On quantitative convergence to quasi-stationarity

Persi Diaconis † and Laurent ${\rm Miclo}^{\ddagger}$

[†] Stanford University [‡] Institut de Mathématiques de Toulouse

(日) (문) (문) (문) (문)

Plan of the talk

- Qualitative versus quantitative convergence
- 2 Finite quasi-stationarity
- 3 A reduction by comparison
- 4 Approach by functional inequalities
- **5** Some examples
- 6 Estimates on the amplitude a_{ω}
- 7 Birth and death processes with ∞ as entrance boundary

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

8 Some references

For fixed $N \in \mathbb{N}$, consider the usual discrete time random walk $(X_t)_{t \in \mathbb{Z}_+}$ on $[\![0, N]\!]$, with holding at 0 and N. The invariant (and reversible) probability measure is the uniform distribution η .

Qualitative result: whatever the initial condition $\mathcal{L}(X_0)$, $\mathcal{L}(X_t)$ converges to η as $t \in \mathbb{Z}_+$ goes to infinity.

Quantitative result:

$$\left\|\mathcal{L}(X_t) - \eta\right\|_{\mathrm{tv}} \leqslant \sqrt{2\exp(-s)}$$

for

$$t \geq \frac{1}{4}(N+1)^2(1+s)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへ⊙

Let us recall the definition of the **total variation** norm: for any signed measure m on a discrete space,

$$\|m\|_{\text{tv}} \coloneqq 2 \sup_{A \subset S} |m(A)|$$

=
$$\sup_{f \in \mathcal{F}, \|f\|_{\infty} \leq 1} m(f)$$

=
$$\sum_{x \in S} |m(x)|$$

Mixing time associated to $(\mathcal{L}(X_t))_{t \in \mathbb{Z}_+}$:

$$T_{\min} := \sup_{\mathcal{L}(X_0)} \inf\{t \in \mathbb{Z}_+ : \|\mathcal{L}(X_t) - \eta\|_{\mathrm{tv}} \leq 1\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ����

Absorption

In the previous example: $T_{\rm mix} \leq (N+1)^2(1+\ln(2))/4$. This is a refined bound using the whole spectrum. If just the spectral gap is used: $T_{\rm mix} \leq (N+1)^2(1+\ln(N+1))/4$.

What happens if 0 is absorbing? Then $\mathcal{L}(X_t) \to \delta_0$. This can be quantified also, using the first Dirichlet eigenvalue. Our interest here:

$$\tau := \inf\{t \in \mathbb{Z}_+ : X_t = 0\}$$
$$\mu_t := \mathcal{L}(X_t | \tau > t)$$

Then (if $\mathcal{L}(X_0) \neq \delta_0$!), qualitative result:

$$\lim_{t \to +\infty} \mu_t = \nu$$

Quasi-stationary measure

where the probability ν on $[\![1, N]\!]$ is called the **quasi-stationary distribution** and is given by

$$\nu(x) \quad \coloneqq \quad Z^{-1} \cos\left(\frac{(2N+1-2x)\pi}{2(2N+1)}\right)$$

with $Z^{-1} \coloneqq 2 \tan \left(\frac{\pi}{2(2N+1)} \right)$, the normalizing constant. If $\mathcal{L}(X_0) = \nu$, then $\mu_t = \nu$ for all $t \ge 0$ and

$$\mathbb{P}[\tau > t] = \left(\cos\left(\frac{\pi}{2N+1}\right)\right)^t$$

(geometric distribution)

Our purpose: to obtain corresponding quantitative results, for instance $T_{\text{quasi-mix}} \leq \operatorname{cst} N^2 \ln(N)$ in the above case. We will rather work in the continuous time setting, where results are simpler to state.

The framework

The whole finite state space is $\overline{S} \coloneqq S \sqcup \{0\}$, where 0 is the absorbing point. It means that \overline{S} is endowed with a Markov generator matrix $\overline{L} \coloneqq (\overline{L}(x, y))_{x, y \in \overline{S}}$ whose restriction to $S \times S$ is irreducible and which is such that

$$\forall x \in \overline{S}, \qquad \overline{L}(0, x) = 0 \\ \exists x \in S : \qquad \overline{L}(x, 0) > 0$$

If μ_0 is an initial distribution on S, we can associate a Markov process $X := (X_t)_{t \ge 0}$. The absorbing time τ and conditional distribution μ_t , for $t \ge 0$, are constructed as before. There exists a quasi-stationary distribution ν such that

$$\lim_{t \to +\infty} \mu_t = \nu$$

We want to quantify this convergence.

Notations

Let K be the $S \times S$ minor of \overline{L} . It can be written under the Schrödinger form L - V where $V(x) = \overline{L}(x, 0)$, L an irreducible Markov generator on S. Let η be the invariant probability for L. Perron-Frobenius theory: there are $\lambda_0 > 0$ and a positive function φ such that

$$K[\varphi] = -\lambda_0 \varphi$$

Dual L^* of L in $\mathbb{L}^2(\eta)$: still a Markov generator given by

$$\forall x, y \in S, \qquad L^*(x, y) = \frac{\eta(y)}{\eta(x)}L(y, x)$$

 $K^* = L^* - V$ and there is a positive function φ^* such that

$$\mathcal{K}^*[\varphi^*] = -\lambda_0 \varphi^*$$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三臣 - のへで

Different normalizations: $\eta[\varphi^*] = 1$ and $\eta[\varphi\varphi^*] = 1$. We have $\nu = \varphi^* \cdot \eta$: it can be easily checked that for any function f on S, $\nu[K[f]] = -\lambda_0 \nu[f]$. As a consequence, for any $t \ge 0$,

$$\nu \exp(tK) = \exp(-\lambda_0 t)\nu$$

namely, if $\mathcal{L}(X_0) = \nu$, then

$$\mathcal{L}(X_t) = \exp(-\lambda_0 t)\nu + (1 - \exp(-\lambda_0 t))\delta_0$$

In particular

$$\mathbb{P}_{\nu}[\tau > t] = \mathbb{P}_{\nu}[X_t \in S] = \exp(-\lambda_0 t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(exponential distribution).

Doob transform

Consider the Markovian operator \widetilde{L} on S defined by its off-diagonal entries via

$$\forall x \neq y \in S, \qquad \widetilde{L}(x,y) := L(x,y) \frac{\varphi(y)}{\varphi(x)}$$

(the diagonal entries are such the row sums vanish).

It is called the **Doob transform** of *L* through φ . We have for any function *f*,

$$\widetilde{L}[f] = \frac{1}{\varphi}(L - V + \lambda_0 I)[\varphi f]$$

 $\widetilde{\mathcal{L}}$ is irreducible and its invariant measure $\widetilde{\eta}$ is given by

$$\forall x \in S, \qquad \widetilde{\eta}(x) = \varphi(x)\varphi^*(x)\eta(x)$$

Indeed:

$$\widetilde{\eta}[\varphi^{-1}(L - V + \lambda_0)[\varphi f]] = \eta[\varphi^*(L - V + \lambda_0)[\varphi f]]$$

$$= \eta[\varphi f(L^* - V + \lambda_0)[\varphi^*]]$$

$$= 0$$

Let $(\widetilde{P}_t)_{t \ge 0}$ the ergodic semi-group generated by \widetilde{L} . Its interest:

Theorem

For any probability measure μ_0 on S and for any $t \ge 0$, we have

$$\frac{\varphi_{\wedge}}{2\varphi_{\vee}} \left\| \widetilde{\mu}_{0} \widetilde{P}_{t} - \widetilde{\eta} \right\|_{\mathrm{tv}} \leq \left\| \mu_{t} - \nu \right\|_{\mathrm{tv}} \leq \left\| 2\frac{\varphi_{\vee}}{\varphi_{\wedge}} \right\| \widetilde{\mu}_{0} \widetilde{P}_{t} - \widetilde{\eta} \right\|_{\mathrm{tv}}$$

where $\tilde{\mu}_0$ is the probability on *S* whose density with respect to μ_0 is proportional to φ . In particular the asymptotic exponential rate of convergence of $\|\mu_t - \nu\|_{tv}$ and $\|\tilde{\mu}_0 \tilde{P}_t - \tilde{\eta}\|_{tv}$ are the same.

We used the notation

$$\varphi_{\lor} \coloneqq \max_{x \in S} \varphi(x) \qquad \varphi_{\land} \coloneqq \min_{x \in S} \varphi(x)$$

(日) (四) (분) (분) (분) 분

Thus it appears that the first Dirichlet eigenfunction φ is the main ingredient needed to reduce the quantitative study of the convergence to quasi-stationarity to that of the convergence to equilibrium. A crucial quantity seems to be the **amplitude** of φ :

$$a_{\varphi} := \frac{\varphi_{\vee}}{\varphi_{\wedge}}$$

The convergence to equilibrium has been intensively investigated, through various approaches: Lyapounov functions, coupling, strong stationary times, isoperimetry, spectral theory, functional inequalities... The above bounds enable to recycle them for convergence to quasi-stationarity. The simplest of these methods: the \mathbb{L}^2 approach. Let \hat{L} be the **additive symmetrization** of \tilde{L} in $\mathbb{L}^2(\tilde{\eta})$: it is $(\tilde{L} + \tilde{L}^*)/2$, where \tilde{L}^* is the adjoint operator of \tilde{L} in $\mathbb{L}^2(\tilde{\eta})$. By self-adjointness, \hat{L} is diagonalizable in \mathbb{R} . Let $\hat{\lambda} > 0$ stand for the smallest non-zero eigenvalue (spectral gap) of $-\hat{L}$.

Theorem

For any $t \ge 0$, we have

$$\sup_{\mu_0\in\mathcal{P}}\|\mu_t-\nu\|_{\mathrm{tv}} \leqslant \sqrt{\frac{1}{(\varphi\varphi^*\eta)_{\wedge}}\frac{\varphi_{\vee}}{\varphi_{\wedge}}}\exp(-\widehat{\lambda}t)$$

<ロ> (四) (四) (三) (三) (三) (三)

where \mathcal{P} stands for the set of probability measures on S.

Logarithmic Sobolev inequality

It is possible to improve the pre-exponential factor in the above result, but at the expense of the rate $\hat{\lambda}$, via the **logarithmic Sobolev inequalities** associated to \hat{L} .

Let $\hat{\alpha} > 0$ be the largest constant such that for all $f \in \mathcal{F}$,

$$\widehat{\alpha} \sum_{x \in S} f^2(x) \ln \left(\frac{f^2(x)}{\widetilde{\eta}[f^2]} \right) \varphi^*(x) \varphi(x) \eta(x) \\ \leqslant \sum_{x, y \in S} (f(y) - f(x))^2 \varphi^*(x) \varphi(y) \eta(x) L(x, y)$$

Then we have

$$\sup_{\mu_0 \in \mathcal{P}} \|\mu_t - \nu\|_{\mathrm{tv}} \leqslant \sqrt{2 \ln \left(\frac{\eta [\varphi \varphi^*]}{(\varphi \varphi^* \eta)_{\wedge}}\right) \frac{\varphi_{\vee}}{\varphi_{\wedge}}} \exp(-(\widehat{\alpha}/2)t)$$

This is interesting for not too large t and when $\tilde{\alpha}$ can be computed (e.g. by tensorization).

Reversible case

Assume that η is reversible for *L*:

$$\forall x, y \in S, \quad \eta(x)L(x, y) = \eta(y)L(y, x)$$

Then -K = V - L is diagonalizable in \mathbb{R} , we have already met its smallest eigenvalue λ_0 . Let $\lambda_1 > \lambda_0$ be the second eigenvalue. The spectral gap bound can be rewritten:

Theorem

Under the reversibility assumption, for any $t \ge 0$, we have

$$\sup_{\mu_{0}\in\mathcal{P}} \|\mu_{t} - \nu\|_{\mathrm{tv}} \leq \sqrt{\frac{1}{(\varphi^{2}\eta)_{\wedge}}} \frac{\varphi_{\vee}}{\varphi_{\wedge}} \exp(-(\lambda_{1} - \lambda_{0})t)$$
$$\leq \sqrt{\frac{1}{\eta_{\wedge}}} \left(\frac{\varphi_{\vee}}{\varphi_{\wedge}}\right)^{2} \exp(-(\lambda_{1} - \lambda_{0})t)$$

(In this situation $\varphi^* = \varphi$).

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへで

A finite birth and death example with $\lambda_0 \sim \lambda_1 - \lambda_0$ (1)

The 3 first examples are **birth and death processes** on $\overline{S} := \llbracket 0, N \rrbracket$, with $N \in \mathbb{N}$, absorbing at 0. So *L* gives positive rates only to the oriented edges (x, x + 1) and (x + 1, x) where $x \in \llbracket 1, N - 1 \rrbracket$ and admits a reversible probability η . Assume that the killing rate at 1 is 1, namely $V(1) = \overline{L}(1, 0) = 1$. The other values of *V* are taken to be zero.

Specifically for the first example, we choose

The reversible probability η is almost the uniform distribution on $S = \llbracket 1, N \rrbracket$ (*N* has a weight divided by 2). The function φ is defined by

$$\forall x \in S, \qquad \varphi(x) := \frac{1}{Z}\sin(\pi x/(2N))$$

∃ <2 <</p>

where Z is the renormalization constant such that $\eta[\varphi^2] = 1$.

A finite birth and death example with $\lambda_0 \sim \lambda_1 - \lambda_0$ (2)

We compute that λ_0 and $\lambda_1 - \lambda_0$ are of the same order (as $N \to \infty$), meaning that absorption and convergence to quasi-stationarity happen at similar rates:

$$\begin{split} \lambda_0 &= \frac{\pi^2}{4N^2} (1 + \mathcal{O}(N^{-2})) \\ \lambda_1 - \lambda_0 &= 2 \frac{\pi^2}{N^2} (1 + \mathcal{O}(N^{-2})) \end{split}$$

Furthermore, we have

$$a_{\varphi} = rac{2N}{\pi}(1+\mathcal{O}(N^{-2}))$$

It follows from the previous bound that for any given s > 0, if

$$t = \frac{5}{4\pi^2} N^2 \ln(N) + \frac{s}{2\pi^2} N^2$$

then

$$\sup_{\mu_0 \in \mathcal{P}} \|\mu_t - \nu\|_{\mathrm{tv}} \leq \frac{4}{\pi^2} (1 + \mathcal{O}(N^{-1})) \exp(-s)$$

A finite birth and death example with $\lambda_0 \ll \lambda_1 - \lambda_0$ (1)

It is similar to the previous example, except that for some r > 1, we take

$$\forall x \in [[1, N-2]], \begin{cases} L(x, x+1) := r \\ L(x+1, x) := 1 \end{cases}$$

$$L(N-1, N) = r \text{ and } L(N, N-1) = 1+r$$

The reversible probability η is given by

$$\forall x \in S, \qquad \eta(x) = \begin{cases} \frac{r^2 - 1}{2r^N - r - 1}r^{x - 1} & \text{, if } x \in [[N - 1]] \\ \frac{r - 1}{2r^N - r - 1}r^{N - 1} & \text{, if } x = N \end{cases}$$

More involved computations are needed to get information on the eigenvalues and eigenfunctions, but finally we get, for large N,

$$\lambda_0 \sim \frac{1}{2}(r+1)(r-1)^2 \frac{1}{r^{N+1}}$$

$$a_{\varphi} = \frac{r}{r-1} (1 + \mathcal{O}(r^{-N}))$$

A finite birth and death example with $\lambda_0 \ll \lambda_1 - \lambda_0$ (2)

$$\lambda_1 > (1 - \sqrt{r})^2$$

It implies that

$$\lambda_1 - \lambda_0 \sim \lambda_1 \gg \lambda_0$$

meaning that convergence to quasi-stationarity happens at a much faster rate than absorption. It follows that for any fixed $s \ge 0$, if for N large enough we consider the time

$$t := \frac{1}{2(1-\sqrt{r})^2} \left(\ln(r)N + 2s \right)$$

then

$$\sup_{\mu_0 \in \mathcal{P}} \|\mu_t - \nu\|_{\mathrm{tv}} \leqslant \frac{r^2}{(r-1)^{5/2}} (1 + o(1)) \exp(-s)$$

It can be shown that the relaxation time to quasi-stationarity is at least of order N, so the order is optimal here A = A = A = A

The setting is as in the previous example, except that now r < 1. But the behavior of our quantities of interest are very different for large N:

$$egin{array}{rcl} a_arphi & \leq & \displaystylerac{2N}{(1-r)r^{(N-1)/2}}(1+\circ(1)) \ \lambda_0 & \sim & \displaystyle(1-\sqrt{r})^2 \end{array}$$

and

$$\frac{(1-r)^2 \sqrt{r}}{2N^2} (1+\circ(1)) \leqslant \lambda_1 - \lambda_0 \leqslant \frac{16\pi^2 - (1-r)^2}{4N^2} \sqrt{r} (1+\circ(1))$$

In particular absorption happens at a much faster rate than convergence to quasi-stationarity, since $\lambda_0 \gg \lambda_1 - \lambda_0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A finite birth and death example with $\lambda_0 \gg \lambda_1 - \lambda_0$ (2)

Taking furthermore into account that $\eta_{\wedge} \sim (1-r)r^{N-1}$, we get

$$\begin{split} \sup_{\mu_0 \in \mathcal{P}} \|\mu_t - \nu\|_{\mathrm{tv}} &\leqslant \quad \frac{4\sqrt{1+r}N^2}{(1-r)^{5/2}r^{3(N-1)/2}}(1+\circ(1))\\ & \exp\left(-\frac{(1-r)^2\sqrt{r}}{2N^2}(1+\circ(1))t\right) \end{split}$$

In particular, for any given $\epsilon > 0$, if we consider

$$t_N := 4(1+\epsilon) \frac{N^2 \ln(N)}{(1-r)^2 \sqrt{r}}$$

then

$$\lim_{N \to \infty} \sup_{\mu_0 \in \mathcal{P}} \left\| \mu_{t_N} - \nu \right\|_{\text{tv}} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A non-reversible example

For fixed $N \in \mathbb{N}$, consider $S = \mathbb{Z}_N$ endowed with the (turning) generator L

$$\forall x, y \in \mathbb{Z}_N, \qquad L(x, y) := \begin{cases} 1 & \text{, if } y = x + 1 \\ -1 & \text{, if } y = x \\ 0 & \text{, otherwise} \end{cases}$$

whose invariant probability measure η is the uniform distribution. The potential V takes the value 1 at 0 and 0 otherwise. We can show that

$$\sup_{\mu_0 \in \mathcal{P}} \|\mu_t - \nu\|_{\mathrm{tv}} \leqslant 2\sqrt{N}(1 + o(1)) \exp\left(\frac{2\pi^2}{N^2}(1 + o(1))t\right)$$

In particular, for any given $\epsilon > 0$, if we consider

$$t_{N} := (1+\epsilon) \frac{N^2 \ln(N)}{4\pi^2}$$

then

1

$$\lim_{N \to \infty} \sup_{\mu_0 \in \mathcal{P}} \|\mu_{t_N} - \nu\|_{t_V} = 0$$

- 2

Probabilistic interpretation of a_{φ}

How to estimate a_{φ} in practice?

First resort to the following probabilistic interpretation due to **Jacka and Roberts** [1995]. For any $x, y \in \overline{S}$, denote by τ_y^x the reaching time of y by X^x , the Markov process starting from x:

$$\tau_y^x := \inf\{t \ge 0 : X_t^x = y\} \in \mathbb{R}_+ \sqcup \{+\infty\}$$

Proposition

For any $x, y \in S$, we have

$$\frac{\varphi(x)}{\varphi(y)} = \mathbb{E}[\exp(\lambda_0 \tau_y^x) \mathbf{1}_{\tau_y^x < \tau_0^x}]$$

In particular, with $O := \{x \in S : \overline{L}(x, 0) > 0\}$, we have

$$a_{\varphi} = \max_{x \in S, y \in O} \mathbb{E} \left[\exp(\lambda_0 \tau_y^x) \mathbf{1}_{\tau_y^x < \tau_0^x} \right]$$

A path method

This result leads to two methods of estimating a_{φ} . The first one is through a path argument. If $\gamma = (\gamma_0, \gamma_1, ..., \gamma_l)$ is a path in *S*, denote

$$P(\gamma) := \prod_{k \in [0, l-1]} \frac{\overline{L}(\gamma_k, \gamma_{k+1})}{|\overline{L}(\gamma_k, \gamma_k)| - \lambda_0}$$

Proposition

Assume that for any $y \in O$ and $x \in S$, we are given a path $\gamma_{y,x}$ going from y to x. Then we have

$$a_{\varphi} \leqslant \left(\min_{y \in O, x \in S} P(\gamma_{y,x})\right)^{-1}$$

Let G be the oriented graph induced by L on S, denote by d its maximum outgoing degree and by D its "oriented diameter". Let $0 < \rho_* \leq \rho^*$ be such that

$$\forall x \neq y \in \overline{S}, \qquad \overline{L}(x, y) \in \{0\} \sqcup [\rho_*, \rho^*]$$

Then we get

$$a_{arphi} \leqslant \left(rac{
ho^* d}{
ho_*}
ight)^D$$

In the previous finite birth and death examples, it gives a bound on a_{φ} exploding exponentially in D = N, which is the true behavior only if r > 1. The second method based on spectral estimates enables to recover the fact that φ_N explodes linearly in N for r = 1 and is bounded if 0 < r < 1.

Spectral estimates

Assume that η is reversible for L. The operator -K is then diagonalizable, denote $\lambda_0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{N-1}$ its eigenvalues $(N = \operatorname{card}(S))$. For any $x \in S$, let $\lambda_0(S \setminus \{x\})$ be the first eigenvalue of the $(S \setminus \{x\}) \times (S \setminus \{x\})$ minor of -K. Finally, consider

$$\lambda'_0 \coloneqq \min_{x \in O} \lambda_0(S \setminus \{x\})$$

Proposition

Under the reversibility assumption, we have

$$a_{arphi} \leqslant \left(\left(1 - rac{\lambda_0}{\lambda_0'}
ight) \prod_{k \in \llbracket N - 1
rbracket} \left(1 - rac{\lambda_0}{\lambda_k}
ight)
ight)^{-1}$$

Under appropriate assumptions, it can be extended to denumerable state spaces.

Denumerable birth and death (1)

Consider $S := \mathbb{N}$ and $\overline{S} := \mathbb{Z}_+$, endowed with a **birth and death** generator \overline{L} : namely of the form

$$\forall x \neq y \in \overline{S}, \qquad \overline{L}(x,y) = \begin{cases} b_x & \text{, if } y = x+1 \\ d_x & \text{, if } y = x-1 \\ -d_x - b_x & \text{, if } y = x \\ 0 & \text{, otherwise} \end{cases}$$

where $(b_x)_{x\in\mathbb{Z}_+}$ and $(d_x)_{x\in\mathbb{N}}$ are the positive birth and death rates, except that $b_0 = 0$: 0 is the absorbing state and the restriction of \overline{L} to \mathbb{N} is irreducible.

The boundary point ∞ is said to be an **entrance boundary** for \overline{L} if the following conditions are met:

$$\sum_{x=1}^{\infty} \frac{1}{\pi_x b_x} \sum_{y=1}^{x} \pi_y = +\infty$$
(1)
$$\sum_{x=1}^{\infty} \frac{1}{\pi_x b_x} \sum_{y=x+1}^{\infty} \pi_y < +\infty$$
(2)

Denumerable birth and death (2)

where

$$\forall x \in \mathbb{N}, \qquad \pi_x := \begin{cases} 1 & \text{, if } x = 1\\ \frac{b_1 b_2 \cdots b_{x-1}}{d_2 d_3 \cdots d_x} & \text{, if } x \ge 2 \end{cases}$$

The probabilistic meanings: (1): for $x \in \mathbb{Z}_+$, X^x , does not explode to ∞ in finite time, (2): these processes "go down from infinity". One consequence of (2): $\sum_{x \in \mathbb{N}} \pi_x < +\infty$ and η is the normalization of π into a probability measure. (1) and (2) imply that the operator -K has only eigenvalues of multiplicity 1, say the $(\lambda_n)_{n \in \mathbb{Z}_+}$ in increasing order, and **Gong**, **Mao and Zhang** [2012] have shown that they are well approximated by the eigenvalues of the Neumann restriction of \overline{L} to $[\![0, N]\!]$ for large $N \in \mathbb{N}$. Finally, define

$$\lambda_0' \coloneqq \lambda_0(\mathbb{N} \setminus \{1\})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem

Under the assumptions (1) and (2), we have

$$\left(1-\frac{\lambda_0}{\lambda_0'}\right)\prod_{n\in\mathbb{N}}\left(1-\frac{\lambda_0}{\lambda_n}\right) > 0$$

The eigenvector φ is bounded and its amplitude satisfies:

$$\frac{\sup_{x \in \mathbb{N}} \varphi(x)}{\inf_{y \in \mathbb{N}} \varphi(y)} = \frac{\lim_{x \to \infty} \varphi(x)}{\varphi(1)}$$
$$\leqslant \left(\left(1 - \frac{\lambda_0}{\lambda'_0} \right) \prod_{n \in \mathbb{N}} \left(1 - \frac{\lambda_0}{\lambda_n} \right) \right)^{-1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

There is a somewhat converse statement, via the Lyapounov function approach.

There is a huge literature on quasi-stationarity, with recent surveys provided by Méléard and Villemonais [2012], Van Doorn and Pollett [2013] or by the book of Collet, Martínez and San Martín [2013]. All of these review the history (Yaglom, Bartlett, Darroch-Seneta, ...). An annotated online bibliography is kept up to date by Pollett at

http://www.maths.uf.edu.au/~pkp/papers/qsds.html.

But the quantitative aspect was not fully investigated, usually only the asymptotical rate $\lambda_1 - \lambda_0$ was identified, but without the pre-exponential factor. See nevertheless **Van Doorn and Pollett** [2013], **Barbour and Pollett** [2010, 2012] or recent preprints of **Cloez and Thai** and of **Champagnat and Villemonais**. The amplitude a_{φ} was used by **Jacka and Roberts** [1995] to investigate the process conditioned to have never been absorbed.