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Abstract

The purpose of this paper is to present a probabilistic proof of the well-known result stating
that the time needed by a continuous-time finite birth and death process for going from the left end
to the right end of its state space is a sum of independent exponential variables whose parameters
are the negatives of the eigenvalues of the underlying generator when the right end is treated as
an absorbing state. The exponential variables appear as fastest strong quasi-stationary times for
successive dual processes associated to the original absorbed process. As an aftermath, we get an
interesting probabilistic representation of the time marginal laws of the process in terms of “local
equilibria”.
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1 Introduction

The goal of this paper is to give a probabilistic derivation of the law of the time needed by an
irreducible continuous time birth and death process on a finite path to go from the left end to the
right end. It is known that this distribution is that of a sum of independent exponential variables of
parameters the negatives of the eigenvalues of the underlying generator with a Dirichlet condition
imposed at the right end. While this simple statement seems of probabilistic nature, its proof
(until now) is indirect, via Laplace transforms. The main drawback of the latter method is that
it prevents any probabilistic interpretation for the Dirichlet eigenvalues (except for the first one,
which corresponds to the asymptotic rate to attain the right end), which is really the motivation
for the following study.

More precisely, on the state space J0, NK, with N ∈ N∗, consider a birth and death process
X B (Xt)t≥0 starting from 0 and absorbed at N (this assumption is not restrictive, since we will
not be concerned by what happens after the process has reached this point). The simplest way to
specify its evolution is through a generator L acting on D, the space of functions defined on J0, NK
and vanishing at N . Thus

∀ f ∈ D, ∀ x ∈ J0, N − 1K, L[f ](x) = bx(f(x+ 1)− f(x)) + dx(f(x− 1)− f(x))

where (bx)0≤x<N and (dx)0≤x<N are respectively the birth and death rates. Necessarily d0 = 0
and we assume that all the other rates are positive (by a continuity argument, next result can
afterward be extended to the case of positive birth rates and nonnegative death rates). To see L as
an operator on D, we take by convention L[f ](N) = 0, which constitutes the “Dirichlet condition”
in this discrete setting. It is then well-known that −L is diagonalizable with positive, distinct
eigenvalues 0 < λ1 < λ2 < · · · < λN .
Coming back to the process X, we are interested in its absorption time

τ B inf{t ≥ 0 : Xt = N}

The next point is the start of our study (see for instance the book of Keilson [15], we give the
problem’s history at the end of the introduction).

Proposition 1 Assume that X starts from 0, i.e. X0 = 0. Then the law of τ coincides with that
of T1 + · · · + TN , where the Ti, for 1 ≤ i ≤ N , are independent and respectively distributed as
exponential laws with parameters λi (i.e. with mean 1/λi).

The corresponding result for discrete time (where exponential laws are replaced by geometric laws
for birth and death chains which are monotone and whose associated eigenvalues belong to [0, 1])
is used to build and interpret various stopping times for some irreducible birth and death chains
on J0, NK in Diaconis and Fill [7] and as the basic tool for proving a conjecture of Peres on the
cut-off phenomena in Diaconis and Saloff-Coste [8].
As announced, our purpose is to give a probabilistic proof of the identity in law contained in
Proposition 1, which can serve as a probabilistic interpretation of the Dirichlet eigenvalues λi, for
1 ≤ i ≤ N .

To proceed, let L′ be the generator on J0, NK whose birth rates are given by

(b′x)0≤x<N B (λN−x)0≤x<N

and whose death rates all vanish. Of course, if τ ′ is the absorption time at N for a corresponding
Markov process (X ′t)t≥0 starting from 0, then the law of τ ′ is equal to that of T1 + · · ·+ TN as in
Proposition 1.
Most of our efforts will consist in constructing a coupling (X ′t, Xt)t≥0 of (X ′t)t≥0 and (Xt)t≥0 such
that (X ′t)t≥0 and (Xt)t≥0 are intertwined in the following sense: there exists a Markovian kernel Λ
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from J0, NK to J0, NK, satisfying Λ(x, J0, xK) = 1 for all 0 ≤ x ≤ N (namely it is lower triangular
as a matrix) such that for any t ≥ 0, we have a.s.,

L(Xt|X ′s, 0 ≤ s ≤ t) = Λ(X ′t, ·) (1)

where the l.h.s. stands for the conditional law of Xt knowing the σ-field generated by (X ′s)0≤s≤t.
Traditional notations for kernels will be used, for instance for any x ∈ J0, NK and any function f
on J0, NK, Λ(x, f) B

∑
y∈J0,NK Λ(x, y)f(y).par Let us check rapidly that the above property implies

that the absorption time τ ′ of (X ′t)t≥0 at N is a.s. equal to the absorption time τ of (Xt)t≥0 at N .
The equality in law τ = τ ′ then follows, so Proposition 1 is proved.
Consider for any function f defined on J0, NK,

E[f(Xt)] = E[Λ(X ′t, f)]

so letting t go to infinity, we get that f(N) = Λ(N, f) (because both X ′t and Xt are a.s. convergent
to N), which means that Λ(N, ·) = δN . Then using for any t ≥ 0 the relation

P[τ ′ ≤ t, τ ≤ t] = E[1τ ′≤tδN (Xt)]
= E[1τ ′≤tE[δN (Xt)|X ′s, 0 ≤ s ≤ t]]
= E[1τ ′≤tΛ(X ′t, N)]
= E[1τ ′≤tΛ(N,N)]
= P[τ ′ ≤ t]

it must be that τ ≤ τ ′ a.s. Next for any t ≥ 0 we also have

P[τ ′ > t, τ ≤ t] = E[1τ ′>tΛ(X ′t, N)]
= 0

since by our assumption on Λ, we have Λ(x,N) = 0 for all 0 ≤ x < N . It follows that τ = τ ′ a.s.
The construction of the coupling is quite involved. We will need N + 1 intermediate processes

(X(i)
t )t≥0, for 0 ≤ i ≤ N , which are intertwined. More precisely, for any i ∈ J0, N − 1K, we will

construct a lower triangular link Λ(i) such that (1) is true with X replaced by X(i), X ′ by X(i+1)

and Λ by Λ(i). Then Λ B Λ(N−1)Λ(N−2) · · ·Λ(0) will provide the link needed to intertwine X(0) = X
and X(N) = X ′ (where equality here is in law). The probabilistic interpretation of Proposition 1
is encapsulated in the construction of these processes and their intertwining links. In particular
the exponential times will appear as exit times under some “initial” quasi-stationary distributions
(and the eigenvalues λi, for 1 ≤ i ≤ N , will be interpreted as first Dirichlet eigenvalues, or exit
rates, of the corresponding subdomains). Heuristically the picture is the following: starting from
0, X spends a time TN (distributed as an exponential of parameter λN , as above) before reaching
a “local equilibrium”. Next it needs a time TN−1 to go to another local equilibrium etc. Finally it
takes a time T1 to escape from the (N − 1)th local equilibrium to be absorbed in N .

In two recent papers [10, 11], Fill gives another proof of Proposition 1, but it relies on a
nontrivial linear algebra result of Micchelli and Willoughby [20]. Indeed our arguments can be
seen as a probabilistic approach to this result in the particular case we consider here.

This point of view can be extended to times to stationarity. Indeed, let Y be an irreducible birth
and death process on J0, NK and denote by π its reversible probability. A strong stationary time
S is a randomized stopping time such the law of YS is π and such that S and YS are independent.
Among all such times, some are stochastically smaller than or equal to all the other ones and
they are called fastest times to stationarity. Their distribution is directly related to the separation
distance between the time-marginal laws and the equilibrium law. For more information on this
subject, we refer to the articles of Diaconis and Fill [7] and Fill [9] and to the bibliography contained
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therein. To describe these times in the above continuous time setting when Y starts from 0, Fill
[9] introduced a dual birth and death process Y ∗ also starting from 0, whose absorption time in
N is a time to stationarity for Y (once these processes have been coupled through an appropriate
intertwining relation). This procedure followed similar ideas developed in Diaconis and Fill [7] for
discrete time chains. Since the eigenvalues of the generator of Y (except for the trivial eigenvalue
0) are the same as the eigenvalues of the generator of Y ∗ with a Dirichlet condition at N , Fill
[9] deduced via Proposition 1 that the law of S is the convolution of exponential distributions of
parameters the negatives of the non-zero eigenvalues of the generator of Y . We will revisit this
result, which enters in the previous heuristic picture, except that in the last step, Y goes from the
(N − 1)th local equilibrium to the global equilibrium π within time T1.

The case of birth and death processes starting from 0 is quite restrictive, but we see it as a step
in the direction of a better probabilistic understanding of the relation between the eigenvalues of
the generator and the convergence to equilibrium. Matthews [19] also provides a contribution in
this direction. Indeed, note that even the analogous situation in discrete time remains puzzling
when the transition matrix admits negative eigenvalues (some mysterious Bernoulli distributions
appear, see for instance formula (4.23) in Diaconis and Fill [7]). We still hope that a probabilistic
explanation can be found.

The notion of intertwining appears in an article of Rogers and Pitman [25]. For other examples
of intertwined Markov semi-groups, see the article of Carmona, Petit and Yor [5]. For an analogue
of Proposition 1 for one-dimensional diffusions, see Kent [16].

The outline of this paper is as follows: in the next section we will recover the construction
of the dual process Y ∗ of Fill [9] (but whose setting is more general), by adopting a continuous
space inspired formalism for birth and death processes. It is particularly well-adapted to deal with
one-dimensional diffusions, but we will not develop the corresponding theory here. In section 3 we
will extend these considerations from times to stationarity to times to quasi-stationarity, which will
enable us to construct a first dual process X(1) of X(0) = X. The main result will be that for birth
and death processes starting at 0 and first absorbed at N , we can stop the process with a strong
time in such a way that the distribution of the position at this stopping time is the quasi-stationary
distribution. In section 4, the iteration of this procedure will lead to the whole familly X(i), for
1 ≤ i ≤ N , and especially to X ′ = X(N). We will discuss the notion of local equilibrium, which
is the key to our proof of Proposition 1. It also leads to a probabilistic representation of the time
marginal laws of X. The last section will deal with two illustrative examples.

We have indicated by an empty box � the end of the remarks, which should all be skipped at
a first reading.

Historical Note:
The earliest appearance of Proposition 1 that we know is in Karlin and McGregor [13], Equation 45
(thanks to Laurent Saloff-Coste for this reference). Their proof is via the orthogonal polynomials
associated to the birth and death process. They give an expression for the Laplace transform of
the first absorption time which is equivalent to the probabilistic formulation of Proposition 1. The
result was used by Keilson [14] who gives an independent proof using complex variables. The topic
is developed further in chapter 5 of Keilson [15]. In all these proofs, the exponential variables
appear through analysis, without probabilistic motivation.
A different proof of Proposition 1 follows from Kent [17]. Briefly, Kent considers the first hitting
time of N for an irreducible birth and death process started at 0. Let Si, for i ∈ J0, N − 1K,
be the time spent in state i before N is reached. Kent shows that the vector S = (S0, ..., SN−1)
has the law of Y + Z, with Y and Z independent vectors, distributed as coordinate-wise squares
of independent Gaussian vectors V and W , each having mean 0 and covariance matrix Σ, with
Σ−1 B 2Q. Here Q is the upper N ×N block of the matrix associated to −L symmetrized by the
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stationary distribution. In particular, for nonnegative si, i ∈ J0, N − 1K,

E

exp

− ∑
i∈J0,N−1K

siSi

 =
det(Q)

det(Q+ S̃)

with S̃ a diagonal matrix with si in position (i, i). Notice that if all the si are equal, the right side
is invariant under the conjugacy mapping Q 7→ A−1QA, for any invertible matrix A, so this right
side can be taken with Q replaced by a diagonal matrix containing the eigenvalues of the original Q.
Since S0 + · · ·+SN−1 is the time until N is reached, we have another proof of Proposition 1. Kent
[17] passes to the limit and uses the result to give a proof of the Ray-Knight theorem expressing
the local time of Brownian motion as the sum of two independent square Bessel processes.

2 Times to stationarity for birth and death processes

We will revisit here the reduction to absorption times of times to stationarity for birth and death
processes starting from 0. The main point is to introduce a differential formalism which is different
from the approach used by Fill [9] to construct dual processes: he rather built on the elementarily
probabilistic treatment of Diaconis and Fill [7] for discrete-time chains to get corresponding results
for continuous-time chains by simple passages to limits.

We still consider V B J0, NK as state space, but it is also convenient to introduce V − B J−1, NK,
V + B J0, N + 1K and V̄ B J−1, N + 1K. The spaces F , F−, F+ and F̄ respectively stand for the
collections of real valued functions defined on the previous sets. We denote by ∂+ the operator
from F̄ to F− given by

∀ f ∈ F̄ , ∀ x ∈ V −, ∂+f(x) B f(x+ 1)− f(x)

By restriction of ∂+f to V , this operator can also be seen to go from F+ to F . In a symmetrical
way, we consider ∂− : F̄ → F+ (or from F− to F),

∀ f ∈ F̄ , ∀ x ∈ V +, ∂−f(x) B f(x− 1)− f(x)

Next let L be an irreducible birth and death generator on V . We denote by (bx)0≤x≤N and
(dx)0≤x≤N respectively its birth and death rates, which are positive, except for d0 = bN = 0.
Throughout, let

∀ x ∈ V, π(x) B Z−1
∏

1≤y≤x

by−1

dy

(where Z is the normalizing constant) be the stationary distribution for L. Let u ∈ F and v ∈ F−
be the functions defined by

∀ x ∈ V, u(x) B
1

π(x)
∀ x ∈ V −, v(x) B π(x)L(x, x+ 1)

(in particular v(−1) = v(N) = 0). Then the generator L can be rewritten in the form

L = −u∂−v∂+ (2)

In formulas such as (2), the functions u, v act by multiplication, so uf(x) = u(x)f(x) for any x in
the underlying set. More rigorously, the operator on the right side of (2) goes from F̄ to F , but it
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happens that for f ∈ F̄ , −u∂−v∂+f does not depend on the values f(−1) and f(N + 1), so there
is no ambiguity in interpreting −u∂−v∂+ as an operator from F to itself.

One feature of the formulation (2) is that it makes it easy to find a “first order” difference
operator D with a “0-order” term (namely an operator of the form f 7→ a∂+f + bf or of the form
f 7→ a∂−f + bf , where a, b are functions and where b is seen as a “0-order” operator acting by
multiplication) and a birth and death generator L∗ absorbed in N such that

LD = DL∗ (3)

which is our next goal:

Lemma 2 Define D B − 1
π∂
−H and L∗ B − v

H ∂
+ 1
π∂
−H (here and in the whole paper, the tra-

ditional convention 0 · ∞ is assumed to hold), where the probability π has been extended to V̄ by
π(−1) = 0 = π(N + 1) and where H is the cumulative function of π:

∀ x ∈ V̄ , H(x) B
∑

0≤y≤x
π(y)

A priori, D : F− → F and L∗ : F̄ → F , but as before these operators can be naturally interpreted
as going from F to itself and the algebraic duality relation (3) is satisfied.

Proof
For f ∈ F−, we compute that

Df(0) = − 1
π(0)

∂−Hf(0)

= − 1
π(0)

(H(−1)f(−1)−H(0)f(0))

= f(0)

doesn’t depend on f(−1), nor does any other value of Df , so Df depends only on the restriction
of f to V . Similarly, for f ∈ F̄ , we have

L∗f(0) = − v(0)
H(0)

(
∂−Hf(1)
π(1)

− ∂−Hf(0)
π(0)

)
= −L(0, 1)

(
H(0)f(0)−H(1)f(1)

π(1)
− H(−1)f(−1)−H(0)f(0)

π(0)

)
= L(0, 1)

(
π(0)
π(1)

+ 1
)

(f(1)− f(0))

doesn’t depend on f(−1), nor does any other value of L∗f , and L∗f(N) = 0, because v(N) = 0, and
so we find that L∗f doesn’t depend on f(−1) or f(N). Thus L∗ can equally be seen as an operator
from F to itself. Furthermore, since L∗f(N) always vanishes, any Markov process generated by
L∗ (for instance in the sense of the corresponding martingale problem) is absorbed at N . Indeed,
we check that L∗ is a birth and death generator on V with rates given for any x ∈ V by

b∗(x) =
v(x)H(x+ 1)
H(x)π(x+ 1)

= d(x+ 1)
H(x+ 1)
H(x)

d∗(x) =
v(x)H(x− 1)
H(x)π(x)

= b(x)
H(x− 1)
H(x)
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Next the formal verification of (3) is immediate:

LD =
1
π
∂−v∂+ 1

π
∂−H

DL∗ =
1
π
∂−H

v

H
∂+ 1

π
∂−H

=
1
π
∂−v∂+ 1

π
∂−H

�

The operator D : F → F is in fact one-to-one. To see this, let us compute its inverse Λ. Let
g ∈ F be given, we want to find f ∈ F such that Df = g, namely

∀ x ∈ V, Df(x) = g(x) ⇐⇒ ∀ x ∈ V, ∂−Hf(x) = −π(x)g(x)

⇐⇒ f(x) =
1

H(x)

∑
0≤y≤x

π(y)g(y)

We recover the link Λ considered by Fill [9] in the above case of a birth and death process starting
from 0 (or starting from a distribution m0 such that m0/π is nonincreasing, see below):

∀ x ∈ V, Λ[g](x) B
1

H(x)

∑
0≤y≤x

π(y)g(y)

It is clear from this expression that Λ can be interpreted as a Markov kernel going from V to V
and satisfying the lower triangularity mentioned in the introduction. Furthermore, we deduce from
Lemma 2 that

ΛL = L∗Λ (4)

The same relation was deduced by Fill [9], using the approach of Diaconis and Fill [7].
Let us denote by (Pt)t≥0 and (P ∗t )t≥0 the semigroups associated to L and L∗, i.e.

∀ t ≥ 0,
{

Pt B exp(tL)
P ∗t B exp(tL∗)

From (4), they also satisfy the intertwining relation

∀ t ≥ 0, ΛPt = P ∗t Λ (5)

Let m0 (respectively m∗0) be a probability on V . There exists a Markov process (Xt)t≥0 (resp.
(X∗t )t≥0) with cdlg (right continuous with left hand limits) trajectories, whose initial law L(X0)
is m0 (resp. L(X∗0 ) is m∗0) and whose generator is L (resp. L∗). Furthermore uniqueness of these
processes holds in law. Assume that

m0 = m∗0Λ (6)

then (5) implies that for any t ≥ 0, we have L(Xt) = L(X∗t )Λ. But one can go further, since
Fill showed in Theorem 2 of [9] that under the assumptions (4) and (6), there exists a Markovian
coupling of (Xt)t≥0 and (X∗t )t≥0, still denoted by (Xt, X

∗
t )t≥0, such that

L(Xt|X ∗t ) = Λ(X∗t , ·) (7)

where X ∗t stands for the σ-field generated by (X∗s )0≤s≤t.
Next we define

τ∗ B inf{t ≥ 0 : X∗t = N}
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Under the hypotheses (4) and (6), Fill [9] showed that τ∗ is a strong stationary time for X. Let
us verify this assertion by using only (7). We begin by extending this relation to any a.s. finite
stopping time T ∗ relative to the filtration (X ∗t )t≥0, namely we have

L(XT ∗ |X ∗T ∗) = Λ(X∗T ∗ , ·) (8)

(recall that X ∗T ∗ is the σ-field generated by (X∗T ∗∧t)t≥0). We first consider the usual approximation
T ∗n B dnT ∗e/n of T ∗, for n ∈ N \ {0}, where dte is the smallest integer larger (or equal) than t. Its
advantages are, on one hand that it is also a stopping time with respect to (X ∗t )t≥0, and on the
other hand that it takes only a countable number of values, the values m/n for m ∈ N. Let f ∈ F
and G be a bounded mesurable functional on the set of cdlg trajectories from R+ to V . This path
space is endowed with the σ-field generated by the coordinates, coinciding with the Borel σ-field
associated to the Skorokhod topology, which is Polish, so we are ensured of the existence of regular
conditional probabilities. We compute that

E[f(XT ∗n )G((X∗T ∗n∧t)t≥0)] =
∑
m∈N

E[f(XT ∗n )G((X∗T ∗n∧t)t≥0)1T ∗n=m/n]

=
∑
m∈N

E[E[f(Xm/n)|X ∗m/n]G((X∗(m/n)∧t)t≥0)1T ∗n=m/n]

=
∑
m∈N

E[Λ[f ](X∗m/n)G((X∗(m/n)∧t)t≥0)1T ∗n=m/n]

= E[Λ[f ](X∗T ∗n )G((X∗T ∗n∧t)t≥0)]

(the third equality comes from (7)). The validity of these relations for any f and G as above is
equivalent to (8), where T ∗ is replaced by T ∗n . But we remark that XT ∗n , X∗T ∗n and (X∗T ∗n∧t)t≥0 are
a.s. convergent to XT ∗ , X∗T ∗ and (X∗T ∗∧t)t≥0, when n goes to infinity, so for a continuous function
G, we get

E[f(XT ∗)G((X∗T ∗∧t)t≥0)] = E[Λ[f ](X∗T ∗)G((X∗T ∗∧t)t≥0)]

and this is sufficient to be able to conclude (8).
We can now check that τ∗ and Xτ∗ are independent and that Xτ∗ is distributed as π. Given f ∈ F
and g a bounded mesurable mapping from R+ to R, since τ∗ is an a.s. finite stopping time which
is measurable with respect to X ∗τ∗ , we compute that

E[f(Xτ∗)g(τ∗)] = E[E[f(Xτ∗)|X ∗τ∗ ]g(τ∗)]
= E[Λ(f)(X∗τ∗)g(τ∗)]
= Λ(f)(N)E[g(τ∗)]
= π(f)E[g(τ∗)]

(the third equality is an application of (8)), which is the announced result (the identity Λ(N, ·) = π
comes from the definition of Λ but as in the introduction, it could be deduced from (7) by letting
t going to infinity).
It remains to check that τ∗ is a randomized stopping time for (Xt)t≥0, namely that it is a stopping
time with respect to a filtration of the kind (σ(U,Xs : 0 ≤ s ≤ t))t≥0, where U is “random noise”
independent from X B (Xt)t≥0. This is equivalent to

L(τ∗|Xτ∗) = L(τ∗|X)

(where Xτ∗ B (Xt∧τ∗)t≥0), since this equality means that the time τ∗ depends on the trajectory
X only through its positions up to time τ∗. This can be rewritten under the following form: for
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any bounded mesurable function g : R+ → R and any bounded mesurable functional G on the set
of càdlàg trajectories from R+ to V , we have

E[E[g(τ∗)|Xτ∗ ]G(X)] = E[g(τ∗)G(X)] (9)

Via the monotone class theorem, we can restrict to functions G of the form

G(X) = G1(Xτ∗)G2(Xτ∗,+) (10)

where Xτ∗,+ B (Xτ∗+t)t≥0. Using the strong Markov property of (Xt, X
∗
t )t≥0, we compute that

E[g(τ∗)G1(Xτ∗)G2(Xτ∗,+)] = E[g(τ∗)G1(Xτ∗)E[G2(Xτ∗,+)|(Xt, X
∗
t )0≤t≤τ∗ ]]

= E[g(τ∗)G1(Xτ∗)E[G2(Xτ∗,+)|(Xτ∗ , X
∗
τ∗)]]

= E[g(τ∗)G1(Xτ∗)E[G2(Xτ∗,+)|(Xτ∗ , N)]]
= E[g(τ∗)G1(Xτ∗)E[G2(Xτ∗,+)|Xτ∗ ]]

We note that the random variable G1(Xτ∗)E[G2(Xτ∗,+)|Xτ∗ ] is measurable with respect to Xτ∗ ,
so the last expectation can be rewritten as

E[E[g(τ∗)|Xτ∗ ]G1(Xτ∗)E[G2(Xτ∗,+)|Xτ∗ ]]
= E[E[g(τ∗)|Xτ∗ ]G1(Xτ∗)E[G2(Xτ∗,+)|(Xt, X

∗
t )0≤t≤τ∗ ]]

by the same computations as in the previous display. Since E[g(τ∗)|Xτ∗ ]G1(Xτ∗) is measurable
with respect to (Xt, X

∗
t )0≤t≤τ∗ , the last quantity is equal to

E[E[g(τ∗)|Xτ∗ ]G1(Xτ∗)G2(Xτ∗,+)]

which is just the left hand side of (9) when G is given by (10). It follows a posteriori that in the
above expressions we could have replaced E[G2(Xτ∗,+)|Xτ∗ ] by E[G2(Xτ∗,+)|Xτ∗ ], since the strong
Markov property is satisfied by X with respect to randomized stopping times.

Remark 3 Fill [9] (see his equation (2.12)) noticed another property of his coupling, which can
be rewritten (again through the monotone class theorem) as

∀ t ≥ 0, L((Xt+s)s≥0|Xt, X
∗
t ) = L((Xt+s)s≥0|Xt) (11)

(note that the l.h.s also coincides with L((Xt+s)s≥0|Xu, X
∗
u : 0 ≤ u ≤ t)). Similarly to what we

have done before, this identity can be extended to stopping times with respect to the filtration
(X ∗t )t≥0. Then the above computation shows that all stopping times with respect to (X ∗t )t≥0 are
indeed randomized stopping times for X. We did not need (11) to get this property for τ∗, because
it has a particular feature: X∗τ∗ is deterministic. We remark that among all stopping times for
X∗, τ∗ is the smallest one such that Xτ∗ is distributed as π. Indeed, consider such an a.s. finite
stopping time T ∗, since we have L(XT ∗) = L(X∗T ∗)Λ and that Λ(x,N) = 0 for x ∈ J0, N − 1K, it
appears that L(XT ∗) = π implies L(X∗T ∗) = δN .
Of course the fact that τ∗ is a fastest time to stationarity is a priori asking for more: namely
that τ∗ is stochastically smaller than all other strong stationary times. We will not prove this and
refer again to Fill [9], because we don’t want to enter here into the relationship between strong
stationary times and separation distance.

�
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3 Times to quasi-stationarity

After having introduced the notion of strong quasi-stationary times, we will extend the dual con-
struction of the previous section to them. To do so, our first step will work in the opposite direction:
we shall extract a recurrent Markov process from an absorbing one.

For simplicity, we will be working in the setting of birth and death processes starting from
0 and absorbed at N . From now on, L will be a generator as in the introduction, going from
D(L) B {f ∈ F : f(N) = 0} into itself. Again X B (Xt)t≥0 designates any Markov process on V
admitting L as generator. The distribution of X is determined by its initial law L(X0). We are
mainly concerned by the case L(X0) = δ0, but there is another interesting initial law, the quasi-
stationary law ρ. To define it, let L̂ be the adjoint operator of L with respect to `, the counting
measure on J0, N − 1K:

∀ f, g ∈ D(L), `(fLg) = `(gL̂f)

The operator −L̂ has the same spectrum λ1 < λ2 < · · · < λN as −L. So let ψ be an eigenfunction
of −L̂ associated to λ1. A standard application of Perron-Frobenius theorem shows that ψ has
a constant (strict) sign on J0, N − 1K, so ρ B ψ/`(ψ) is a probability which does not vanish on
J0, N − 1K.
The next result is classical (see for instance the book [3] of Aldous and Fill), but it will be very
important for us, since all of our exponential variables will be created from it, so we include a
proof.

Lemma 4 Assume that L(X0) = ρ, then

τ B inf{t ≥ 0 : Xt = N}

is distributed as an exponential variable of parameter λ1.

Proof

Let (Pt)t≥0 B (exp(tL))t≥0 (respectively (P̂t)t≥0 B (exp(tL̂))t≥0) be the semigroup associated to
L (resp. L̂). For any f ∈ D(L), we have

∀ t ≥ 0, ∀ x ∈ V, Pt[f ](x) = Ex[f(Xt)]

where the subscript x indicates that X starts from x. So, if m0 = L(X0) is such that m0(N) = 0,
we get for any t ≥ 0,

E[f(Xt)] =
∑

x∈J0,N−1K

m0(x)Ex[f(Xt)]

= `(m0Pt[f ])
= `(P̂t[m0]f)

But if m0 = ρ, we have by definition P̂t[ρ] = exp(−λ1t)ρ, so

E[f(Xt)] = exp(−λ1t)`(ρf)
= exp(−λ1t)ρ(f) (12)

In particular for f = 1J0,N−1K and any t ≥ 0,

P[τ > t] = E[1J0,N−1K(Xt)]
= exp(−λ1t)ρ(J0, N − 1K)
= exp(−λ1t)

10



Since this is true for any t ≥ 0, it follows that τ is distributed as an exponential variable of
parameter λ1.

�

From (12), we deduce that for any t ≥ 0,

L(Xt) = exp(−λ1t)ρ+ (1− exp(−λ1t))δN

if L(X0) = ρ. This justifies the name of quasi-stationary distribution for ρ. Seneta [26] is a useful
reference for quasi-stationarity.

Coming back to the case where X starts from 0, we say that an a.s. finite randomized stopping
time S for X is a strong quasi-stationary time if S and XS are independent and XS is distributed
as ρ (note in particular that we must have S < τ). It is furthermore called a fastest time to
quasi-stationarity if it is stochastically smaller than any other strong quasi-stationary time.

Our main goal is to get the following result:

Proposition 5 For a birth and death process starting at 0 and first absorbed at N , there exists a
strong quasi-stationary time S for X.

Before coming to the proof ot this proposition, let us explain how it will be used to prove Proposi-
tion 1. By Lemma 4, the time needed after S to be absorbed is an exponential variable of parameter
λ1 which is furthermore independent of S (since it only depends on the past up to time S through
XS). But by construction, S will have the same law as that of the absorbtion time of a birth and
death process starting from 0, absorbed in N − 1 and whose negatives of the Dirichlet eigenvalues
are exactly λ2 < λ3 < · · · < λN . So Proposition 1 will follow by iteration.

Indeed, to prove Proposition 5, we will construct a dual process X∗ on J0, N − 1K, whose
absorption time in N − 1 is a strong quasi-stationary time (and even a fastest time to quasi-
stationarity as it will appear later on, see Remark 13) for X, once X and X∗ are appropriately
intertwined.
To continue, we first need to derive from L an irreducible generator L̃ on J0, N − 1K.

Lemma 6 Let ϕ1 be an eigenfunction of L associated to −λ1 and define the operator

L̃ : F(J0, N − 1K) → F(J0, N − 1K)
f 7→ L[ϕ1f ] + λ1ϕ1f

where F(J0, N−1K) is the vector space of real functions defined on J0, N−1K (in the above formula,
we also naturally identify it with D(L), extending functions by 0 at N , or in the reverse way, taking
restriction to J0, N − 1K). Then L̃ is an irreducible birth and death generator whose reversible
probability is ρ.

Proof

If we identify L̃ with its matrix (L̃(x, y))x,y∈J0,N−1K, it follows from our assumption on the birth
and death rates of L that

∀ x, y ∈ J0, N − 1K,

{
|x− y| = 1 ⇒ L̃(x, y) > 0
|x− y| > 1 ⇒ L̃(x, y) = 0

So to check that L̃ is an irreducible birth and death generator L̃ on J0, N − 1K, it is sufficient to
verify that L̃[1J0,N−1K] = 0 on J0, N − 1K, but this is a direct consequence of the definition of ϕ1.

11



The probability ρ will be invariant for L̃, if and only if for any f ∈ F(J0, N − 1K), we have
ρ(L̃[f ]) = 0, and we compute

ρ(L̃[f ]) = ρ(L[ϕ1f ]) + λ1ρ(ϕ1f)
= −λ1ρ(ϕ1f) + λ1ρ(ϕ1f)
= 0

The second equality comes from the definition of ρ: for any g ∈ D(L), ρ(L[g]) = `(ψL[g])/`(ψ) =
`(gL[ψ])/`(ψ) = −λ1`(gψ)/`(ψ) = −λ1ρ(g).
The probability ρ is indeed reversible, as it is always the case for an invariant measure associated
to a finite birth and death generator.

�

As a consequence, we obtain the following expression for L.

Lemma 7 There exists a function v ∈ F(J−1, N − 1K such that seen as an operator on F(J0, N −
1K), L can be rewritten

L = −λ1 −
1
ρ
∂−v∂+ 1

ϕ1

where 1/ρ is seen as an element of F(J0, N − 1K) and 1/ϕ1 has been extended as a function in
F(J−1, NK) by making it vanish on {−1, N}. The latter convention is not really necessary, because
we must have v(−1) = v(N − 1) = 0. Furthermore v is positive on J0, N − 2K.

Proof

It follows from (2) applied to the irreducible birth and death generator L̃ and the preceding lemma
that there exists a function v ∈ F(J−1, N − 1K) such that

L̃ = −1
ρ
∂−v∂+

and v satisfies the properties stated above. Translating this expression to L, we get the claimed
result.

�

It is not difficult to check that that the function v is indeed unique. The advantage of this
formulation is that it makes it easy to find a “first order” difference operator D and a “second
order” difference operator L∗ such that an algebraic duality relation is satisfied:

Lemma 8 Define D B −1
ρ∂
−R and L∗ B −λ1− v

R∂
+ 1
ϕ1ρ

∂−R, where R is the cumulative function
of ρ:

∀ x ∈ J−1, NK, R(x) B
∑

0≤y≤x
ρ(y)

Since v(N − 1) = 0, the function 1
ϕ1ρ

need not be defined at N and the operators D : F(J−1, N −
1K)→ F(J0, N − 1K) and L∗ : F(J−1, NK)→ F(J0, N − 1K), can be naturally interpreted as going
from F(J0, N − 1K) to itself. Then we have

LD = DL∗ (13)

Furthermore, the restriction of L∗ to DN−1 B {f ∈ F(J0, N − 1K) : f(N − 1) = 0} is a Markov
generator absorbed at N − 1.
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Proof

The first assertions are immediate to check. Concerning (13), it is equivalent to verify that(
1
ρ
∂−v∂+ 1

ϕ1

)
◦D = D ◦

(
v

R
∂+ 1

ϕ1ρ
∂−R

)
This is true, because both sides are equal to

−1
ρ
∂−v∂+ 1

ϕ1ρ
∂−R

So the only point which needs some care is the last sentence of Lemma 8. First the image of DN−1

by L∗ is included in DN−1: let f ∈ DN−1, we compute that

L∗[f ](N − 1) = −λ1f(N − 1)− v(N − 1)
R(N − 1)

∂+ 1
ϕ1ρ

∂−Rf(N − 1)

= 0

because v(N − 1) = 0. Next by definition of L∗ and the fact that R, ϕ1 and ρ (respectively v) are
positive on J0, N − 1K (resp. J0, N − 2K) we already see that

∀ x, y ∈ J0, N − 1K,
{
|x− y| = 1 ⇒ L∗(x, y) > 0
|x− y| > 1 ⇒ L∗(x, y) = 0

so to conclude that the restriction of L∗ to DN−1 is a Markov generator, it remains to check that
L∗[1J0,N−1K] = 0 on J0, N − 2K. But using that ∂−R = −ρ on J0, N − 1K, this property can be
rewritten

∀ x ∈ J0, N − 2K,
(
v

R
∂+ 1

ϕ1ρ
∂−R

)
(x) = −λ1

⇐⇒ ∀ x ∈ J0, N − 2K,
(
v

R
∂+ 1

ϕ1

)
(x) = λ1

⇐⇒ ∀ x ∈ J0, N − 2K, v(x)
(
∂+ 1

ϕ1

)
(x) = λ1R(x)

We note that the last equality is satisfied if we consider it at x = −1, both sides being equal to
zero. So taking differences with respect to ∂−, we get

∀ x ∈ J0, N − 2K, L∗[1J0,N−1K](x) = 0

⇐⇒ ∀ x ∈ J0, N − 2K,
(
∂−v∂+ 1

ϕ1

)
(x) = λ1∂

−R(x)

⇐⇒ ∀ x ∈ J0, N − 2K,
(
∂−v∂+ 1

ϕ1

)
(x) = −λ1ρ(x)

⇐⇒ ∀ x ∈ J0, N − 2K,
(

1
ρ
∂−v∂+ 1

ϕ1

)
(x) = −λ1

⇐⇒ ∀ x ∈ J0, N − 2K, L[1J0,N−1K](x) = 0

(by Lemma 7) which is satisfied, since the restrictions of L[1J0,N−1K] and L[1J0,NK] to J0, N − 2K
coincide and L[1J0,NK] vanishes on J0, NK.

�

To follow the development presented in the previous section, we will have to be more careful with
the domains of the operators.
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First, D : F(J0, N − 1K) → F(J0, N − 1K) is one-to-one and its inverse Λ is Markovian and
given by

∀ f ∈ F(J0, N − 1K), ∀ x ∈ J0, N − 1K, Λ[f ](x) B
1

R(x)

∑
0≤y≤x

ρ(y)f(y)

So we deduce from (13) that we have on F(J0, N − 1K),

ΛL = L∗Λ (14)

and as a consequence,

∀ t ≥ 0, Λ exp(tL) = exp(tL∗)Λ

But the semigroup (exp(tL∗))t≥0 is Markovian only if we restrict it to DN−1. So for the previous
formula to be useful for intertwining, we need to slightly change the point of view on the Markov
processes associated to L and L∗. More precisely, let

SN−1 B {f ∈ F(J0, N − 1K) : ρ(f) = 0}

so that the image of SN−1 by Λ is DN−1. We now see the operators Λ : SN−1 → DN−1 and
D : DN−1 → SN−1 as inverses of each other. Let Ľ be the irreducible (but non-reversible) Markov
generator on J0, N − 1K whose jump rates are given by

∀ x, y ∈ J0, N − 1K, with x 6= y,

Ľ(x, y) =


L(x, y) , if x 6= N − 1
L(N − 1, N)ρ(y) , if x = N − 1 and y 6= N − 2
L(N − 1, N − 2) + L(N − 1, N)ρ(N − 2) , if x = N − 1 and y = N − 2

Then ρ is the invariant probability associated to Ľ. This can be computed directly, but it is clearer
from a probabilistic point of view: the Markov process corresponding to Ľ, instead of jumping
from N − 1 to N (as the Markov process associated to L), redistributes itself according to the
quasi-stationary distribution. In particular Ľ can be seen as an operator from SN−1 to SN−1. We
also observe that on SN−1, L and Ľ coincide, so we deduce from (14) the following commutative
diagram

SN−1
Ľ−−−−→ SN−1

Λ

y Λ

y
DN−1

L∗−−−−→ DN−1

(15)

By definition, Ľ is a Markov generator on J0, N − 1K, so in particular we have Ľ[1J0,N−1K] = 0. Let
us consider Ľ∗ the operator which coincides with L∗ on DN−1 and which satisfies Ľ∗[1J0,N−1K] = 0
(in view of the proof of Lemma 8, this amounts to just replacing the entry L∗(N −1, N −1) = −λ1

by Ľ∗(N − 1, N − 1) = 0). It appears that Ľ∗ : F(J0, N − 1K) → F(J0, N − 1K) is a Markovian
generator on J0, N−1K absorbed at N−1. Since Λ(1J0,N−1K) = 1J0,N−1K, we get that ΛĽ[1J0,N−1K] =
0 = L∗Λ[1J0,N−1K], so Diagram (15) can be extended to

F(J0, N − 1K) Ľ−−−−→ F(J0, N − 1K)

Λ

y Λ

y
F(J0, N − 1K) Ľ∗−−−−→ F(J0, N − 1K)
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and it follows that for any t ≥ 0,

F(J0, N − 1K)
exp(tĽ)−−−−−→ F(J0, N − 1K)

Λ

y Λ

y
F(J0, N − 1K)

exp(tĽ∗)−−−−−→ F(J0, N − 1K)

which is an intertwining relation between “true” Markovian semigroups.
Next let (X̌t)t≥0 (respectively (X̌∗t )t≥0) be a Markov process starting from 0 with generator

Ľ (resp. Ľ∗). Since their initial conditions m̌0 = δ0 = m̌∗0 satisfy m̌∗0Λ = m̌0, again we can use
Theorem 2 of Fill [9] to get a strong Markovian coupling of (X̌t)t≥0 and (X̌∗t )t≥0, still denoted by
(X̌t, X̌

∗
t )t≥0, such that for any t ≥ 0, a.s.,

L(X̌t|X̌∗t , 0 ≤ s ≤ t) = Λ(X̌∗t , ·) (16)

Now the situation has been reduced to that of the previous section. So

τ̌∗ B inf{t ≥ 0 : X̌∗t = N − 1}

is a strong stationary time for X̌. Furthermore, since Λ satisfies

∀ x ∈ J0, N − 1K, Λ(x, J0, xK) = 1

it follows from (16) that we have a.s.

∀ t ≥ 0, X̌t ≤ X̌∗t

thus τ̌∗ ≤ τ̌ B inf{t ≥ 0 : X̌t = N − 1}. But up to time τ̌ , X̌ and X (recall that it is a
Markov process starting from 0 and whose generator is L) have the same law, so we have proven
Proposition 5.

Remark 9 The above arguments can be extended to the case where m0 the initial distribution
of X0 satisfies that m0/ρ is non-increasing on V (implying in particular that m0(N) = 0).
If we assume that m0/ρ is increasing, there is no quasi-stationary time for X. Indeed, observe that
the mapping J0, N − 1K 3 x 7→ Ex[τ ] is decreasing, so we get that Em0 [τ ] < Eρ[τ ] = 1/λ1. But if
there exists a strong quasi-stationary times S, then τ is stochastically larger (or equal) than an
exponential variable of parameter λ1 (see the argument below this remark), in contradiction with
the above bound.
We wonder about a necessary and sufficient condition in terms of m0 for the existence of a quasi-
stationary time for X

�

Let us define

T1 B inf{t ≥ 0 : XS+t = N}

By the strong Markov property applied to the randomized stopping time S, T1 depends on
(XS∧t)t≥0 only through XS and is thus independent of S, which is a strong quasi-stationary time
for X. Furthermore, the strong Markov property and Lemma 4 imply that T1 is distributed as an
exponential variable of parameter λ1. So, writing

τ = S + T1

is the first step in the iterative proof of Proposition 1. Indeed, by the above characterization of S,
it is the absorption time τ̌∗ of the birth and death process X̌∗ starting from 0, so Proposition 1 is
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proven if we verify that the eigenvalues of −L∗ : DN−1 → DN−1 are exactly λ2 < λ3 < · · · < λN .
By (15), the eigenvalues of L∗ : DN−1 → DN−1 are exactly those of Ľ : SN−1 → SN−1, which also
coincide with those of L : SN−1 → SN−1. But the vector spaces Vect(ϕ1) and SN−1 are both stable
by L : DN → DN (with the obvious notation DN = {f ∈ F : f(N) = 0}) and Vect(ϕ1) is the
eigenspace associated to the eigenvalue −λ1, so necessarily the eigenvalues of −L : SN−1 → SN−1

are the λ2 < λ3 < · · · < λN .
Nevertheless, the particular intertwining relation mentioned in the introduction contains more

information, that is why we will construct it in the next section.

4 Intertwining processes

We now slightly modify the intertwining described in last section, so that it can be iterated.

More precisely, we begin by extending the operator L∗ defined in Lemma 8 on F(J0, N − 1K),
identified with DN , into an operator, still denoted L∗, on F , by imposing that L∗[1V ] = 0. Recall
that V B J0, NK and that F B F(J0, NK). From a matrix point of view, this operation amounts to
adding to (L∗(x, y))x,y∈J0,N−1K a row N of zeroes and a column N of zeroes, except for the entry
(N − 1, N) which is equal to λ1. Of course L∗ is now a Markov generator on V which is absorbed
at N .
Next we extend Λ into a Markov kernel on V , by taking

Λ(N, ·) B δN (·)

It is not difficult to check that this is in fact the only possible choice if we want this kernel to
coincide on J0, N − 1K with the previous one and so that we have an algebraic duality relation on
F ,

ΛL = L∗Λ (17)

With the above interpretation, this is an intertwining relation between true Markov generators,
contrary to the one (14) considered in last section. So by Theorem 2 of Fill [9], if m0 and m∗0 are
two probabilities on V satisfying m0 = m∗0Λ, we can construct a Markov process (Xt, X

∗
t )t≥0 such

that:
• the process (Xt)t≥0 is Markovian with generator L and initial distribution m0

• the process (X∗t )t≥0 is Markovian with generator L∗ and initial distribution m∗0
• for any t ≥ 0, we have a.s., L(Xt|X∗s , 0 ≤ s ≤ t) = Λ(X∗t , ·).

By definition, the Markov kernel Λ satisfies

∀ x ∈ J0, N − 1K, Λ(x, J0, xK) = 1
Λ(N, {N}) = 1

Thus, by the arguments given in the introduction, we get that a.s. τ = τ∗, where as usual,

τ = inf{t ≥ 0 : Xt = N}
τ∗ = inf{t ≥ 0 : X∗t = N}

This property allows other extensions of (17). Assume for instance that we are given M ∈ N and
L̃ a Markov generator on J0, N +MK such that

∀ x, y ∈ J0, N +MK, L̃(x, y) =
{
L(x, y) , if x ∈ J0, N − 1K and y ∈ J0, NK
0 , if x ∈ JN,N +MK and y ∈ J0, N − 1K
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Of course, we must have L̃(x, y) = 0 for x ∈ J0, N − 1K and y ∈ JN + 1, N + MK, but the entries
of (L̃(x, y))(x,y)∈JN,N+MK2 are free, as long as L̃ remains a Markov generator.
Next, let L̃∗ be the Markov generator defined on J0, N +MK by

∀ x, y ∈ J0, N +MK, L̃∗(x, y) =


L∗(x, y) , if x ∈ J0, N − 1K and y ∈ J0, NK
L̃(x, y) , if x ∈ JN,N +MK and y ∈ JN,N +MK
0 , otherwise

and let Λ be the Markov transition matrix defined on J0, N+MK which coincides with the previous
one on J0, NK and which satisfies Λ(x, ·) B δx for x ∈ JN,N +MK.
Then it is immediate to check that we still have Λ̃L̃ = L̃∗Λ̃ and then

ΛL = L∗Λ (18)

So if m0 and m∗0 are two probabilities on J0, N + MK such that m0 = m∗0Λ, then we can find a
Markov process (Xt, X

∗
t )t≥0 such that, as before, the process (Xt)t≥0 is Markovian with generator

L and initial distribution m0, the process (X∗t )t≥0 is Markovian with generator L∗ and initial
distribution m∗0 and for any t ≥ 0, we have a.s.,

L(Xt|X∗s , 0 ≤ s ≤ t) = Λ(X∗t , ·) (19)

Indeed, this can be deduced from the previous construction (corresponding to M = 0): assume
for instance that m∗0(J0, N − 1K) = 1, then we use the previous coupling up to the time τ = τ∗

and after this time, X and X∗ stick together. Similarly, if X∗0 ≥ N , we take X = X∗. This direct
construction can also be used as an alternative to the matrix verification of (18): first consider
x ∈ J0, N − 1K and let m∗0 = δx and m0 = Λ(x, ·). Taking into account (19), we get for any t ≥ 0
and any function f ∈ F(J0, N +MK),∑

y∈V
Λ(x, y)Ey[f(Xt)] = Ex[Λ(X∗t , f)]

and thus by differentiation with respect to t at 0+, we recover (18) on J0, N − 1K. To get it on
JN,N +MK, we use that for x ∈ JN,N +MK, for any t ≥ 0 and any function f ∈ F(J0, N +MK),

Ex[f(Xt)] = Ex[f(X∗t )]

With all these preliminaries, we can now construct iteratively the generators L(i) of the processes
X(i) mentioned in the introduction, for i ∈ J0, NK. We start with L(0) = L. Next we assume that
for some i ∈ J0, N − 1K, we have constructed a birth and death generator L(i) on V such that:
• The corresponding birth and death rates (b(i)x )0≤x<N and (d(i)

x )0≤x<N satisfy b
(i)
x = λN−x for

N − i ≤ x < N , d(i)
x = 0 for N − i < x ≤ N and are positive otherwise.

• λi+1, λi+2, ..., λN are the eigenvalues of the operator

F(J0, N − i− 1K) 3 f 7→ (−L(i)[f̄ ](x))x∈J0,N−iK ∈ F(J0, N − i− 1K)

where f̄ is the function from F which coincides with f on J0, N − i − 1K and which vanishes on
JN − i,NK (so the above operator is just the restriction of −L(i) on J0, N − iK with a Dirichlet
boundary condition on N − i).
• There is a Markov kernel Λ̄(i) from V to V such that

∀ x ∈ J0, N − 1K, Λ̄(i)(x, J0, xK) = 1
Λ̄(i)(N, {N}) = 1
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(such a kernel will be called lower triangular in the sequel) and Λ̄(i) serves as a link between L(i)

and L on F :

Λ̄(i)L = L(i)Λ̄(i) (20)

(for definiteness, we can take Λ̄(0) = Id, the identity kernel).
We now construct L(i+1) and Λ̄(i+1). We begin by considering the restriction of L(i) on J0, N−iK

with a Dirichlet boundary condition on N − i. Applying the construction of the previous section,
we get a dual operator L(i)∗ on F(J0, N − i− 1K) and a Markov kernel Λ(i) on J0, N − i− 1K such
that on F(J0, N − i− 1K),

Λ(i)L(i) = L(i)∗Λ(i)

Note that Λ(i) satisfies

∀ x ∈ J0, N − i− 1K, Λ(i)(x, J0, xK) = 1

and that the restriction of −L(i)∗ to {f ∈ F(J0, N−i−1K) : f(N−i−1) = 0} has λi+2, λi+3, ..., λN
as eigenvalues.
Next the considerations of the beginning of this section enable us to extend, on one hand, L(i)∗

into a birth and death generator L(i+1) on V and on the other hand, Λ(i) into a Markov kernel on
V , again denoted Λ(i), such that we have on F ,

Λ(i)L(i) = L(i+1)Λ(i) (21)

Furthermore L(i+1) has the required form and Λ(i) satisfies

∀ x ∈ J0, N − i− 1K, Λ(i)(x, J0, xK) = 1
∀ x ∈ JN − i,NK, Λ(i)(x, {x}) = 1

So Λ̄(i+1) = Λ(i)Λ̄(i) is a lower triangular kernel and we get from (20) and (21) that

Λ̄(i+1)L = Λ(i)Λ̄(i)L

= Λ(i)L(i)Λ̄(i)

= L(i+1)Λ(i)Λ̄(i)

= L(i+1)Λ̄(i+1)

Thus the iterative step is completed.
At the end of this procedure, we get the announced generator L(N), described by

∀ x, y ∈ V, L(N)(x, y) =


−λN−x , if x = y
λN−x , if y = x+ 1
0 , otherwise

which is intertwined with L by a lower triangular kernel Λ̄(N). In particular we can find a coupling
(X(N), X) of X(N), a Markov process starting from 0 and generated by L(N) and X, a Markov
process starting from 0 and generated by L, satisfying for all t ≥ 0, a.s.

L(Xt|X(N)
s , 0 ≤ s ≤ t) = Λ̄(N)(X(N)

t , ·)

As explained in the introduction, Proposition 1 follows at once from the existence of such a process.
But one can construct more intertwined processes. For 0 ≤ i ≤ N , let us denote by X(i) a

Markov process starting from 0 and generated by L(i). Then from (21), for any 0 ≤ i < j ≤ N , we
can find a coupling (X(j), X(i)) such that for all t ≥ 0, a.s.

L(X(i)
t |X(j)

s , 0 ≤ s ≤ t) = Λ̄(j,i)(X(j)
t , ·)
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where Λ(j,i) = Λ(j−1)Λ(j−2) · · ·Λ(i). This Markov kernel satisfies

∀ x ∈ J0, N − i− 1K, Λ̄(j,i)(x, J0, xK) = 1
∀ x ∈ JN − i,NK, Λ̄(j,i)(x, {x}) = 1

One can even go further and couple all the processes X(i), for 0 ≤ i ≤ N , into a “big” Markov
process:

Proposition 10 There exists a Markov process (X(N)
t , X

(N−1)
t , · · · , X(0)

t )t≥0, such that for all
i ∈ J0, N − 1K and all t ≥ 0, we have a.s.

L(X(i)
t |X(j)

s , j ∈ Ji+ 1, NK, 0 ≤ s ≤ t) = Λ(i)(X(i+1)
t , ·)

Furthermore, in this formula, the path valued finite sequence J0, NK 3 n 7→ X(N−n) is in fact
Markovian (and by consequence, J0, NK 3 n 7→ X(n) is equally a Markov chain).

Proof
We begin with the Markov process (X(N), X(N−1)) constructed as above and call L(N,N−1) its
generator. Then we consider the Markov kernel Λ̃(N,N−1) from V 2 to V defined by

∀ (xN , xN−1) ∈ V 2, ∀ xN−2 ∈ V, Λ̃(N,N−1)((xN , xN−1), xN−2) B Λ(N−2)(xN−1, xN−2)

Taking into account that for functions depending only on the xN−1 variable, L(N,N−1) coincides
with L(N−1), (21) implies that

Λ̃(N,N−1)L(N−2) = L(N,N−1)Λ̃(N,N−1)

This algebraic duality relation enables us to construct (X(N), X(N−1), X(N−2)), by resorting one
more time to Theorem 2 of Fill [9]. This procedure can obviously be iterated, by considering for
2 ≤ i ≤ N − 1, the Markov kernel Λ̃(N,N−i) from V i+1 to V defined by

∀ (xN , xN−1, · · · , xN−i) ∈ V i+1, ∀ xN−i−1 ∈ V,
Λ̃(N,N−i)((xN , xN−1, · · · , xN−i), xN−i−1) B Λ(N−i−1)(xN−i, xN−i−1)

�

Nevertheless, we think the most interesting intertwined process remains (X(N), X). Let us consider
for i ∈ J0, NK, the probability πi = Λ̄(N)(i, ·), in particular we have π0 = δ0 and πN = δN . It can
be shown that for i ∈ J1, N −1K, the support of πi is J0, iK and that πi is decreasing on this discrete
interval. Essentially, this comes from the fact that the quasi-stationary distribution ρ considered
in section 3 is decreasing on J0, N − 1K (see for instance Miclo [21]) and the iterative definitions of
the Markov kernels used to intertwine the previous generators. On a picture, the evolution of πi
when i goes from 0 to N − 1 looks like an avalanche going from the left to the right. Next define
for i ∈ J0, NK,

τ
(N)
i B min{t ≥ 0 : X(N)

t = i}

As in section 3, we can prove that all these variables are strong randomized stopping times for X
(the adjective strong refer to the fact that the position reached at the randomized stopping time
is independent of this time) and by definition we have that for any i ∈ J0, NK, X

τ
(N)
i

is distributed
as πi. In some sense, this distribution is kept for some random time, since we have for any t ≥ 0,

L(Xt|τ (N)
i ≤ t < τ

(N)
i+1 ) = πi (22)

Indeed, this an immediate consequence of the equality {τ (N)
i ≤ t < τ

(N)
i+1 } = {X(N)

t = i}. The
property (22) leads us to call the πi, for i ∈ J0, N − 1K, local equilibria. In the same spirit, we
deduce the following probabilistic representation of the time-marginal of X.
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Theorem 11 For any t ≥ 0, we get

L(Xt) =
∑
i∈V

P

 ∑
N−i+1≤j≤N

Tj ≤ t <
∑

N−i≤j≤N
Tj

πi
where the (Ti)i∈J1,NK are independent exponential variables of respective parameters the (λi)i∈J1,NK
and with the convention that T0 = +∞.

This formula can be rewritten in terms of the right eigendecomposition of L, even if the latter
description is less meaningful from a probabilistic point of view. Let us recall that

Lemma 12 For any i ∈ J1, NK, we have

P[TN + · · ·+ TN−i+1 > t] =
∑

j∈JN−i+1,NK

 ∏
k∈JN−i+1,NK\{j}

(
1− λj

λk

)−1
 exp(−λjt)

One way to deduce this result is through an iteration with respect to i ∈ J1, NK: this equality is
clear for i = 1 and next write that for i ≥ 1,

P[TN + · · ·+ TN−i > t] = P[TN−i > t] +
∫ t

0
P[TN + · · ·+ TN−i+1 > t− s] exp(−λN−is)λN−i ds

to deduce the result at stage i + 1 from the result at stage i, taking into account the rational
identity

∑
j∈JN−i,NK

 ∏
k∈JN−i,NK\{j}

(
1− λj

λk

)−1
 = 1

The latter can be proven considering the divided differences taken at the points λN , ..., λN−i with
the function x 7→ xi and using the Peano form.

Thus we get for any t ≥ 0,

L(Xt) =
∑
i∈V

(P[TN + · · ·+ TN−i+1 ≤ t]− P[TN + · · ·+ TN−i ≤ t])πi

=
∑

i∈J1,NK

P[TN + · · ·+ TN−i+1 ≤ t](πi − πi−1) + π0

=
∑

i∈J1,NK

(1− P[TN + · · ·+ TN−i+1 > t])(πi − πi−1) + π0

= πN −
∑

i∈J1,NK

P[TN + · · ·+ TN−i+1 > t](πi − πi−1)

= δN −
∑

i∈J1,NK

∑
j∈JN−i+1,NK

∏
k∈JN−i+1,NK\{j}

(
1− λj

λk

)−1

exp(−λjt)(πi − πi−1)

= δN −
∑

j∈J1,NK

 ∑
i∈JN−j+1,NK

∏
k∈JN−i+1,NK\{j}

(
1− λj

λk

)−1

(πi − πi−1)

 exp(−λjt)

It follows that for any j ∈ J1, NK, the signed measure

µj B
∑

i∈JN−j+1,NK

∏
k∈JN−i+1,NK\{j}

(
1− λj

λk

)−1

(πi − πi−1) (23)
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is an eigenvector of L seen as an operator acting on the right (namely on measures). The normal-
isation of these vectors is such that we have

δ0 = πN −
∑

j∈J1,NK

µj (24)

Conversely, (23) can be inverted and the (πi)i∈J1,NK can be expressed in terms of the eigenmeasures
(µi)i∈J1,NK satisfying (24). One aftermath of these considerations is that the parameters of the
independent exponential variables (Ti)i∈J1,NK and the probabilities (πi)i∈J1,NK appearing in The-
orem 11 are uniquely determined (in particular, the former are necessarily the negatives of the
eigenvalues of the underlying generator with a Dirichlet condition at N).

Coming back to Theorem 11, we see that the time marginal laws of the process always belong
to the convex hull generated by the (πi)i∈J1,NK. Furthermore, if the quotients λi+1/λi, for i ∈
J1, N − 1K, are very large, the trajectory R+ 3 t 7→ L(Xt) has a tendency to be close to πi at time
1/λi, where it stays for a period of the same order, before going directly in direction of πi+1, etc.
This is generically the case for the Metropolis algorithms at small temperature, at least for the
eigenvalues which vanish exponentially fast (cf. Miclo [22]). Furthermore, for those eigenvalues,
the time Ti and τ

(N)
i are equivalent and are supposedly also close to the exit times associated to

certain cycles, which are known to be almost exponential variables with eigenvalues as parameters
(see for instance Bovier, Eckhoff, Gayrard and Klein [4] or Miclo [23]). Thus it would seem that
asymptotically at small temperature, the previous random stopping times become “true” stopping
time and get a “spatial” interpretation.

These observations lead us to believe that some of the behaviors we have displayed for birth
and death processes starting from 0 could be extended to more general situations and this could
led to a better understanding of metastability.

Remark 13 Since τ (N)
N is the absorption time for X at N , it is the fastest strong stopping time

such that X
τ
(N)
N

is distributed according to δN . One can deduce from this property that for any

i ∈ J1, NK, τ (N)
i is a fastest strong stopping time such that X

τ
(N)
i

is distributed according to πi and

even better: let τ ′ be another such strong stopping time and define

τ ′′ B inf{t ≥ 0 : Xτ ′+t = N}

By the strong Markov property, we get that τ ′′ is independent from τ ′ and that it has the same
law as τ (N)

N − τ (N)
i . But τ ′+ τ ′′ is also distributed as τ (N)

N , so it follows that τ ′ has the same law as
τ

(N)
i . In particular, there is only one possible law for the strong quasi-stationary time considered

in section 3 (this is a difference with strong stationary times: for example if T is such a time,
then T + t is also a strong stationary time, for any fixed t ≥ 0). This can be extended to the
exponential times τ (N)

i+1 − τ
(N)
i , for i ∈ J0, N − 1K: if X0 is distributed according to πi, the law of a

strong stopping time τ such that Xτ is distributed according to πi+1 is necessarily an exponential
variable with parameter N − i.

�

5 Examples

This short section contains two illustrative examples. The first is the Ehrenfest urn, where in-
dependent exponential variables show up naturally inside a fastest strong stationary time. The
second concerns the continuous time random walk on a segment, absorbed at the right end.
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Example 14: The continuous time version of the Ehrenfest urn
This is the birth and death process on V B J0, NK whose generator is given by

∀ x, y ∈ V, L(x, y) B


x , if y = x− 1
N − x , if y = x+ 1
−N , if y = x
0 , otherwise

There is a traditional probabilistic way to construct a corresponding Markov process X starting
from 0. We start by defining a Markov process Y on the hypercube {0, 1}V . Given a configuration
on this state space, we attach to each site of V an exponential clock of parameter 2 (each of them
being independent from the others). When the first clock rings, say at site i ∈ V , we flip a fair coin
and the ith coordinate is changed or allowed to stay the same as the coin comes up heads or tails.
The construction goes on in the same way, starting from the (new or not new with probability 1/2)
configuration obtained and we end up with a {0, 1}V -valued Markov process Y . If Y starts from
the configuration where all spins are 0, X can be obtained by counting the number of spins equal
to 1 in Y .
Let τ be the first time all coordinates have seen their respective clocks ring at least once. This
randomized stopping time τ can clearly be written as a sum of exponential variables (Ti)i∈J1,NK
of parameters (2i)i∈J1,NK. Indeed, the first time TN at which any clock rings is a minimum of N
independent exponential variables of parameter 2, so it is an exponential variable of parameter
2N . Next, by the loss of memory property of exponential variables, we wait a new time TN−1 for
a clock from the other N −1 sites to ring, so this is an exponential variable of parameter 2(N −1),
which is independent from TN . Etc., until the last site has finally had its clock ring. This takes
time T1 since the last-but-one site has seen its own clock ringing.
Using the same probabilistic arguments as in Example 4.38 of Diaconis and Fill [7] (see also their
Example 3.2 and Remark 2.39), in continuous time instead of discrete time, it can be shown that τ
is a fastest strong stationary time for X. But from the above considerations (in particular section
2), we know that τ is a sum of independent exponential variables whose parameters are (λi)i∈J1,NK,
the positive eigenvalues of −L. As “there is only one way to write a sum of independent exponential
variables as a sum of independent exponential variables”, it follows that we necessarily have

∀ i ∈ J1, NK, λi = 2i

This example can be seen as an entirely probabilistic computation of eigenvalues. Of course there
are more classical ways to deduce them (see for instance Kac [12] or Diaconis [6]).

There are many other examples where natural fastest strong times to stationarity have been
constructed, see the original papers of Aldous and Diaconis [1, 2], Diaconis and Fill [7], Pak [24] or
Lovasz and Winkler [18]. The theory of the present paper shows that at least in the case of birth
and death processes starting from one end of their state space, these times are sums of exponential
variables.

�

The next example goes in the reverse direction and takes advantage of a known eigen-decomposition
to compute an absorption time.

Example 15: Continuous time nearest neighbor random walk
Consider the birth and death process X on V , starting from 0, absorbed at N with generator

given by

∀ x, y ∈ V, L(x, y) B


2 , if x = 0 and y = 1
1 , if x ∈ J1, N − 1K and |y − x| = 1
−
∑

z∈V \{x} L(x, z) , if y = x

0 , otherwise
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Then the time needed to go from 0 to N is distributed as a sum of independent exponential vari-
ables with parameters (2(1− cos(2π(2n− 1)/(4N))))n∈J1,NK.
Indeed, it is sufficient to show that the negatives of the eigenvalues of the sub-Markovian generator
L̃ B (L(x, y))x,y∈J0,N−1K on J0, N − 1K are the λn B 2(1 − cos(2π(2n − 1)/(4N))), for n ∈ J1, NK
(namely that the latter are the Dirichlet eigenvalues of −L). Let us also check that the correspond-
ing eigenfunctions are given by

ϕn : J0, N − 1K 3 x 7→ cos(2π(2n− 1)x/(4N))

To do so, we consider the generator L̂ of the usual continuous time nearest neighbor random walk on
Z/(4NZ) (with rates 1). One verifies at once that if f ∈ F(Z/(4NZ)) is an even function such that
f(N) = 0, then L̂[f ] coincide with L̃[f ] on J0, N−1K, where in the last expression, f has been iden-
tified with its restriction to J0, N −1K. But the eigenvalues of L̂ are the 2(1− cos(2πk/(4N))) with
associated (complex-valued) eigenfunction Z/(4NZ) 3 x 7→ exp(2πikx/(4N)), for k ∈ J0, 4N − 1K.
Since the eigenvalues associated to k and N − k coincide, it appears that the eigenvalues of
L̂ are the 2(1 − cos(2πk/(4N))), for k ∈ J0, 2N − 1K, their multiplicity is 2 and the corre-
sponding eigenspace is generated by the two mappings Z/(4NZ) 3 x 7→ sin(2πkx/(4N)) and
Z/(4NZ) 3 x 7→ cos(2πkx/(4N)). The latter function is odd and for k odd, it vanishes at N . So
as announced, its restriction to J0, N −1K is an eigenfunction for L̃, and since we get N −1 of them
in this way, we have in fact exhibited all of them.

We also remark that the quasi-stationary distribution ρ is proportional to the measure mϕ1 on
J0, N − 1K, where m B (m(x))x∈J0,N−1K is given by m(0) = 1/2 and m(x) = 1 for x ∈ J1, N − 1K.
This follows from the fact that the matrix ML̃ is symmetric, where M = diag(m).

�
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