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Abstract

Consider a finite irreducible Markov process X. Sampling two points « and y independently
according to the invariant measure, the eigentime identity states that the expected time for X to
go from x to y is equal to the sum of the inverses of the non-zero eigenvalues of the (opposite of
the) underlying generator. This short paper gives a simple proof of this equality and propose a
new extension to the finite absorbing irreducible Markov framework, in continuous and discrete

times.
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1 Introduction

Consider a finite reversible and irreducible Markov process: if two points from the state space
are chosen independently according to the invariant probability, the expected time to go from one
to the other is equal to the sum of the inverses of the non-zero eigenvalues of the (opposite of
the) underlying generator. If it had not been known earlier, this property is due to Broder and
Karlin (Theorem 15 of [2]), who rather worked in the discrete time framework, and was later called
an eigentime identity by Aldous and Fill in their unpublished book [1]. Mao and his co-authors
have extensively studied such identities and in particular have extended them to a lot of settings:
transient and absorbing processes, non-reversible processes, jump processes on denumerable state
spaces, diffusion processes, see [8, 9, 5, 3]. In this paper we are only interested in finite state spaces
and we begin by presenting an alternative proof for ergodic Markov processes. Extending this
approach to absorbing Markov processes (which are irreducible outside the absorbing point), we
get a new absorbing eigentime identity, which converges to the ergodic one when the asymptotic
rate of absorption goes to zero.

We begin by recalling the finite ergodic framework. Let L be an irreducible Markov generator
on a finite state space S: it is represented by a matrix (L(z,y))syes whose off-diagonal entries are
non-negative, whose diagonal entries are such that the row sums vanish and which is such that all
the entries of exp(L) are positive. An associated continuous-time Markov process X = (X;);>0 is
a Markov process whose trajectories are S-valued and right-continuous and whose jump rates are
given by the off-diagonal entries of L. Once the initial law of X is given, the law of X is uniquely
determined. If for some fixed x € S, Xy = z, we will denote by P, and E, the probability and the
expectation relative to X.

A probability distribution p on S is said to be invariant for L, if taking X distributed according
to p, then for any t > 0, X; is equally distributed according to . The Perron-Frobenius theorem
ensures the existence and the uniqueness of the invariant probability u.

Let A be the multi-set of complex eigenvalues of —L, repeated with their algebraic multiplicities.
Thus the cardinality of A is N, the cardinality of S. We have that 0 € A and by irreducibility its
algebraic multiplicity is 1, the associated eigenspace being the set of constant functions. We will
denote Ay = A\{0}.

Finally define for any y € S,

T, = inf{t>0:X; =y} (1)

the reaching time of y by X (by convention inf & = +o00, but the irreducibility condition is
equivalent to the fact that the event {7, = +o0} is negligible whatever the initial condition).

The following result is due to Aldous and Fill [1] if L is furthermore assumed to be reversible
(namely p(z)L(z,y) = p(y)L(y,z) for any z,y € S) and to Cui and Mao [5] in the general case.

Theorem 1 For any x € S, we have
1
2 Elnlulw) = 5
yeS AeAg
By integration with respect to u, it implies the eigentime identity
1
2 Elnlu@ny) = ). 5
z,yeS A€o

As it was noticed by Cui and Mao in Remark 1.2 of [5], it can be seen directly that the above
r.h.s. is positive, because Ag is stable by complex conjugation and all its element have positive real
parts. In the reversible case, it is even more immediate, since all elements of Ay are positive real
numbers.



Our first goal is to give a simple functional proof of Theorem 1, which has the advantage to
extend to the absorbing setting to give a new absorbing eigentime identity.

In the finite absorbing framework, we are given a strictly subMarkovian irreducible generator
L on the finite set S. The only difference with the above setting is that the row sums are now
non-positive and one of them is negative. It is customary to add to S a cemetery point oo ¢ S to
get the extended state space S := S L {c0}. The matrix L is extended to S by taking

Va,yes, L(z,y) = —YesgL(z,2) ,ifxeSandy=o0
0 yif o =0

The matrix L is Markovian on S and we can associate to it a S-valued Markov process X = (X;)=0
as above. It is absorbing at 00, in the sense that when X reaches oo, it stays there forever afterward.
By our assumptions, whatever the initial distribution on S, X a.s. reaches co, namely the absorption
time 7o, (extending the notation (1)) is a.s. finite.

The Perron-Frobenius theorem can also be applied in this situation and it gives the following
informations (see for instance the book [4] of Collet, Martinez and San Martin):

e The algebraic spectrum A of —L contains a real element \g which is strictly less than the real
parts of the other elements of A. We denote Ag := A\{\o}.

e There exists a unique probability v, called the quasi-stationary distribution of L, such that if
X is distributed according to v, then for any ¢ > 0, the restriction to S of law of X} is proportional
to v (next it follows more precisely that the law of X; is (1 — exp(—Aot))d + exp(—Aot)v). The
probability v is the unique normalized positive eigenmeasure associated to L.

e If i is an eigenfunction associated to the eigenvalue —\g of L, then ¢ has a fixed sign. In the
sequel we assume that ¢ is positive and normalized so that v[¢] = 1. We denote p the probability
admitting ¢ as density with respect to v.

Our main result is the following extension of the eigentime identity to the absorbing setting:

Theorem 2 We have

Z E, [jmw o(Xs) exp(Aos) ds] v(z)u(y) = Z /\_1/\0

z,yesS 0

where for any y € S,
Tyoo = inf{t >0 : X; e {y,0}}

The observation following the statement of Theorem 1 is equally valid here, since A is stable
by complex conjugation and the real parts of its elements are strictly larger than Aq.

Cui and Mao [5] have also proposed an extension of the eigentime identity to absorbing Markov
processes, but it is of a different nature. It says that

Z)\ Z|L:E:E +=+oo]

AEA €S

where for z € S, 7,7 is the first time X jumps to x from another position.

Remark 3 When the chain is indeed ergodic, we have \g = 0, ¢ = 1 and v = pu, so that
Theorem 2, and the following Proposition 4 and Corollary 5, are all reduced to Theorem 1. In
some sense, Theorem 2 could be called an intrinsic eigentime identity, different from that obtained
by Cui and Mao [5]. It may also be informative to see how Theorem 1 is “strongly approximated”
by Theorem 2. Consider the following academic example.

Let L be an ergodic Markov generator as in Theorem 1. For € > 0, consider the subMarkovian



generator L(9) := L — eI, where I is the S x S-identity matrix. The invariant measure p of L
is also the quasi-stationary measure v(¢ of L(9). The eigenfunction ¢ is exactly 1, so that the

probability (¢ is also equal to p. The algebraic spectrum A€ of —L() is A — ¢, where A is the
(e)

algebraic spectrum of —L. In particular Ay’ = € and thus
Y mw - X
Aed® A~ A Ao A

Furthermore, an absorbing Markov process X (©) associated to L(® can be constructed from a
Markov process X associated to L with the same initial condition via

i (¢)
viz0, X = {Xt Jift<T

o L ift=T0

where T is a exponential random variable of parameter € independent of X. In particular, we
have 7'?520 =Ty A T(), where 7, is as in (1). We thus get that

7ok exo(a(r A TOY) —
> E, “ so<f><Xs>exp<Aos>ds] SO = 3 E[ PQolny AT =1 a)uy)

z,yesS 0 z,yes )\0

An elementary computation shows that

() —
viso B [eXp(/\o(t A T())) 1] _
Ao
Indeed, we have
+o0
E [exp()\o(t A T(E)))] /Ao = f exp(Ao(t A s)) exp(—Ags)ds

0
¢ +oo

= f ds + exp(Ao(t — s)) ds
0 t

= t+ 1/)\0

It follows that for any ¢ > 0 and x € S,

E, [exp()\o(Ty)\AOT(ﬁ))) — 1] _ Ey[n]

Thus, for any fixed € > 0, the eigentime identity of Theorem 1 for L is “equivalent” to the eigentime
identity of Theorem 2 for L(©).

]

We come back to the general framework of finite irreducible absorbing Markov processes. The
following result is an analogous property of the first part of Theorem 1.

Proposition 4 For any x € S, we have

p(r) = (Z 3 _1%)_1 DB, UTM ©(X;) exp(Aos) dS] 1(y)

AeAg yeS 0




Let us give some immediate consequences of Theorem 2 and Proposition 4 which make them
more similar to Theorem 1. It is convenient to consider the amplitude of ¢, introduced and studied
in [6]:

ay, = — > max (2)

In particular it was seen in [6] that under the reversibility assumption (there exists a probability
measure 7 on S such that n(z)L(z,y) is symmetrical with respect to the couple (x,y)), we have

a, < ((1— A_Z> };IO <1 - %>>_1

PV i Ao(S
0 xeS:En(icI}oo)>0 0( \{x})

where

and A\o(S\{z}) is the Perron-Frobenius smallest eigenvalue of the restriction of —L to S\{z}.

Corollary 5 For all x € S, we have

_ 1 exp(AoTy,0) — 1 1
2 E < E E { Y ( ) < a2 E
a@ — x T ny) s ago _
Yero A— X ey Ao A— X

and in particular

1
DIEe[rye] vly) < a ) e

yes AeAg

By integration of these bounds with respect to v, one gets eigentime inequalities where the starting
and ending points T and y play symmetrical Toles.

Probably that under appropriate assumptions, the previous results can be extended to denu-
merable infinite state spaces. The extension to diffusion processes seems more challenging. But
these frameworks are left for future investigations.

The plan of the paper is as follows: in next section we recover Theorem 1 with a simple
functional proof. The situation of absorbing Markov processes is treated in Section 3. The last
section extends the previous considerations to the setting of discrete time.

2 The ergodic case

The known results concerning the ergodic eigentime identity presented in Theorem 1 are recovered
here via an elementary approach.

The underlying simple linear algebra principle is as follows:

Lemma 6 Let F be an FEuclidean space of dimension N € N whose scalar product is denoted by
(). Consider Fo a subspace of F and G an endomorphism of Fo. If (en)ne[ny i5 an orthonormal
basis of F, consider for any n € [N], g, the orthogonal projection of e, on Fy. Then the trace of
G is given by

(@ = Y (g Gga)

ne[N]



Proof

This result is well-known if Fy = F: then the diagonal of the matrix of G ex_pressed in the basis
(en)ne[n] 18 ({en;Gen))nefny- In the general case, consider the extension G of G on F which
vanishes on the orthogonal complement of Fy. It appears that

tr(G) = tr(Q)

= Y (en,Gen)

ne[N]

= Z <gn7 ng>

ne[N]

This result is applied with F := L?(u), endowed with its natural scalar product and with the
orthonormal basis (0,/+/(y))yes, where d, is the function from F taking the value 1 at y and 0
elsewhere. For the subspace F, consider

Fo = {feF:pufl=0} (3)

The orthogonal projection of the basis (d,/+/1(y))yes on Fo is (gy)yes, where

VyeS, g, = %—\/mw (4)

The invariance of p is equivalent to the property that

vieF, ulLlf]l = 0

namely the image of F by L is included into Fy. By irreducibility, we know that the kernel of L is
the set of constant functions, thus the restriction of —L to JFq is a bijective endomorphism, whose
algebraic spectrum is Ag. Consider G its inverse operator, which is an endomorphism of Fy whose

algebraic spectrum is
1
—:A€EA

(write — L)z, in a basis where the associated matrix is upper diagonal).
From the previous lemma, we get

Y onGlah = X3

yeS AeAg
The following result enables to conclude to the ergodic eigentime identity.

Proposition 7 For any fired y € S, we have

{99, Gloy) = ny) D] Eulry] p(x)

zeSs

Proof
For given y € S, consider the mapping f, € F defined by

Vxels, fylx) = Eg[ry] (5)



It is well-known that f, is characterized by the fact that

L[fy] = -1 OHS\{?J}
{fy(y) — 0 (©)

Since L[ f,] belongs to Fy, we get that L[f,](y) = (1 — u(y))/u(y) and it appears that

9y
HAl = u(y)

In particular we deduce that

Glo,] = —Vuly)fy (7)

where jN’y = fy — ulfyl € Fo.
From (6) we get that

Sy L) = - Z fy(z) p(z)
z=y
= =) fy@) @)

zeS

By invariance and since L vanishes on constant functions,

<fya L[fy]> = <fya L[fy]>
It remains to use (7) to conclude to the wanted identity.
|

To be self-contained, let us give a probabilistic proof of the characterization (6). The same
approach will also be useful in the absorbing case. It consists in exchanging the roles of the known
and unknown functions and f, and g,/+/p(y) in the Poisson equation

{L[fy] - A .
fyly) = 0

Since L, is bijective, there is a unique function jN’y € Fo such that L[fy] = gy//1(y). Thus we
know a priori there is a unique solution f, to (8), it is given by f, = fy - jN’y(y)

Lemma 8 The unique solution f, of (8) is given by (5).

Proof

Recall that the law of a Markov process X associated to L is a solution to the following martingale
problem: for any f € F, the process

t

Vis0, M = f(X) - f(Xo)— f LIf](X.) ds

0

is a martingale. In particular, the process (M-, [f])i=0 is a bounded martingale, so we get for
any fixed x € S and t = 0,

E, [f(me)—f(Xo)— thL[f](Xs)dS] = 0

0



ie.

Replace f by f,, to see that

fx) = E, [f(XtMy) +tA Ty]

and letting ¢ go to infinity it appears that

as announced.

It remains to show the first part of Theorem 1, namely that the function f = Zye g fyu(y) is
constant. It follows immediately by applying L:

LIf] = Y. LIf, uly)

yeS

_y;\/_

= D0y —py) =1-1=0

yeS

3 The absorbing case

It is seen here how the arguments of the previous section can be extended to the absorbing situation
to prove Theorem 2 and Proposition 4

Again we apply Lemma 6 to the Euclidean space F := L2(u), where p has density ¢ with
respect to v, the quasi-stationary distribution. We equally consider the basis (6,/+/1(y))yes and
the subspace Fy defined in (3). Thus the family of functions (g, )yes, introduced in (4), will play
an important role.

The main difference with Section 2 is that the generator L is replaced by the operator L acting
on F by

vieF,  Ilf] = é(LJer)[cpf]

It is quite natural, since L is an ergodic Markov generator whose convergence to equilibrium is
strongly related to the absorption for L, as it was seen in [7]. Note that the invariant probability
of L is u. Indeed, the quasi-invariance of v is equivalent to the property that

vVieF, VL] = —Aovlf]
so that
VfeF,  ulLlf]]l = vI(L+XM)lef]] =

In particular the image of F by L is included into Fp. By the Perron-Frobenius theorem, the kernel
of L + \g is of dimension 1 and generated by the positive function ¢. It follows that the kernel
of L consists of the constant functions (as it should be for an ergodic Markovian generator) and



thus the restriction of —L to Fo is an bijective endomorphism of Fy. Denote by G its inverse. Its

algebraic spectrum is
1
cA€EA
{A 0 F 0}

Y@ Cla) = X5y

yesS RS

From Lemma 6, we deduce that

It leads to consider, for any fixed y € S, the solution f, of the equation

{ Z[fy] = \/?(7) (9)
fy(y) = 0
Indeed, it is given by f, = —(Glgy] — Glgy|(v)))/r/1(y), or equivalently Glg,] = —/u(y)(fy —

1 fy]). The proof of Proposition 7, where L is replaced by L, shows that

(99 Glosy = —n) LUy = nlf]) Sy = nlhy))

= ul(y) D] fy(@) p(=)

zeSs

The next result is analogous to Lemma 8 in the identification of f,. It ends the proof of Theorem 2,
since pu(z)/o(z) = v(x) for all x € S.

Lemma 9 For any fized y € S, the mapping f, is given by

VeeS, (@) = ﬁlﬁlx UOW o(Xs) exp(Mos) ds]

Proof

Let X be the absorbing process associated to L. The martingale problem solved by its law can
be extended into a time-space version, sometimes called Dynkin’s lemma: For any function f :
R, x S — R which is C' with respect to the first (time) variable, the process

t

vis0, M = h(t,Xt)—h(O,Xo)—L(&sh(s,-)~|—L[h(s,-)])(Xs)ds

is a martingale (by convention, all the functions defined on S are extended to S by making them
vanish at 00). In particular, the process (M, . [h])i=0 is a bounded martingale, so we get for
any fixed x € S and t = 0,

E, [h(tMy,w,me)—h(o,XO)—LAW(aSh(s,.)+L[h(s,.)])(X5)ds] -0

i.e.

R(0,z) = E, {h(t A Tyoos Xinryw) — LMym(ash(s, 3+ L{h(s, )] (Xs) ds]

Consider the function f defined by

Vs=0,z€S8, h(s,z) = exp(Aot)p(2)fy(2)

9



where y € S is fixed as in the statement of the lemma. Taking into account that

(L+Mo)ef,] = o—2—
w(y)
we get
Vs=0,VzeS\{y},  (0sh(s,)) + L[h(s,)])(2) = —exp(ros)p(2) (10)

so that for any x € S and t > 0,

@) fy(e) = Eo [expw(mTy7w>>fy<XtATy,w>+ | W’wexpuos)eo(xs)ds] (11)

By monotone convergence, we have

lim E, [ jo ”y’mexpws)w(Xs)ds] - E [ fo Ty’wexpuos)so(Xs)ds]

To see that

tli}foo Ey [eXPO‘O(t A Ty700))fy<XtA'ry,oo)] = E; [eXP(AoTy@O)fy(XTy,oo)]
= 0

we would like to apply the dominated convergence theorem. Namely we wish that E; [exp(Ao7y,«0)] <
+00. It is true as a consequence of two well-known facts (for a proof, see e.g. Lemma 6 and Lemma 8
of [6]):

e For any z € S\{y}, E; [exp(I7y,0)] < +o0 if and only if I < A\g(S\{y}), where Ao(S\{y}) was
defined just before Corollary 5.

e Due to the irreducibility of L, A\o(S\{y}) > Ao, which means that the underlying process goes
out from S\{y} with a (strictly) better asymptotical rate than from S.

We are thus allowed to let ¢ go to infinity in (11) to obtain the announced formula for f,.
[

The proof of Proposition 4 is similar to that of the first part of Theorem 1: considering the
function f =3} s fyu(y), it appears that L[f] = 0, so that f must be constant. The eigentime
identity asserts that u[f] = >5cp, 1/(A — Ao) and we deduce that

Vazes, flx) = Z !

)\EAO )\ o )\0

which can be rewritten under the form given in Proposition 4.

4 The discrete-time setting

All the previous considerations can be adapted to the setting of discrete time. After recalling
it in the ergodic and absorbing cases, we state the corresponding results and present the slight
modifications needed in the arguments.

In the ergodic case, we are given an irreducible Markov transition matrix P = (P(z,y))syes on
the finite state space S. The associated Markov chains X := (X,,)nez, are those whose transition
probabilities are dictated by P. For x € S, we denote E, the expectation relative to X when
Xo = x. For any y € S, 7, stands for the reaching time of y by X and is defined formally as in (1).
We denote by u the invariant probability for P (i.e. satisfying uP = p) and by © the algebraic
spectrum of P. The multiplicity of 1 € © is 1 and let ©g = ©\{1}.

The following result is again due to Aldous and Fill [1] for the reversible Markov chains and to
Cui and Mao [5] in the general case.

10



Theorem 10 For any x € S, we have

MEenluly) = > 1%9

yeS 6eBo

By integration with respect to u, it implies the eigentime identity

Y Eulrlu@ut) = Y

r,yesS [ZSSH)

In the absorbing situation, P is a strictly subMarkovian transition matrix on the finite S. As
usual, it can be extended into a Markov transition matrix P by adding a cemetery point oo to
S. This enables to consider the associated Markov chains X = (X, )nez +» with the corresponding
notions, E,, 7, «, for x € 9, etc. Let © be the algebraic spectrum of P. The Perron-Frobenius
theory enables to see that in O there is a real element 6y which is (strictly) larger than the real parts
of all the other eigenvalues. Furthermore, there exists a quasi-stationary probability v characterized
by vP = yv, and let ¢ be the positive function satisfying Py = Oy with v[¢] = 1. As before,
denote Oy = ©\{fp} and p the probability admitting the density ¢ with respect to v. With these
notations, we can state an absorbing discrete-time eigentime identity:

Theorem 11 We have

Ty,00—1
5 E[ 3 egn—wxn)] v@outy) = ¥ 7y

z,yeS n=0 0e©q

and more precisely, for any x € S,

Ty,co—l

~1
px) = | )] HE DB D 0" e(Xn) | nly)
0o — 0 yes n=0

96@0

Considering L := P — I (with I the S x S-identity matrix), which is an irreducible Markov
(respectively strict subMarkov) generator in the ergodic (resp. absorbing) case, the functional
arguments are exactly the same as in the continuous time. The differences appear with the prob-
abilistic interpretations, namely in the proofs of Lemmas 8 and 9. But they are quite minor. In
the ergodic case, for f € F, define the discrete-time martingale M| f] by

n—1
VneZy,  Milf] = f(Xn)— f(Xo)— D (P—D[f](Xm)
m=0

and consider for fixed y € S, the martingale (M, nr, [fy])mez, -
In the absorbing situation, one rather use the time-space martingales M[h]|, where h is a
mapping from Z, x S to R, defined by

-1
Vne Z+7 Mn[h] = hn<Xn) - h0<X0) - (P - [)[hm+1]<Xm) + (hm+l - hm)<Xm)

m=0

3

More precisely one needs to stop them at 7, o, for fixed y € S, and relatively to the function
frZexSa(mz) o hal2) = 0e()f,(2)
Its interest is that

VmeZi,¥VzeS\y}, (P = Dlhnil(z) + (i1 = hin)(2) = 6" p(2)

11



which is the analogous property to (10). Furthermore the two points mentioned at the end of the
proof of Lemma 9 are equally satisfied.

e For the first point, one has to take into account that 7, o is a geometric variable of parameter
0o(S\{y}) (the Perron-Frobenius largest eigenvalue of the restriction of P to S\{y}) when Xy
is started from the quasi-stationary distribution (instead of a exponential variable of parameter
Ao(S\{}))-

e For the second point, 05(S\{y}) < 6y, it comes directly from the corresponding assertion for
the associated subMarkovian generator L, it is indeed a result of functional nature.

Finally, there is an immediate equivalent of Corollary 5, where the amplitude a,, is defined as
in (2).

Corollary 12 For all x € S, we have

0 | 0
a < m — v(y) < a Z
# 0e@090_9 e 0, —1 v 090—9

and in particular

0
D E el vly) < Y o
yes 0eOq 0

By integration of these bounds with respect to v, one gets discrete time eigentime inequalities where
the starting and ending points x and y play symmetrical roles.
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