, whose spectral gap is a, so

Ve0,  Jep(ths) ~Mipyo = exp(-at)

Thus to sample MCMCly according to A, it is asymptotically
advantageous to tune ¢ > a and b > ¢ and to use the first
coordinate generated by L, .. This is another (dubious)
illustration of the paradigm that to go fast to equilibrium, it is
better to resort to non-reversible Markov processes.



Second toy model

For position space, replace T by R and consider the confining
potential U(x) = ax?/2, where a > 0:

~

Ly = ydx—axd, + 6}2, — y0y.

The invariant probability measure is fi, = 71/, ® 71, denote

(.B,_Sa))t;o the associated semi-group on L2(fi,).

The value 1/4 is critical for the diagonalization of L,: for

a€ (0,1/4), L, is diagonalizable in IL2(fi,) and its spectrum is real,
while for a € (1/4,+m), L, is still diagonalizable in L2(Ji,)
(complexified) but most of its eigenvalues are not real. In the
critical case a = 1/4, L, is not diagonalizable in IL2(}i,) and
contains Jordan blocks of all orders.



Second result (1)

A

Foranya>0andt >0,

[= 1—+/(1—-4
1P — sl = ca<t>exp<‘ : a)*t>

where:
e ifae (0,1/4), let 0 := \/1 — 4a and define

1- 62

(1—ett)* +

1_e_29t 1 eet_l 2
——— [1+ 41+ (072-1) | 57—
a4 2 +9\/ +( )<69t+1>




Second result (2)

Theorem (continued)

o If a =1/4, define

C(t) = \/1+t—22+t 1+(%>2

o Ifac (1/4,+w), let 0 := \/4a — 1i and define

eft —1
G(t) = \/1+| e | (|e9t—1|+\/|e9f—1|2+4|0|2)

Again for small times t > O:

(1Y < ml) ~ - (24552 (1 vaaan) ) ¢




For large times

As t goes to infinity, different behaviors occur:
eif ac (0,1/4),

~ - 1
1PE — gl ~ —exp<

_1—\/1—4at>
0
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e if a = 1/4, the pre-exponential factor explodes linearly:

pl/4) _ ~ - _t
IPYY —jiull ~ texp(—3)

e if a > 1/4, the factor C,(t) is oscillating between the values 1
and /1 + 2(1 + 2y/a)(4a — 1)~1, with period T, :=27/y/4a — 1.
These oscillations are sufficiently moderate so that

R, ot — C,(t)exp(—t/2) is non-increasing, as it should be.




Periodic hesitations toward equilibrium

For a > 1/4: from the small time behavior,

d %) -~
— P — fall =0
de't Moo

and from periodicity, V ke Z,, V t > 0,
Co(kTo + t)exp(—(kTa + 1)) = exp(—kT,)Ca(t) exp(—t)

As a consequence, YV k€ Z,

d ~Ga) -~
— P — fal| =0
dt’ * t=kT,



For any ¢,d > 0 and a, b € R with ab > 0, let

~

Labed = bydx—axd, + c8)2, —dyd,

whose invariant probability is fia p.c.d = Vbc/(ad) @ Ve/q- For the

corresponding semi-group (.Bt(a’b’c’d))t;o, Vit=0,

- N 1— /(1 —4abd—2
IPEBED iyl = Copyan(dt) exp (— ( )+ dr)

2

Similar remarks as above for the comparison with the reversible
Ornstein-Uhlenbeck c02 — d—;’xﬁx are valid.



Natural functions

First task: to find orthogonal subspaces generating IL.2(p1,) and left
stable by L,. It is tempting to look at the action of L, on functions
of the form ¢, ® hg,, and ¥, ® hq 5, where for any p € Z, and any
xeT,

pp(x) = j%cos(px)
Pp(x) = %sin(px)

and for any g€ Z, and any y € R,

haly) = «17) exp(y2/2) yq exp(—y2/2)

hq,a(Y) = q(y/\/g)

The family (¢p ® hg.a, Yp+1 ® hg,a)p,qez.. is an orthonormal basis
of L2(u,).




Orthogonal stable subspaces

It is obvious that for g € Z, o ® hg,, is an eigenfunction of L,
associated to the eigenvalue —g, denote U, := Vect(yg ® hg.5). On
the other hand, one computes that for p € N, the following vector
subspaces

Vo = Vect(pp ® hgap @ hgi1,2 1 q€2Z4)
Wy = Vect(¢p® hga,0p @ hgt1,2 1 g€ 2Z)

are stable by L,. So

L*(pa) = (‘B Ug @VP @Wp’

qeZ+ peN p'eN

where the components are orthogonal and stable.

It is sufficient to study the restrictions of L, to the V,, p € N, since
they are isometrically conjugate to the restrictions of L, to the
Wp, pe N.



Back to /*(Z.)

Consider the orthonormal basis ey := ¢p ® hg 4, €1 = Vp & hy 4,
& = p ® ha 5 etc. Identifying V, with /?(Z.), the restriction of
L, to V, is given by the infinite tridiagonal matrix M

0 Vap 0 0
—ap -1 —V2yap 0
M = 0 V2y/ap —2 V3y/ap

0 —v3/ap -3

This object is only parametrized by ¢ := y/ap, M = D + ¢S — ¢S*,
where D, ¢S and —cS™* are the diagonal, the upper-diagonal and
the lower-diagonal of M. Denote S, the subspace of

(2(q))gez, € I>(Z+) such that for any r > 0,

quZ+ q"z%(q) < 4.



Spectral decomposition of M

Theorem
Define & = (£O(Q))qu+ €S by

q
2 ﬁ exp(—c2/2)

for any q € Z... Consider the elements of S given by

folg) = (-1

VY ne Z+, fn = (CI - 5*)!7607

(I is the identity operator). Then for any n€ Z.., &, is an
eigenvector of M associated to the eigenvalue —c® — n.
Furthermore (p)nez, is a (Hilbert) basis of 1>(Z..).




The solving Lie algebra

Consider V' the vector space generated by D, S, S* and /, itis a
4-dimensional Lie algebra, because one computes that

[575*] = I,
[D’S] = S,
[D,S*] = —-S*

One is then led to consider the adjoint operator of M
ady : VaX — [M,X]eV

which is easy to diagonalize:

The kernel of the operator ady, is generated by | and M. There are
two other eigenvalues, 1 and —1, whose corresponding eigenspaces
are respectively generated by J, '=cl + S and J_ := cl — S*.




Sketch of the decomposition of M

As a consequence, if z is a eigenvector of M associated to /, either
Ji(z) is an eigenvector of M associated to / £ 1, either J(z) = 0.
Indeed, for instance for + = +,

Mi(z) = JiM(z)+ Ji(2)
= (+1)4(2)

Since M comes from a Markovian operator, its eigenvalues have a
non-positive real part and the above procedure cannot be repeated
ad libidum. This suggests that Ker(J;) = {0} and one computes
that Ker(J;) = Vect(&y) and that & is an eigenvector of M
associated to —c?. Starting from &g, the other eigenvectors are
obtained by applying J_, whose kernel is reduced to {0}.



To get that (£,)nen is an Hilbert basis is more technical, since
these vectors are not orthogonal.

To a vector z =}, ;. f(n)&, associate the holomorphic function
F(X) = Xnez, f(n)X" and consider

1dY\”
Z = 1+——) F(X

X=c

The mapping @ 3 z +— G is an isometry between /2(Z,) and
L2(P(c?)), where P(c?) stands for the Poisson distribution of
parameter c2. The basic ingredient is the following formula.



A crucial technical result

For any ne€ Z.., we have

(5)(€) = =DD+1)(D+2)-+(D+n-1)() ()

In particular for n = 1, it gives M(&y) = —c?&p (recalling that
J1(0) = 0, s0 5(&) = —c&o)-

The above formula enables to compute the coefficients £,(q),

g € Z and next to come back to the functions (x, y) — &,(x,y).
They are linear combinations of terms y™ cos(p(x + y)) and
y™sin(p(x +y)), for me [0, n].



Scalar products

More important for our purposes: the scalar products of the
eigenvectors.

Lemma

We have for all ny,m e Z,
Emtmy = (20 exp((4c2) )E[nMra) Pyt

where Ny 42 is a Poisson random variable of parameter 1/ (4c?)
and where n™) = n(n —1)---(n— N +1).

It follows that V, (and similarly for W,) cannot be decomposed
into orthogonal and stable non-trivial subspaces.



Convenient vectors

As a consequence, the scalar product of certain vectors is easy to
compute: for p, p € R, consider

p" p"
Z = Z an and zZ:= Z HS"
n€Z+ n€Z+
Then we have
3,2 = ep(pp+2c(p+p))

In particular, for z = >’ %‘;Env with p € R, we get

HEZ+

|2[* = exp (p* + 4cp) .



Lower bound on operator norms

The semi-group (exp(tM))¢=o acts simply on this kind of vectors:

Vit=0, exp(tM)z = exp(—c?t) Z exp(—nt)%g,,,

n€Z+

so that for any t > 0,
lexp(tM)z|? = exp(—2c2t) exp (exp(—2t)p® + 4exp(—t)cp) .

We deduce a lower bound on the operator norm || exp(tM)]| in
I(Z.), by optimizing over p € R: for any t > 0, we have

Jexp(tM)]| > exp <_C2 <t_21_eX7p(_t)>>

1+ exp(—t)



Upper bound (1)

To get the corresponding upper bound, consider Z the space of
vectors of the form

2= Y Muls,

neZ Ie[r]

where r € N and v, p; are real numbers, for / € [r].
One begins by checking that Z is dense in /2(Z. ), so that

[exp(tM)z|

Vi=0,  [lexp(tM)] =
ze2\{0} ]|

For z as above, denote v and p the vectors of coordinates (v/)e[/
and (p)e[n-



Upper bound (2)

We get:
212 = VAW,
where A(p) is the r x r-matrix given by
V k1€ r], Aci(p) = exp(pkpi + 2c(pk + p1))
Similarly

lexp(eM)z]? = exp(—2E%t)/ Alexp(~t)p)v

So next result enables to conclude:

For any t = 0, any r € N and any
V= (Vk)ke[[r]]7p = (Pk)ke[[r]] € R", we have

VA(exp(—t)p)r < exp (_4C21—ex7p(—t)> V' A(p)v




Optimizing functions

It is possible to find the functions where || Pt(a) — 14| is attained.

o If || Pt(a) — ta|| = exp(—t), the elements of U;\{0} are
maximizing, for instance the mapping T x R 3 (x, y) — y.

o If [P — 4i,]| > exp(—t), the maximizing functions belong to
V1 @ W; and correspond to
2iy

1+ exp(—t) it y)>

TxR>3(x,y) — exp(—



Stable subspaces

We follow the same approach, but it will be disturbed by the
critical value a = 1/4 for the spectrum to be real.

Change of notation for the Hermite polynomial, due to the
invariant measure fiz = 1/, ®:

VpeN,VxeR, hpa(y) = hp(v/ax)

Looking at the action of Za on hy ,® hg, it appears that for
n € Z,, the space

Hn = VeCt(hp,a ® hn—p7 P € [[07 n]])

is stable and clearly we have

L2(ﬁa) = @ Hn

HEZ+

where the components are orthogonal.



Reduction to matrices

In the orthonormal basis (hp , ® hn_p)pe[[o,n]], the matrix of the
restriction of Za to H, is given by

—n \/an 0 0

—v/an  —(n-1) a2(n—1) :

M, = 0 —+/32(n—1) —(n—-2) 0
.

0 0 —+/an 0

Again we decompose it into its diagonal, supdiagonal and
subdiagonal parts, M, = D, + 1/aS, — 1/aS*. It will be more
convenient to consider

D, = 5,, +

M, = I\N/I,, +



The Lie algebra s[(2,R)

Let V, be the vector space generated by the three matrices D,, S,

and S, it is a 3-dimensional Lie algebra, since
[Sn,S] = —2D,
[Sna Dn] = Sn
[S:> D] = _S:'

One recognizes the Lie algebra s[(2,R). Indeed, for n = 1,
—Dy, S1/v/2 and Sj/+/2 form the usual basis of sl(2, R):

1 1 0 i 01 i 00
2\ 0 -1 V20 0 V210
Curiously, (Vj)nen is the family of all irreducible representations of

s[(2,C).
We are led to consider ady, : V, 3 X — [M,,X] € V,,.



Diagonalization of ady,

Lemma

Let n e N\{1} be fixed. The kernel of the operator ady, is
generated by M,,. For a = 1/4, there are two other eigenvalues, 0
and —0 where

0 = V1—4a ,ifae[0,1/4)
. Vda—1i ,ifa>1/4

The corresponding eigenspaces are respectively generated by

Jy = 4vaD,+ (1—6)S, — (1+6)S?

J_ = 4y/aD,+ (1+6)S,— (1 —0)S;
For a = 1/4, the operator adyy, is not diagonalizable and its matrix
010
is equal to the 3 x 3 Jordan block | 0 0 1 | associated to the

0 00
eigenvalue 0, in the basis (M, D, — 2,/aS}, —2+/aS}).




Diagonalization of M, (1)

Consider the case a = 1/4, the matrices J; and J_ play the same
role as before. Due to the fact that they are finite tridiagonal
matrices, it is easy to deduce that their kernels are at most
one-dimensional. They are indeed one dimensional, otherwise one
would be able to construct an infinity of eigenvalues for M,. We
deduce that the matrix M,, is diagonalizable and all its eigenvalues
have multiplicity 1. More precisely if A is an eigenvalue of M,, such
that A + @ is not an eigenvalue of M,,, then the spectrum of M, is
the set {\ — k6 : k € [0, n]}. Furthermore, for k € [1,n], J+
(respectively J_) transforms the spectral line associated to A — k6
(resp. A — (k — 1)0) into the spectral line associated to

A — (k—1)0 (resp. A — k0).



Diagonalization of M, (2)

To end the determination of the spectrum of M, note that M, is
skew-centrosymmetric, i.e. 7 (M,) = —M,, where for any
(n+1) x (n+1) matrix M = (M ;) e[o,n]

Vk, e [[0’ n]]’ (T(M))k/ = Mn—k,n—l-

)

We deduce that the spectrum of M, is symmetrical with respect to
zero. The first part of next result follows.

Proposition

For a = 1/4, the spectrum of My, is {(k — n/2)0 : k € [0, n]}. For
a=1/4, M, is similar to the Jordan block of size n + 1 associated
to the eigenvalue 0 (in particular M, is not diagonalizable for
n=1)

This result was already obtained by Risken [89], by a slightly
different approach.



Back to finite dimensional hypocoercivity

As before, we don't want to stop with the spectral decomposition
of L,, but to compute the operator norms of the associated
semi-group. Note that it is sufficient to work on the H,: for any
t =0,

1P — fiall2oye = suplP 30
neN

n
= supexp (—3t) | exp(tM,)|
neN

First we investigate the case a€ (0,1/4), so that § = /1 —4aeR.
Let & be a normalized vector generating the kernel of J_ and for
all pe [1,n], & = < ﬁ)pJﬁﬁo, so that (£p)pefo,n] is @ family of

202
eigenvectors of M, associated to the eigenvalues

((p = 1/2)8) pefo,n]-



Again &3 = (§S(p))pe[[0,n]] corresponds to a well-known law, the
binomial distribution 3;_g)/> of parameter (1 — 6)/2:

Vpelo,n], &(p) = <Z> <1_;9>p <1—;H9>n_p

To be able to compute conveniently, we look for a formula similar
to (2). It is more involved, but we end up with

v p e [0, n], & = Pp (5,1 + ”/n) €o

where
k) n—k)<P—k> 1/1 Pk
Po(X) = pv Szt My (X)
0 = 3 G Gy)
Mp(X) = 1_[ (X — k)

ke0,p—1]



Convenient vectors

The interest of the previous formula is that

Vp,qe [[07 n]]v <£P>§q> = 5(1—9)/2[Pppq]

As a consequence, if for any p € R, we consider
z(p) = Zpe[[O,n]] ’;—Tfp, then for any g, p € R, we have

1-6? 1-62_\"
S 0y - (1 ~ oA ~n
@) = (14204 p 4 )
Then working in a similar spirit as in the first toy model and after
quite fastidious computations, we get the result announced in the
introduction.



Other situations for a

e The case a = 1/4 is obtained through the limit a — 1/4_.

e For a > 1/4, the previous computations can be adapted. Some
of the properties are purely algebraic and no modification is
required, such as the definition of the polynomials P,(X), their
coefficients are now complex. It appears that for any p, g € [0, n],

Epibqy = (L+ |9|2)n/2/31/2[Pp?q]

We deduce that for any p, p € C, we have

oy = (o) (1) (D))

with ¢ := 1-1-2\96|2' This enables to conclude after some more

computations.

For any a > 0, the maximizing functions are linear, the situation
seems different from the first model.



Global decompositions (1)

Decompositions of the form D + ¢S — ¢S* on the stable subspaces,
which were the beginning of our developments, can be lifted up to
the generators.
In the first model, one gets L, = K + R — R*, with
K = ad,—yod,
R = y0x—aodxd,
R* = —ad.0,

satisfying
[K,R]=R and [R,R*]=aJ

where J = 02 has the missing coercitivity on T.



Global decompositions (2)

Similarly for the second model, we can write Za =K+ R - R*,
with

K = 0,—yo,
R = yox—dxdy
R* = axd, — 0k,

satisfying
[K,R]=R and [R,R*]=J-aK

where J = 0,0% = 02 — axdx is “the’ missing coercive
Ornstein-Ulhenbeck operator on R.



Global decompositions (3)

More generally, given a smooth potential U : T — R, the kinetic
operator

L = yo—U(x)d, + 7, —yo,
can de decomposed into L = K + R — R*, where
K = & —yo,
R = yo0x—0x0,
R* = U(x)d, — dxdy
satisfying

[K,R]=R and [R,R*]=J-UK

where J = 0¥0, = 02 — U'(x)0x is the usual coercive Langevin
operator associated to U on T.



Toward an alternative approach? (1)

Note the difference with traditional approaches, where brackets of
first order operators are preferred (Hormander's conditions).

How to use the previous relations to get hypocoercive bounds? In
view of the behavior in t3 for small times t > 0, the first idea is to
differentiate three times instead of once. More precisely, for

f € L2(u) with p[f] = 0, denote for t > 0, f, := P;[f] and

F: == pu[f?]. The usual method to show that this expression ends
up converging exponentially fast toward 0 is to add terms to F;
(typically (Oxf¢, 0, fr) = {ft, Rf¢)) to get a functional satisfying a
Gronwall inequality. We would like to work with F; only. So let us
differentiate it:



Toward an alternative approach? (2)

Fi = 2(Kf,f),
F! = 4{(K>f, fiy—4{f, Rf),
F!' = 8(K3f, fiy—24(Kf, Rf;) — 12{f,, Rf) + 4{[R, R*]f;, ;)

The term [R, R*] contains the missing coercivity. So for quite a
long time, we tried to find A, B, C > 0 so that

AF,+BF{+ CF{ + F" < 0

(it is sufficient to consider the time t = 0), before proving that it is
not possible!

The interest of the first toy model is that it can serve as a
prototype: up to a change of the constants A, B, C > 0, it would
have been enough to obtain the above bound for this example.
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