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A very simple example

For fixed N € N, consider the usual discrete time random walk
(Xt)tez, on [0, N], with holding at 0 and N. The invariant (and
reversible) probability measure is the uniform distribution 7.

Qualitative result: whatever the initial condition £(Xp), £(X¢)
converges to 1 as t € Z goes to infinity.

Quantitative result:
I£(Xe) = nle, < /2exp(—s)
for

1
t > 2N+ 1)2(1 +s)



Total variation

Let us recall the definition of the total variation norm: for any

signed measure m on a discrete space,

[ml

= 2sup|m(A)]

AcS
= sup m(f)
feF, |f|,<1

= D Im(x)]

xeS

Mixing time associated to (L(Xt))tez, :

Tmix

sup inf{t € Zy : |L(Xe) — nll, < 1}

L(Xo)



In the previous example: T < (N 4+ 1)%(1 +1In(2))/4. Thisis a
refined bound using the whole spectrum. If just the spectral gap is
used: Tonix < (N + 1)2(1 + In(N + 1)) /4.

What happens if 0 is absorbing?
Then L£(X¢) — dp. This can be quantified also, using the first
Dirichlet eigenvalue. Our interest here:

T = inf{t€Z+ . tho}

pe = L(Xelt>1t)

Then (if £L(Xp) = do!), qualitative result:

[im t = UV
t.‘—>-l-OC'u



Quasi-stationary measure

where the probability v on [1, N] is called the quasi-stationary
distribution and is given by

o 2N +1—2x)7
v(x) = Z 1cos< 20N T 1) >

with Z71 = 2tan (W) the normalizing constant.
If £L(Xp) = v, then puy = v for all t = 0 and

Plr>t] = <cos<2Nﬂ+1>>t

(geometric distribution)

Our purpose: to obtain corresponding quantitative results, for
instance Tguasi—mix < CSt NZIn(N) in the above case.

We will rather work in the continuous time setting, where results
are simpler to state.



The framework

The whole finite state space is S := S 1 {0}, where 0 is the
absorbing point. It means that S is endowed with a Markov
generator matrix L := ([(X,y))x7yeg whose restriction to S x S is
irreducible and which is such that

VxeS§, L(0,x) = 0
IxeS: L 0

If 1o is an initial distribution on S, we can associate a Markov
process X = (X;)t=0. The absorbing time 7 and conditional
distribution iy, for t = 0, are constructed as before. There exists a
quasi-stationary distribution v such that

lim = v
t—>+oout

We want to quantify this convergence.



Let K be the S x S minor of L. It can be written under the
Schrodinger form L — V where V(x) = L(x,0), L an irreducible
Markov generator on S. Let 1 be the invariant probability for L.
Perron-Frobenius theory: there are A\g > 0 and a positive function
 such that

Klp] = —dop

Dual L* of L in L?(n): still a Markov generator given by

Vxy€S, L*(Xay) = %L(yax)

K* = L* — V and there is a positive function ¢* such that

K[p*] = —og*



Quasi-stationary distribution

Different normalizations: n[¢*] = 1 and n[pe*] = 1.
We have v = ¢* - n: it can be easily checked that for any function
fon S, v[K[f]] = —Xov[f]. As a consequence, for any t > 0,

vexp(tK) = exp(—Aot)v
namely, if £(Xo) = v, then
L(X¢) = exp(—Aot)v + (1 — exp(—Aot))do
In particular
P,[r > t] = P,[X; € S] = exp(—Aot)

(exponential distribution).



Doob transform

Consider the Markovian operator L on S defined by its off-diagonal
entries via

~

VX:yGS, L(X7}/) = L(Xay)

~—

(v
(x

S

S

(the diagonal entries are such the row sums vanish).
It is called the Doob transform of L through ¢. We have for any

function f,
1
[f] = ;(L — V + Xol)[pf]

L is irreducible and its invariant measure 7] is given by

r~¢

VxeS, nx) = ex)e*(x)n(x)
Indeed:
e M (L= V +X)ef]] = nle*(L—V + Xo)[ef]]

= nlpf(L* =V + Xo)[¢*]]
=0



Reduction to ergodicity

Let (IBt)t;o the ergodic semi-group generated by L. Its interest:

Theorem

For any probability measure pg on S and for any t = 0, we have

@A

S B
20, HoFe — 1

~ 8 ¥
foPe—i1| < ue—vl,, < 22
tv (20N tv

where [ig is the probability on S whose density with respect to g
is proportional to . In particular the asymptotic exponential rate

of convergence of || — v, and Hﬁoﬁt - ﬁH are the same.
tv

We used the notation

pv = maxp(x) @ = minp(x)

x€eS x€S



Amplitude

Thus it appears that the first Dirichlet eigenfunction ¢ is the main
ingredient needed to reduce the quantitative study of the
convergence to quasi-stationarity to that of the convergence to
equilibrium. A crucial quantity seems to be the amplitude of :

Pv

a -—
%2
P A

The convergence to equilibrium has been intensively investigated,
through various approaches: Lyapounov functions, coupling, strong
stationary times, isoperimetry, spectral theory, functional
inequalities... The above bounds enable to recycle them for
convergence to quasi-stationarity.



Symmetrization

The simplest of these methods: the L2 approach.

Let L _be the additive symmetrization of Lin L2(7): itis

(L + L*)/2, where L* is the adjoint operator of L in L2(7j). By
self-adjointness, Lis diagonalizable in R. Let X > 0 stand for the
smallest non-zero eigenvalue (spectral gap) of ~L.

Theorem

For any t = 0, we have

sup [pe — vy —eXP
1P (0p*n) A

where P stands for the set of probability measures on S.




Logarithmic Sobolev inequality

It is possible to improve the pre-exponential factor in the above
result, but at the expense of the rateA)\, via the logarithmic
Sobolev inequalities associated to L.

Let @ > 0 be the largest constant such that for all f € F,

) P\
&Y 2601 <WZ]> * (X))

< QL (F) = F))? " ()ely)n(x)L(x, y)

x,y€S

Then we have

nlee*] \ e ~
sup |ur — v, < 2|n< > exp(—(a/2)t
sup =, \/ k) S en(-(@/2))

This is interesting for not too large t and when & can be computed
(e.g. by tensorization).



Reversible case

Assume that 7 is reversible for L:

Vx,yeS, nx)Llxy) = nly)Lly,x)

Then —K = V — L is diagonalizable in R, we have already met its
smallest eigenvalue A\g. Let A1 > A\g be the second eigenvalue. The
spectral gap bound can be rewritten:

Theorem

Under the reversibility assumption, for any t > 0, we have

1 o,
sup —v < ————exp(— (A1 — Ao)t
e ”/11' Htv (30277)/\ R ( ( 1 0) )

\/UIA <z—z>2exp(—()\1 —Xo)t)

(In this situation ¢* = ).



A finite birth and death example with Ay ~ A\; — A (1)

The 3 first examples are birth and death processes on

S := [0, N], with N € N, absorbing at 0. So L gives positive rates
only to the oriented edges (x,x + 1) and (x + 1, x) where

x € [1, N — 1] and admits a reversible probability 7. Assume that
the killing rate at 1 is 1, namely V(1) = L(1,0) = 1. The other
values of V are taken to be zero.

Specifically for the first example, we choose

Vxe[l,N-2], L(x,x+1) = L(x+1,x) =1
LN—1,N) = 1 and L(N,N—1) = 2

The reversible probability 77 is almost the uniform distribution on
S =[1,N] (N has a weight divided by 2). The function ¢ is
defined by
1
VxeS, p(x) = > sin(mx/(2N))

where Z is the renormalization constant such that n[¢?] = 1.



A finite birth and death example with Ay ~ A\; — A (2)

We compute that A\g and A; — Ao are of the same order (as
N — o0), meaning that absorption and convergence to
quasi-stationarity happen at similar rates:

2

_ -2
Ao = 4N2(1—|—(’)(N )
72 o
A — X = 2m(1+O(N ))
Furthermore, we have
2N _
2 = (1+ON)

It follows from the previous bound that for any given s > 0, if
s

2
272 N

5 2
then

4 ~
sup e — vy, < —(1+O(N))exp(—s)
HoEP m



A finite birth and death example with \g « A\; — Ag (1)

It is similar to the previous example, except that for some r > 1,
we take

Lix,x+1) = r
Lix+1,x) =1
LIN-=1,N) = r and L(N,N—-1) = 1+

v xe[1,N-2], {

The reversible probability 7 is given by

=1 ,x—1 ;
r JifxeN—-1
VxeS, — nx) = { o v e :[[N ]]

2rN —r—1

More involved computations are needed to get information on the
eigenvalues and eigenfunctions, but finally we get, for large N,

1 1
Ao~ §(f+1)(f—1)2m
2, = ——=(1+0(r ")

r—1



A finite birth and death example with A\g < A\; — g (2)

A1 > (1 — \/7)2
It implies that
)\1 —)\0 ~ )\1 > )\0

meaning that convergence to quasi-stationarity happens at a much
faster rate than absorption. It follows that for any fixed s > 0, if
for N large enough we consider the time

1
then
r2
sup, lpe = vl < ro1) (140(1)) exp(—s)

It can be shown that the relaxation time to quasi-stationarity is at
least of order N, so the order is optimal here.



A finite birth and death example with A\g > A; — g (1)

The setting is as in the previous example, except that now r < 1.
But the behavior of our quantities of interest are very different for
large N:

a, < . ’j:\(IN 72 (1+0(1))
X~ (1=+/r)
and
A—DPVT o)) < a— o< 20202 2 o)
2N2 4N2

In particular absorption happens at a much faster rate than
convergence to quasi-stationarity, since A\g > A1 — Ap.



A finite birth and death example with A\g > A; — g (2)

N—-1

Taking furthermore into account that n, ~ (1 —r)r'¥=*, we get
44/1 + rN?
sup [[pe — vy, < (1+0(1))

oeD (1 — r)5/273(N-1)/2

exp <_(1_27I:I)22\ﬁ(1 + 0(1))t>

In particular, for any given € > 0, if we consider

NZIn(N)

= 4(1+6)(1_ PEN:

ty
then

lim sup ey —vl,, — O
D poeP



A non-reversible example

For fixed N € N, consider S = Zy endowed with the (turning)
generator L
1 Jify=x+1
V x,y € Zp, L(x,y) = -1 ,ify=x
0 , otherwise
whose invariant probability measure 7 is the uniform distribution.

The potential V takes the value 1 at 0 and 0 otherwise.
We can show that

272
sup s — vl < 2VAL+o()esp (1 + ol1)e)
HoEP

In particular, for any given ¢ > 0, if we consider

NZIn(N)
ty = (1 _
N (1+¢) 472
then
lim sup ey — vl = O

D poeP



Probabilistic interpretation of a,

How to estimate a, in practice?

First resort to the following probabilistic interpretation due to
Jacka and Roberts [1995]. For any x,y € S, denote by 7, the
reaching time of y by X*, the Markov process starting from x:

T, = inf{t>0: X =y} € Ry u{+0}

Proposition

For any x,y € S, we have

(x)
y)

S

= Elexp(lo7y)Llrx<r]

5

In particular, with O = {x € S : L(x,0) > 0}, we have

a, = Xe?,ay)éoE[eXp(AOT;)lTqufT]




A path method

This result leads to two methods of estimating a,.
The first one is through a path argument.
If v = (v0,71,-..,7) is a path in S, denote

Z(’Ykafyk-i-l)
P() = s
kE[[](s,_i[—l}] ‘L(/Yk7f)/k)| - A0

Proposition

Assume that for any y € O and x € S, we are given a path vy,
going from y to x. Then we have

-1
a, < ( min P(’y%x))

ye0, xeS




An example for the path method

Let G be the oriented graph induced by L on S, denote by d its
maximum outgoing degree and by D its “oriented diameter”. Let
0 < p« < p* be such that

Vx=yeS§, Lix,y) € {0} u[psp*]

* D
e ()
P
In the previous finite birth and death examples, it gives a bound on
a, exploding exponentially in D = N, which is the true behavior
only if r > 1. The second method based on spectral estimates

enables to recover the fact that ¢y explodes linearly in N for r =1
and is bounded if 0 < r < 1.

Then we get




Spectral estimates

Assume that 7 is reversible for L. The operator —K is then
diagonalizable, denote A\g < A1 < Ao < -+ < Ay_1 its eigenvalues
(N = card(S)). For any x € S, let A\o(S\{x}) be the first
eigenvalue of the (S\{x}) x (S\{x}) minor of —K. Finally, consider

Xo = mindo(S\{x})

Proposition

Under the reversibility assumption, we have

Under appropriate assumptions, it can be extended to denumerable
state spaces.



Denumerable birth and death (1)

Consider S := N and S := 7., endowed with a birth and death
generator L: namely of the form

by Jify=x+1

) B d, Jify=x-1
Vx=ye€eSs, L(X,}/) = —d.— b ifi//:X
0 , otherwise

where (by)xez, and (dx)xen are the positive birth and death rates,
except that by = 0: 0 is the absorbing state and the restriction of

L to N is irreducible.

The boundary point o is said to be an entrance boundary for [

if the following conditions are met:

0 1 X
= 1
= 7TXbX ;1 Ty +00 ( )
0 1 0
Z Z T, < 40 (2)
x=1 TrXbX y=x+1



Denumerable birth and death (2)

where

1 Jifx =1

V xe N, Ty = b1by-+-by_1 x>0
hdsd, T X=Z

The probabilistic meanings: (1): for x € Z,, X*, does not explode
to oo in finite time, (2): these processes “go down from infinity”.
One consequence of (2): >, . 7x < +00 and 7 is the
normalization of 7 into a probability measure.

(1) and (2) imply that the operator —K has only eigenvalues of
multiplicity 1, say the ()\,,),,ez+ in increasing order, and Gong,
Mao and Zhang [2012] have shown that they are well
approximated by the eigenvalues of the Neumann restriction of L
to [0, N] for large N € N. Finally, define

Ao = Ao(N\{1})



Extension of the spectral estimate

Under the assumptions (1) and (2), we have

Ao Ao
(-)I(-5) = o
neN

The eigenvector o is bounded and its amplitude satisfies:

SUpxen (X)  limy o0 0(x)

infyen () v(1)

(6-2)mG-2))°

There is a somewhat converse statement, via the Lyapounov
function approach.

N




Some references

There is a huge literature on quasi-stationarity, with recent surveys
provided by Méléard and Villemonais [2012], Van Doorn and
Pollett [2013] or by the book of Collet, Martinez and San
Martin [2013]. All of these review the history (Yaglom, Bartlett,
Darroch-Seneta, ...). An annotated online bibliography is kept up
to date by Pollett at

http://www.maths.uf.edu.au/~pkp/papers/qgsds.html.

But the quantitative aspect was not fully investigated, usually only
the asymptotical rate A; — A\¢ was identified, but without the
pre-exponential factor. See nevertheless Van Doorn and Pollett
[2013], Barbour and Pollett [2010, 2012] or recent preprints of
Cloez and Thai and of Champagnat and Villemonais.

The amplitude a, was used by Jacka and Roberts [1995] to
investigate the process conditioned to have never been absorbed.
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