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Abstract
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1 Introduction

Consider a finite reversible and irreducible Markov process: if two points from the state space
are chosen independently according to the invariant probability, the expected time to go from one
to the other is equal to the sum of the inverses of the non-zero eigenvalues of the (opposite of
the) underlying generator. If it had not been known earlier, this property is due to Broder and
Karlin (Theorem 15 of [2]), who rather worked in the discrete time framework, and was later called
an eigentime identity by Aldous and Fill in their unpublished book [1]. Mao and his co-authors
have extensively studied such identities and in particular have extended them to a lot of settings:
transient and absorbing processes, non-reversible processes, jump processes on denumerable state
spaces, diffusion processes, see [8, 9, 5, 3]. In this paper we are only interested in finite state spaces
and we begin by presenting an alternative proof for ergodic Markov processes. Extending this
approach to absorbing Markov processes (which are irreducible outside the absorbing point), we
get a new absorbing eigentime identity, which converges to the ergodic one when the asymptotic
rate of absorption goes to zero.

We begin by recalling the finite ergodic framework. Let L be an irreducible Markov generator
on a finite state space S: it is represented by a matrix pLpx, yqqx,yPS whose off-diagonal entries are
non-negative, whose diagonal entries are such that the row sums vanish and which is such that all
the entries of exppLq are positive. An associated continuous-time Markov process X ≔ pXtqtě0 is
a Markov process whose trajectories are S-valued and right-continuous and whose jump rates are
given by the off-diagonal entries of L. Once the initial law of X0 is given, the law of X is uniquely
determined. If for some fixed x P S, X0 “ x, we will denote by Px and Ex the probability and the
expectation relative to X.

A probability distribution µ on S is said to be invariant for L, if taking X0 distributed according
to µ, then for any t ě 0, Xt is equally distributed according to µ. The Perron-Frobenius theorem
ensures the existence and the uniqueness of the invariant probability µ.

Let Λ be the multi-set of complex eigenvalues of ´L, repeated with their algebraic multiplicities.
Thus the cardinality of Λ is N , the cardinality of S. We have that 0 P Λ and by irreducibility its
algebraic multiplicity is 1, the associated eigenspace being the set of constant functions. We will
denote Λ0 “ Λzt0u.

Finally define for any y P S,

τy ≔ inftt ě 0 : Xt “ yu (1)

the reaching time of y by X (by convention inf H “ `8, but the irreducibility condition is
equivalent to the fact that the event tτy “ `8u is negligible whatever the initial condition).

The following result is due to Aldous and Fill [1] if L is furthermore assumed to be reversible
(namely µpxqLpx, yq “ µpyqLpy, xq for any x, y P S) and to Cui and Mao [5] in the general case.

Theorem 1 For any x P S, we have

ÿ

yPS

Exrτysµpyq “
ÿ

λPΛ0

1

λ

By integration with respect to µ, it implies the eigentime identity

ÿ

x,yPS

Exrτysµpxqµpyq “
ÿ

λPΛ0

1

λ

As it was noticed by Cui and Mao in Remark 1.2 of [5], it can be seen directly that the above
r.h.s. is positive, because Λ0 is stable by complex conjugation and all its element have positive real
parts. In the reversible case, it is even more immediate, since all elements of Λ0 are positive real
numbers.
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Our first goal is to give a simple functional proof of Theorem 1, which has the advantage to
extend to the absorbing setting to give a new absorbing eigentime identity.

In the finite absorbing framework, we are given a strictly subMarkovian irreducible generator
L on the finite set S. The only difference with the above setting is that the row sums are now
non-positive and one of them is negative. It is customary to add to S a cemetery point 8 R S to
get the extended state space S̄ ≔ S \ t8u. The matrix L is extended to S̄ by taking

@ x, y P S̄, L̄px, yq ≔

$
&
%

Lpx, yq , if x, y P S

´ ř
zPS Lpx, zq , if x P S and y “ 8

0 , if x “ 8

The matrix L̄ is Markovian on S̄ and we can associate to it a S̄-valued Markov process X ≔ pXtqtě0

as above. It is absorbing at 8, in the sense that when X reaches 8, it stays there forever afterward.
By our assumptions, whatever the initial distribution on S̄, X a.s. reaches 8, namely the absorption
time τ8 (extending the notation (1)) is a.s. finite.

The Perron-Frobenius theorem can also be applied in this situation and it gives the following
informations (see for instance the book [4] of Collet, Mart́ınez and San Mart́ın):

‚ The algebraic spectrum Λ of ´L contains a real element λ0 which is strictly less than the real
parts of the other elements of Λ. We denote Λ0 ≔ Λztλ0u.

‚ There exists a unique probability ν, called the quasi-stationary distribution of L, such that if
X0 is distributed according to ν, then for any t ě 0, the restriction to S of law of Xt is proportional
to ν (next it follows more precisely that the law of Xt is p1 ´ expp´λ0tqqδ8 ` expp´λ0tqν). The
probability ν is the unique normalized positive eigenmeasure associated to L.

‚ If ϕ is an eigenfunction associated to the eigenvalue ´λ0 of L, then ϕ has a fixed sign. In the
sequel we assume that ϕ is positive and normalized so that νrϕs “ 1. We denote µ the probability
admitting ϕ as density with respect to ν.

Our main result is the following extension of the eigentime identity to the absorbing setting:

Theorem 2 We have

ÿ

x,yPS

Ex

„ż τy,8

0

ϕpXsq exppλ0sq ds

νpxqµpyq “

ÿ

λPΛ0

1

λ ´ λ0

where for any y P S,

τy,8 ≔ inftt ě 0 : Xt P ty,8uu

The observation following the statement of Theorem 1 is equally valid here, since Λ0 is stable
by complex conjugation and the real parts of its elements are strictly larger than λ0.

Cui and Mao [5] have also proposed an extension of the eigentime identity to absorbing Markov
processes, but it is of a different nature. It says that

ÿ

λPΛ

1

λ
“

ÿ

xPS

1

|Lpx, xq|Pxrτ`
x “ `8s

where for x P S, τ`
x is the first time X jumps to x from another position.

Remark 3 When the chain is indeed ergodic, we have λ0 “ 0, ϕ “ 1 and ν “ µ, so that
Theorem 2, and the following Proposition 4 and Corollary 5, are all reduced to Theorem 1. In
some sense, Theorem 2 could be called an intrinsic eigentime identity, different from that obtained
by Cui and Mao [5]. It may also be informative to see how Theorem 1 is “strongly approximated”
by Theorem 2. Consider the following academic example.
Let L be an ergodic Markov generator as in Theorem 1. For ǫ ą 0, consider the subMarkovian
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generator Lpǫq
≔ L ´ ǫI, where I is the S ˆ S-identity matrix. The invariant measure µ of L

is also the quasi-stationary measure νpǫq of Lpǫq. The eigenfunction ϕpǫq is exactly 1, so that the
probability µpǫq is also equal to µ. The algebraic spectrum Λpǫq of ´Lpǫq is Λ ´ ǫ, where Λ is the

algebraic spectrum of ´L. In particular λ
pǫq
0

“ ǫ and thus

ÿ

λPΛ
pǫq
0

1

λ ´ λ
pǫq
0

“
ÿ

λPΛ0

1

λ

Furthermore, an absorbing Markov process Xpǫq associated to Lpǫq can be constructed from a
Markov process X associated to L with the same initial condition via

@ t ě 0, X
pǫq
t ≔

"
Xt , if t ă T pǫq

8 , if t ě T pǫq

where T pǫq is a exponential random variable of parameter ǫ independent of X. In particular, we

have τ
pǫq
y,8 “ τy ^ T pǫq, where τy is as in (1). We thus get that

ÿ

x,yPS

Ex

«ż τ
pǫq
y,8

0

ϕpǫqpXsq exppλ0sq ds
ff
νpǫqpxqµpǫqpyq “

ÿ

x,yPS

Ex

«
exppλ0pτy ^ T pǫqqq ´ 1

λ0

ff
µpxqµpyq

An elementary computation shows that

@ t ě 0, E

«
exppλ0pt ^ T pǫqqq ´ 1

λ0

ff
“ t

Indeed, we have

E

”
exppλ0pt ^ T pǫqqq

ı
{λ0 “

ż `8

0

exppλ0pt ^ sqq expp´λ0sqds

“
ż t

0

ds `
ż `8

t

exppλ0pt ´ sqq ds

“ t ` 1{λ0

It follows that for any ǫ ą 0 and x P S,

Ex

«
exppλ0pτy ^ T pǫqqq ´ 1

λ0

ff
“ Exrτys

Thus, for any fixed ǫ ą 0, the eigentime identity of Theorem 1 for L is “equivalent” to the eigentime
identity of Theorem 2 for Lpǫq.

˝

We come back to the general framework of finite irreducible absorbing Markov processes. The
following result is an analogous property of the first part of Theorem 1.

Proposition 4 For any x P S, we have

ϕpxq “
˜

ÿ

λPΛ0

1

λ ´ λ0

¸´1 ÿ

yPS

Ex

„ż τy,8

0

ϕpXsq exppλ0sq ds

µpyq
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Let us give some immediate consequences of Theorem 2 and Proposition 4 which make them
more similar to Theorem 1. It is convenient to consider the amplitude of ϕ, introduced and studied
in [6]:

aϕ ≔
maxS ϕ

minS ϕ
ě max

S
ϕ (2)

In particular it was seen in [6] that under the reversibility assumption (there exists a probability
measure η on S such that ηpxqLpx, yq is symmetrical with respect to the couple px, yq), we have

aϕ ď
˜ˆ

1 ´ λ0

λ1
0

˙ ź

λPΛ0

ˆ
1 ´ λ0

λ

˙¸´1

where

λ1
0 ≔ min

xPS : L̄px,8qą0

λ0pSztxuq

and λ0pSztxuq is the Perron-Frobenius smallest eigenvalue of the restriction of ´L to Sztxu.

Corollary 5 For all x P S, we have

a´2
ϕ

ÿ

λPΛ0

1

λ ´ λ0

ď
ÿ

yPS

Ex

„
exppλ0τy,8q ´ 1

λ0


νpyq ď a2ϕ

ÿ

λPΛ0

1

λ ´ λ0

and in particular

ÿ

yPS

Ex rτy,8s νpyq ď a2ϕ

ÿ

λPΛ0

1

λ ´ λ0

By integration of these bounds with respect to ν, one gets eigentime inequalities where the starting

and ending points x and y play symmetrical roles.

Probably that under appropriate assumptions, the previous results can be extended to denu-
merable infinite state spaces. The extension to diffusion processes seems more challenging. But
these frameworks are left for future investigations.

The plan of the paper is as follows: in next section we recover Theorem 1 with a simple
functional proof. The situation of absorbing Markov processes is treated in Section 3. The last
section extends the previous considerations to the setting of discrete time.

2 The ergodic case

The known results concerning the ergodic eigentime identity presented in Theorem 1 are recovered
here via an elementary approach.

The underlying simple linear algebra principle is as follows:

Lemma 6 Let F be an Euclidean space of dimension N P N whose scalar product is denoted by

x¨, ¨y. Consider F0 a subspace of F and G an endomorphism of F0. If penqnPJNK is an orthonormal

basis of F , consider for any n P JNK, gn the orthogonal projection of en on F0. Then the trace of

G is given by

trpGq “
ÿ

nPJNK

xgn, Ggny
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Proof

This result is well-known if F0 “ F : then the diagonal of the matrix of G expressed in the basis
penqnPJNK is pxen, GenyqnPJNK. In the general case, consider the extension Ḡ of G on F which
vanishes on the orthogonal complement of F0. It appears that

trpGq “ trpḠq
“

ÿ

nPJNK

@
en, Ḡen

D

“
ÿ

nPJNK

xgn, Ggny

�

This result is applied with F ≔ L
2pµq, endowed with its natural scalar product and with the

orthonormal basis pδy{
a

µpyqqyPS , where δy is the function from F taking the value 1 at y and 0
elsewhere. For the subspace F0, consider

F0 ≔ tf P F : µrf s “ 0u (3)

The orthogonal projection of the basis pδy{
a

µpyqqyPS on F0 is pgyqyPS , where

@ y P S, gy ≔

δya
µpyq

´
a

µpyq (4)

The invariance of µ is equivalent to the property that

@ f P F , µrLrf ss “ 0

namely the image of F by L is included into F0. By irreducibility, we know that the kernel of L is
the set of constant functions, thus the restriction of ´L to F0 is a bijective endomorphism, whose
algebraic spectrum is Λ0. Consider G its inverse operator, which is an endomorphism of F0 whose
algebraic spectrum is

"
1

λ
: λ P Λ0

*

(write ´L|F0
in a basis where the associated matrix is upper diagonal).

From the previous lemma, we get

ÿ

yPS

xgy, Grgysy “
ÿ

λPΛ0

1

λ

The following result enables to conclude to the ergodic eigentime identity.

Proposition 7 For any fixed y P S, we have

xgy, Grgysy “ µpyq
ÿ

xPS

Exrτysµpxq

Proof

For given y P S, consider the mapping fy P F defined by

@ x P S, fypxq ≔ Exrτys (5)
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It is well-known that fy is characterized by the fact that

"
Lrfys “ ´1 on Sztyu
fypyq “ 0

(6)

Since Lrfys belongs to F0, we get that Lrfyspyq “ p1 ´ µpyqq{µpyq and it appears that

Lrfys “ gya
µpyq

In particular we deduce that

Grgys “ ´
a

µpyq rfy (7)

where rfy ≔ fy ´ µrfys P F0.
From (6) we get that

xfy, Lrfysy “ ´
ÿ

x ­“y

fypxqµpxq

“ ´
ÿ

xPS

fypxqµpxq

By invariance and since L vanishes on constant functions,

A
rfy, Lr rfys

E
“ xfy, Lrfysy

It remains to use (7) to conclude to the wanted identity.
�

To be self-contained, let us give a probabilistic proof of the characterization (6). The same
approach will also be useful in the absorbing case. It consists in exchanging the roles of the known
and unknown functions and fy and gy{

a
µpyq in the Poisson equation

#
Lrfys “ gy?

µpyq

fypyq “ 0
(8)

Since L|F0
is bijective, there is a unique function rfy P F0 such that Lr rfys “ gy{

a
µpyq. Thus we

know a priori there is a unique solution fy to (8), it is given by fy “ rfy ´ rfypyq.

Lemma 8 The unique solution fy of (8) is given by (5).

Proof

Recall that the law of a Markov process X associated to L is a solution to the following martingale
problem: for any f P F , the process

@ t ě 0, Mtrf s ≔ fpXtq ´ fpX0q ´
ż t

0

Lrf spXsq ds

is a martingale. In particular, the process pMt^τy rf sqtě0 is a bounded martingale, so we get for
any fixed x P S and t ě 0,

Ex

„
fpXt^τyq ´ fpX0q ´

ż t^τy

0

Lrf spXsq ds


“ 0
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i.e.

fpxq “ Ex

„
fpXt^τy q ´

ż t^τy

0

Lrf spXsq ds


Replace f by fy, to see that

fpxq “ Ex

“
fpXt^τyq ` t ^ τy

‰

and letting t go to infinity it appears that

fpxq “ Exrτys

as announced.
�

It remains to show the first part of Theorem 1, namely that the function f ≔
ř

yPS fy µpyq is
constant. It follows immediately by applying L:

Lrf s “
ÿ

yPS

Lrfysµpyq

“
ÿ

yPS

gya
µpyq

µpyq

“
ÿ

yPS

δy ´ µpyq “ 1 ´ 1 “ 0

3 The absorbing case

It is seen here how the arguments of the previous section can be extended to the absorbing situation
to prove Theorem 2 and Proposition 4

Again we apply Lemma 6 to the Euclidean space F ≔ L
2pµq, where µ has density ϕ with

respect to ν, the quasi-stationary distribution. We equally consider the basis pδy{
a

µpyqqyPS and
the subspace F0 defined in (3). Thus the family of functions pgyqyPS , introduced in (4), will play
an important role.

The main difference with Section 2 is that the generator L is replaced by the operator rL acting
on F by

@ f P F , rLrf s ≔ 1

ϕ
pL ` λ0qrϕf s

It is quite natural, since rL is an ergodic Markov generator whose convergence to equilibrium is
strongly related to the absorption for L, as it was seen in [7]. Note that the invariant probability
of rL is µ. Indeed, the quasi-invariance of ν is equivalent to the property that

@ f P F , νrLrf ss “ ´λ0νrf s

so that

@ f P F , µrrLrf ss “ νrpL ` λ0qrϕf ss “ 0

In particular the image of F by rL is included into F0. By the Perron-Frobenius theorem, the kernel
of L ` λ0 is of dimension 1 and generated by the positive function ϕ. It follows that the kernel
of rL consists of the constant functions (as it should be for an ergodic Markovian generator) and
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thus the restriction of ´rL to F0 is an bijective endomorphism of F0. Denote by G its inverse. Its
algebraic spectrum is

"
1

λ ´ λ0

: λ P Λ0

*

From Lemma 6, we deduce that

ÿ

yPS

xgy, Grgysy “
ÿ

λPΛ0

1

λ ´ λ0

It leads to consider, for any fixed y P S, the solution fy of the equation

# rLrfys “ gy?
µpyq

fypyq “ 0
(9)

Indeed, it is given by fy “ ´pGrgys ´ Grgyspyqqq{
a

µpyq, or equivalently Grgys “ ´
a

µpyqpfy ´
µrfysq. The proof of Proposition 7, where L is replaced by rL, shows that

xgy, Grgysy “ ´µpyq
A

rLrfy ´ µrfyss, fy ´ µrfys
E

“ ´µpyq
A
fy, rLrfys

E

“ µpyq
ÿ

xPS

fypxqµpxq

The next result is analogous to Lemma 8 in the identification of fy. It ends the proof of Theorem 2,
since µpxq{ϕpxq “ νpxq for all x P S.

Lemma 9 For any fixed y P S, the mapping fy is given by

@ x P S, fypxq “ 1

ϕpxqEx

„ż τy,8

0

ϕpXsq exppλ0sq ds


Proof

Let X be the absorbing process associated to L. The martingale problem solved by its law can
be extended into a time-space version, sometimes called Dynkin’s lemma: For any function f :
R` ˆ S Ñ R which is C1 with respect to the first (time) variable, the process

@ t ě 0, Mtrhs ≔ hpt,Xtq ´ hp0,X0q ´
ż t

0

pBshps, ¨q ` Lrhps, ¨qsqpXsq ds

is a martingale (by convention, all the functions defined on S are extended to S̄ by making them
vanish at 8). In particular, the process pMt^τy,8rhsqtě0 is a bounded martingale, so we get for
any fixed x P S and t ě 0,

Ex

„
hpt ^ τy,8,Xt^τy,8q ´ hp0,X0q ´

ż t^τy,8

0

pBshps, ¨q ` Lrhps, ¨qsqpXsq ds


“ 0

i.e.

hp0, xq “ Ex

„
hpt ^ τy,8,Xt^τy,8q ´

ż t^τy,8

0

pBshps, ¨q ` Lrhps, ¨qsqpXsq ds


Consider the function f defined by

@ s ě 0, z P S, hps, zq ≔ exppλ0tqϕpzqfypzq
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where y P S is fixed as in the statement of the lemma. Taking into account that

pL ` λ0qrϕfys “ ϕ
gya
µpyq

we get

@ s ě 0, @ z P Sztyu, pBshps, ¨q ` Lrhps, ¨qsqpzq “ ´ exppλ0sqϕpzq (10)

so that for any x P S and t ě 0,

ϕpxqfypxq “ Ex

„
exppλ0pt ^ τy,8qqfypXt^τy,8q `

ż t^τy,8

0

exppλ0sqϕpXsq ds


(11)

By monotone convergence, we have

lim
tÑ`8

Ex

„ż t^τy,8

0

exppλ0sqϕpXsq ds


“ Ex

„ż τy,8

0

exppλ0sqϕpXsq ds


To see that

lim
tÑ`8

Ex

“
exppλ0pt ^ τy,8qqfypXt^τy,8 q

‰
“ Ex

“
exppλ0τy,8qfypXτy,8q

‰

“ 0

we would like to apply the dominated convergence theorem. Namely we wish that Ex rexppλ0τy,8qs ă
`8. It is true as a consequence of two well-known facts (for a proof, see e.g. Lemma 6 and Lemma 8
of [6]):

‚ For any x P Sztyu, Ex rexpplτy,8qs ă `8 if and only if l ă λ0pSztyuq, where λ0pSztyuq was
defined just before Corollary 5.

‚ Due to the irreducibility of L, λ0pSztyuq ą λ0, which means that the underlying process goes
out from Sztyu with a (strictly) better asymptotical rate than from S.

We are thus allowed to let t go to infinity in (11) to obtain the announced formula for fy.
�

The proof of Proposition 4 is similar to that of the first part of Theorem 1: considering the
function f ≔

ř
yPS fyµpyq, it appears that rLrf s “ 0, so that f must be constant. The eigentime

identity asserts that µrf s “ ř
λPΛ0

1{pλ ´ λ0q and we deduce that

@ x P S, fpxq “
ÿ

λPΛ0

1

λ ´ λ0

which can be rewritten under the form given in Proposition 4.

4 The discrete-time setting

All the previous considerations can be adapted to the setting of discrete time. After recalling
it in the ergodic and absorbing cases, we state the corresponding results and present the slight
modifications needed in the arguments.

In the ergodic case, we are given an irreducible Markov transition matrix P ≔ pP px, yqqx,yPS on
the finite state space S. The associated Markov chains X ≔ pXnqnPZ` are those whose transition
probabilities are dictated by P . For x P S, we denote Ex the expectation relative to X when
X0 “ x. For any y P S, τy stands for the reaching time of y by X and is defined formally as in (1).
We denote by µ the invariant probability for P (i.e. satisfying µP “ µ) and by Θ the algebraic
spectrum of P . The multiplicity of 1 P Θ is 1 and let Θ0 ≔ Θzt1u.

The following result is again due to Aldous and Fill [1] for the reversible Markov chains and to
Cui and Mao [5] in the general case.
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Theorem 10 For any x P S, we have

ÿ

yPS

Exrτysµpyq “
ÿ

θPΘ0

1

1 ´ θ

By integration with respect to µ, it implies the eigentime identity

ÿ

x,yPS

Exrτysµpxqµpyq “
ÿ

θPΘ0

1

1 ´ θ

In the absorbing situation, P is a strictly subMarkovian transition matrix on the finite S. As
usual, it can be extended into a Markov transition matrix P̄ by adding a cemetery point 8 to
S. This enables to consider the associated Markov chains X ≔ pXnqnPZ` , with the corresponding
notions, Ex, τx,8, for x P S, etc. Let Θ be the algebraic spectrum of P . The Perron-Frobenius
theory enables to see that in Θ there is a real element θ0 which is (strictly) larger than the real parts
of all the other eigenvalues. Furthermore, there exists a quasi-stationary probability ν characterized
by νP “ θ0ν, and let ϕ be the positive function satisfying Pϕ “ θ0ϕ with νrϕs “ 1. As before,
denote Θ0 “ Θztθ0u and µ the probability admitting the density ϕ with respect to ν. With these
notations, we can state an absorbing discrete-time eigentime identity:

Theorem 11 We have

ÿ

x,yPS

Ex

«
τy,8´1ÿ

n“0

θ´n´1

0
ϕpXnq

ff
νpxqµpyq “

ÿ

θPΘ0

1

θ0 ´ θ

and more precisely, for any x P S,

ϕpxq “
˜

ÿ

θPΘ0

θ0

θ0 ´ θ

¸´1 ÿ

yPS

Ex

«
τy,8´1ÿ

n“0

θ´n
0

ϕpXnq
ff
µpyq

Considering L ≔ P ´ I (with I the S ˆ S-identity matrix), which is an irreducible Markov
(respectively strict subMarkov) generator in the ergodic (resp. absorbing) case, the functional
arguments are exactly the same as in the continuous time. The differences appear with the prob-
abilistic interpretations, namely in the proofs of Lemmas 8 and 9. But they are quite minor. In
the ergodic case, for f P F , define the discrete-time martingale M rf s by

@ n P Z`, Mnrf s ≔ fpXnq ´ fpX0q ´
n´1ÿ

m“0

pP ´ Iqrf spXmq

and consider for fixed y P S, the martingale pMm^τy rfysqmPZ` .
In the absorbing situation, one rather use the time-space martingales M rhs, where h is a

mapping from Z` ˆ S to R, defined by

@ n P Z`, Mnrhs ≔ hnpXnq ´ h0pX0q ´
n´1ÿ

m“0

pP ´ Iqrhm`1spXmq ` phm`1 ´ hmqpXmq

More precisely one needs to stop them at τy,8, for fixed y P S, and relatively to the function

f : Z` ˆ S Q pm, zq ÞÑ hmpzq ≔ θm0 ϕpzqfypzq

Its interest is that

@ m P Z`, @ z P Sztyu, pP ´ Iqrhm`1spzq ` phm`1 ´ hmqpzq “ ´θ´m´1

0
ϕpzq
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which is the analogous property to (10). Furthermore the two points mentioned at the end of the
proof of Lemma 9 are equally satisfied.

‚ For the first point, one has to take into account that τy,8 is a geometric variable of parameter
θ0pSztyuq (the Perron-Frobenius largest eigenvalue of the restriction of P to Sztyu) when X0

is started from the quasi-stationary distribution (instead of a exponential variable of parameter
λ0pSztyuq).

‚ For the second point, θ0pSztyuq ă θ0, it comes directly from the corresponding assertion for
the associated subMarkovian generator L, it is indeed a result of functional nature.

Finally, there is an immediate equivalent of Corollary 5, where the amplitude aϕ is defined as
in (2).

Corollary 12 For all x P S, we have

a´2
ϕ

ÿ

θPΘ0

θ0

θ0 ´ θ
ď

ÿ

yPS

Ex

«
θ

´τy,8
0

´ 1

θ´1

0
´ 1

ff
νpyq ď a2ϕ

ÿ

θPΘ0

θ0

θ0 ´ θ

and in particular

ÿ

yPS

Ex rτy,8s νpyq ď a2ϕ

ÿ

θPΘ0

θ0

θ0 ´ θ

By integration of these bounds with respect to ν, one gets discrete time eigentime inequalities where

the starting and ending points x and y play symmetrical roles.
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